mirror of
https://github.com/rsheldiii/KeyV2.git
synced 2024-11-29 08:03:02 +00:00
use function literals to make surface functions more fun
This commit is contained in:
parent
f0e339966f
commit
703015dc51
511
customizer.scad
511
customizer.scad
@ -205,11 +205,7 @@ $warning_color = [1,0,0, 0.15];
|
||||
$minkowski_facets = 30;
|
||||
$shape_facets =30;
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 100;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
|
||||
$3d_surface_step = 10;
|
||||
|
||||
|
||||
// "flat" / "dished" / "disable"
|
||||
$inner_shape_type = "flat";
|
||||
@ -220,6 +216,48 @@ $side_sculpting_factor = 4.5;
|
||||
$corner_sculpting_factor = 1;
|
||||
// When doing more side sculpting corners, how much extra radius should be added
|
||||
$more_side_sculpting_factor = 0.4;
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 20;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total.
|
||||
// 5 = 20 divisions per x/y
|
||||
$3d_surface_step = 1;
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
sinusoidal_surface_distribution = function(dim,size) sin(dim) * size;
|
||||
linear_surface_distribution = function(dim,size) sin(dim) * size;
|
||||
|
||||
$surface_distribution_function = linear_surface_distribution;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
// $surface_function = function(x,y) 1;
|
||||
cylindrical_surface = function(x,y) (sin(acos(x/$3d_surface_size)));
|
||||
spherical_surface = function(x,y) (1 - (x/$3d_surface_size)^2)^0.5 * (1 - (y/$3d_surface_size)^2)^0.5;
|
||||
// looks a lot like mt3
|
||||
quartic_surface = function(x,y) (1 - (x/$3d_surface_size)^4)^0.5 * (1 - (y/$3d_surface_size)^4)^0.5;
|
||||
ripple_surface = function(x,y) cos((x^2+y^2)^0.5 * 50)/4 + 0.75;
|
||||
rosenbrocks_banana_surface = function(x,y) (pow(1-(x/$3d_surface_size))^2 + 100 * pow((y/$3d_surface_size)-(x/$3d_surface_size)^2)^2)/200 + 0.1;
|
||||
spike_surface = function(x,y) 1/(((x/$3d_surface_size)^2+(y/$3d_surface_size)^2)^0.5) + .01;
|
||||
random_surface = function(x,y) sin(rands(0,90,1,x+y)[0]);
|
||||
bumps_surface = function(x,y) sin(20*x)*cos(20*y)/3+1;
|
||||
|
||||
$surface_function = bumps_surface; // bumps_surface;
|
||||
|
||||
// ripples
|
||||
/*
|
||||
// Rosenbrock's banana
|
||||
/* $
|
||||
// y=x revolved around the y axis
|
||||
/* $surface_function = */
|
||||
/* $surface_function = */
|
||||
// key width functions
|
||||
|
||||
module u(u=1) {
|
||||
@ -945,29 +983,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -1408,29 +1423,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -1487,29 +1479,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -2422,29 +2391,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3246,29 +3192,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3436,29 +3359,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3547,29 +3447,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3622,29 +3499,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3743,29 +3597,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3818,29 +3649,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -3957,29 +3765,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -4102,29 +3887,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -4177,29 +3939,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -4345,29 +4084,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -4420,29 +4136,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -4882,36 +4575,13 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
function unit_length(length) = $unit * (length - 1) + 18.16;
|
||||
|
||||
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
||||
function p(x, y) = [ x, y, max(0,surface_function(x, y)) ];
|
||||
function p(x, y) = [ x, y, max(0,$surface_function(x, y)) ];
|
||||
function p0(x, y) = [ x, y, bottom ];
|
||||
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
||||
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
|
||||
@ -4943,13 +4613,13 @@ module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST
|
||||
polyhedron(points, faces, convexity = 8);
|
||||
}
|
||||
|
||||
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
||||
module polar_3d_surface(size, step, bottom=-SMALLEST_POSSIBLE){
|
||||
function to_polar(q, size) = q * (90 / size);
|
||||
|
||||
function p(x, y) = [
|
||||
surface_distribution_function(to_polar(x, size), size),
|
||||
surface_distribution_function(to_polar(y, size), size),
|
||||
max(0,surface_function(surface_distribution_function(to_polar(x, size), size), surface_distribution_function(to_polar(y, size), size)))
|
||||
$surface_distribution_function(to_polar(x, size), size),
|
||||
$surface_distribution_function(to_polar(y, size), size),
|
||||
max(0,$surface_function($surface_distribution_function(to_polar(x, size), size), $surface_distribution_function(to_polar(y, size), size)))
|
||||
];
|
||||
function p0(x, y) = [ x, y, bottom ];
|
||||
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
||||
@ -4983,8 +4653,8 @@ module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SM
|
||||
}
|
||||
|
||||
// defaults, overridden in functions.scad
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// $surface_distribution_function = function(dim, size) sin(dim) * size;
|
||||
// $surface_function = function(x,y) (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
|
||||
module 3d_surface_dish(width, height, depth, inverted) {
|
||||
echo(inverted ? "inverted" : "not inverted");
|
||||
@ -4992,9 +4662,11 @@ module 3d_surface_dish(width, height, depth, inverted) {
|
||||
// it doesn't have to be dead reckoning for anything but sculpted sides
|
||||
// we know the angle of the sides from the width difference, height difference,
|
||||
// skew and tilt of the top. it's a pain to calculate though
|
||||
scale_factor = 1.1;
|
||||
scale_factor = 1.11;
|
||||
// the edges on this behave differently than with the previous dish implementations
|
||||
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,180]) polar_3d_surface(bottom=-10);
|
||||
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth])
|
||||
rotate([inverted ? 0:180,0,180])
|
||||
polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-10);
|
||||
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
|
||||
|
||||
}
|
||||
@ -5012,7 +4684,7 @@ module dish(width, height, depth, inverted) {
|
||||
sideways_cylindrical_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "old spherical") {
|
||||
old_spherical_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "3d_surface") {
|
||||
} else if ($dish_type == "3d surface") {
|
||||
3d_surface_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "flat") {
|
||||
flat_dish(width, height, depth, inverted);
|
||||
@ -5074,29 +4746,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
@ -6732,11 +6381,7 @@ $warning_color = [1,0,0, 0.15];
|
||||
$minkowski_facets = 30;
|
||||
$shape_facets =30;
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 100;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
|
||||
$3d_surface_step = 10;
|
||||
|
||||
|
||||
// "flat" / "dished" / "disable"
|
||||
$inner_shape_type = "flat";
|
||||
@ -6746,7 +6391,49 @@ $side_sculpting_factor = 4.5;
|
||||
// When sculpting corners, how much extra radius should be added
|
||||
$corner_sculpting_factor = 1;
|
||||
// When doing more side sculpting corners, how much extra radius should be added
|
||||
$more_side_sculpting_factor = 0.4; key();
|
||||
$more_side_sculpting_factor = 0.4;
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 20;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total.
|
||||
// 5 = 20 divisions per x/y
|
||||
$3d_surface_step = 1;
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
sinusoidal_surface_distribution = function(dim,size) sin(dim) * size;
|
||||
linear_surface_distribution = function(dim,size) sin(dim) * size;
|
||||
|
||||
$surface_distribution_function = linear_surface_distribution;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
// $surface_function = function(x,y) 1;
|
||||
cylindrical_surface = function(x,y) (sin(acos(x/$3d_surface_size)));
|
||||
spherical_surface = function(x,y) (1 - (x/$3d_surface_size)^2)^0.5 * (1 - (y/$3d_surface_size)^2)^0.5;
|
||||
// looks a lot like mt3
|
||||
quartic_surface = function(x,y) (1 - (x/$3d_surface_size)^4)^0.5 * (1 - (y/$3d_surface_size)^4)^0.5;
|
||||
ripple_surface = function(x,y) cos((x^2+y^2)^0.5 * 50)/4 + 0.75;
|
||||
rosenbrocks_banana_surface = function(x,y) (pow(1-(x/$3d_surface_size))^2 + 100 * pow((y/$3d_surface_size)-(x/$3d_surface_size)^2)^2)/200 + 0.1;
|
||||
spike_surface = function(x,y) 1/(((x/$3d_surface_size)^2+(y/$3d_surface_size)^2)^0.5) + .01;
|
||||
random_surface = function(x,y) sin(rands(0,90,1,x+y)[0]);
|
||||
bumps_surface = function(x,y) sin(20*x)*cos(20*y)/3+1;
|
||||
|
||||
$surface_function = bumps_surface; // bumps_surface;
|
||||
|
||||
// ripples
|
||||
/*
|
||||
// Rosenbrock's banana
|
||||
/* $
|
||||
// y=x revolved around the y axis
|
||||
/* $surface_function = */
|
||||
/* $surface_function = */ key();
|
||||
}
|
||||
|
||||
if (!$using_customizer) {
|
||||
|
@ -22,7 +22,7 @@ module dish(width, height, depth, inverted) {
|
||||
sideways_cylindrical_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "old spherical") {
|
||||
old_spherical_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "3d_surface") {
|
||||
} else if ($dish_type == "3d surface") {
|
||||
3d_surface_dish(width, height, depth, inverted);
|
||||
} else if ($dish_type == "flat") {
|
||||
flat_dish(width, height, depth, inverted);
|
||||
|
@ -6,9 +6,11 @@ module 3d_surface_dish(width, height, depth, inverted) {
|
||||
// it doesn't have to be dead reckoning for anything but sculpted sides
|
||||
// we know the angle of the sides from the width difference, height difference,
|
||||
// skew and tilt of the top. it's a pain to calculate though
|
||||
scale_factor = 1.1;
|
||||
scale_factor = 1.11;
|
||||
// the edges on this behave differently than with the previous dish implementations
|
||||
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([inverted ? 0:180,0,180]) polar_3d_surface(bottom=-10);
|
||||
scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth])
|
||||
rotate([inverted ? 0:180,0,180])
|
||||
polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-10);
|
||||
/* %scale([width*scale_factor/$3d_surface_size/2,height*scale_factor/$3d_surface_size/2,depth]) rotate([180,0,0]) polar_3d_surface(bottom=-10); */
|
||||
|
||||
}
|
||||
|
@ -43,29 +43,6 @@ function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_ke
|
||||
// I derived this through a bunch of trig reductions I don't really understand.
|
||||
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
function surface_function(x,y) = 1;
|
||||
// cylindrical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size)));
|
||||
// spherical
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// ripples
|
||||
/* function surface_function(x,y) = cos(pow(pow(x,2)+pow(y,2),0.5)*10)/4+0.75; */
|
||||
// Rosenbrock's banana
|
||||
/* function surface_function(x,y) = (pow(1-(x/100), 2) + 100 * pow((y/100)-pow((x/100),2),2))/200 + 0.1; */
|
||||
// y=x revolved around the y axis
|
||||
/* function surface_function(x,y) = 1/(pow(pow(x,2)+pow(y,2),0.5)/100 + .01); */
|
||||
/* function surface_function(x,y) = sin(rands(0,90,1,x+y)[0]); */
|
||||
// adds uniform rounding radius for round-anything polyRound
|
||||
function add_rounding(p, radius)=[for(i=[0:len(p)-1])[p[i].x,p[i].y, radius]];
|
||||
// computes millimeter length from unit length
|
||||
|
@ -3,7 +3,7 @@
|
||||
include <../functions.scad>
|
||||
|
||||
module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
||||
function p(x, y) = [ x, y, max(0,surface_function(x, y)) ];
|
||||
function p(x, y) = [ x, y, max(0,$surface_function(x, y)) ];
|
||||
function p0(x, y) = [ x, y, bottom ];
|
||||
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
||||
function face(x, y) = [ p(x, y + step), p(x + step, y + step), p(x + step, y), p(x + step, y), p(x, y), p(x, y + step) ];
|
||||
@ -35,13 +35,13 @@ module 3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST
|
||||
polyhedron(points, faces, convexity = 8);
|
||||
}
|
||||
|
||||
module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SMALLEST_POSSIBLE){
|
||||
module polar_3d_surface(size, step, bottom=-SMALLEST_POSSIBLE){
|
||||
function to_polar(q, size) = q * (90 / size);
|
||||
|
||||
function p(x, y) = [
|
||||
surface_distribution_function(to_polar(x, size), size),
|
||||
surface_distribution_function(to_polar(y, size), size),
|
||||
max(0,surface_function(surface_distribution_function(to_polar(x, size), size), surface_distribution_function(to_polar(y, size), size)))
|
||||
$surface_distribution_function(to_polar(x, size), size),
|
||||
$surface_distribution_function(to_polar(y, size), size),
|
||||
max(0,$surface_function($surface_distribution_function(to_polar(x, size), size), $surface_distribution_function(to_polar(y, size), size)))
|
||||
];
|
||||
function p0(x, y) = [ x, y, bottom ];
|
||||
function rev(b, v) = b ? v : [ v[3], v[2], v[1], v[0] ];
|
||||
@ -75,5 +75,5 @@ module polar_3d_surface(size=$3d_surface_size, step=$3d_surface_step, bottom=-SM
|
||||
}
|
||||
|
||||
// defaults, overridden in functions.scad
|
||||
function surface_distribution_function(dim, size) = sin(dim) * size;
|
||||
function surface_function(x,y) = (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
// $surface_distribution_function = function(dim, size) sin(dim) * size;
|
||||
// $surface_function = function(x,y) (sin(acos(x/$3d_surface_size))) * sin(acos(y/$3d_surface_size));
|
||||
|
@ -190,11 +190,7 @@ $warning_color = [1,0,0, 0.15];
|
||||
$minkowski_facets = 30;
|
||||
$shape_facets =30;
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 100;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total
|
||||
$3d_surface_step = 10;
|
||||
|
||||
|
||||
// "flat" / "dished" / "disable"
|
||||
$inner_shape_type = "flat";
|
||||
@ -205,3 +201,45 @@ $side_sculpting_factor = 4.5;
|
||||
$corner_sculpting_factor = 1;
|
||||
// When doing more side sculpting corners, how much extra radius should be added
|
||||
$more_side_sculpting_factor = 0.4;
|
||||
|
||||
// 3d surface functions (still in beta)
|
||||
|
||||
// 3d surface settings
|
||||
// unused for now
|
||||
$3d_surface_size = 20;
|
||||
// resolution in each axis. 10 = 10 divisions per x/y = 100 points total.
|
||||
// 5 = 20 divisions per x/y
|
||||
$3d_surface_step = 1;
|
||||
|
||||
// monotonically increasing function that distributes the points of the surface mesh
|
||||
// only for polar_3d_surface right now
|
||||
// if it's linear it's a grid. sin(dim) * size concentrates detail around the edges
|
||||
sinusoidal_surface_distribution = function(dim,size) sin(dim) * size;
|
||||
linear_surface_distribution = function(dim,size) sin(dim) * size;
|
||||
|
||||
$surface_distribution_function = linear_surface_distribution;
|
||||
|
||||
// the function that actually determines what the surface is.
|
||||
// feel free to override, the last one wins
|
||||
|
||||
// debug
|
||||
// $surface_function = function(x,y) 1;
|
||||
cylindrical_surface = function(x,y) (sin(acos(x/$3d_surface_size)));
|
||||
spherical_surface = function(x,y) (1 - (x/$3d_surface_size)^2)^0.5 * (1 - (y/$3d_surface_size)^2)^0.5;
|
||||
// looks a lot like mt3
|
||||
quartic_surface = function(x,y) (1 - (x/$3d_surface_size)^4)^0.5 * (1 - (y/$3d_surface_size)^4)^0.5;
|
||||
ripple_surface = function(x,y) cos((x^2+y^2)^0.5 * 50)/4 + 0.75;
|
||||
rosenbrocks_banana_surface = function(x,y) (pow(1-(x/$3d_surface_size))^2 + 100 * pow((y/$3d_surface_size)-(x/$3d_surface_size)^2)^2)/200 + 0.1;
|
||||
spike_surface = function(x,y) 1/(((x/$3d_surface_size)^2+(y/$3d_surface_size)^2)^0.5) + .01;
|
||||
random_surface = function(x,y) sin(rands(0,90,1,x+y)[0]);
|
||||
bumps_surface = function(x,y) sin(20*x)*cos(20*y)/3+1;
|
||||
|
||||
$surface_function = bumps_surface; // bumps_surface;
|
||||
|
||||
// ripples
|
||||
/*
|
||||
// Rosenbrock's banana
|
||||
/* $
|
||||
// y=x revolved around the y axis
|
||||
/* $surface_function = */
|
||||
/* $surface_function = */
|
Loading…
Reference in New Issue
Block a user