mirror of
https://github.com/rsheldiii/KeyV2.git
synced 2025-01-22 17:30:57 +00:00
2172278b72
Also make the keytop width changes less dramatic, by centering them around the center of the sides of the keycap. Now instead of choosing the front or back of the keycap and shrinking / expanding the back or front to fit, we shrink / expand both evenly. This actually cleans up the logic too! hooray.
4798 lines
167 KiB
OpenSCAD
4798 lines
167 KiB
OpenSCAD
// entry point for customizer script. This probably isn't useful to most people,
|
|
// as it's just a wrapper that helps generate customizer.scad for thingiverse.
|
|
|
|
/* [Basic-Settings] */
|
|
|
|
// what preset profile do you wish to use? disable if you are going to set paramters below
|
|
key_profile = "dcs"; // [dcs, oem, dsa, sa, g20, disable]
|
|
// what key profile row is this keycap on? 0 for disable
|
|
row = 1; // [5,1,2,3,4,0]
|
|
|
|
// What does the top of your key say?
|
|
legend = "";
|
|
|
|
/* [Basic-Settings] */
|
|
|
|
// Length in units of key. A regular key is 1 unit; spacebar is usually 6.25
|
|
$key_length = 1.0; // Range not working in thingiverse customizer atm [1:0.25:16]
|
|
|
|
// What type of stem you want. Most people want Cherry.
|
|
$stem_type = "cherry"; // [cherry, alps, rounded_cherry, box_cherry, filled, disable]
|
|
|
|
// The stem is the hardest part to print, so this variable controls how much 'slop' there is in the stem
|
|
// if your keycaps stick in the switch raise this value
|
|
$stem_slop = 0.35; // Not working in thingiverse customizer atm [0:0.01:1]
|
|
// broke this out. if your keycaps are falling off lower this value. only works for cherry stems rn
|
|
$stem_inner_slop = 0.2;
|
|
|
|
// Font size used for text
|
|
$font_size = 6;
|
|
|
|
// Set this to true if you're making a spacebar!
|
|
$inverted_dish = false;
|
|
|
|
// set this to true if you are making double sculpted keycaps
|
|
$double_sculpted = false;
|
|
// change aggressiveness of double sculpting
|
|
// this is the radius of the cylinder the keytops are placed on
|
|
$double_sculpt_radius = 200;
|
|
|
|
|
|
// Support type. default is "flared" for easy FDM printing; bars are more realistic, and flat could be for artisans
|
|
$support_type = "flared"; // [flared, bars, flat, disable]
|
|
|
|
// Supports for the stem, as it often comes off during printing. Reccommended for most machines
|
|
$stem_support_type = "tines"; // [tines, brim, disabled]
|
|
|
|
// enable to have stem support extend past the keycap bottom, to (hopefully) the next
|
|
// keycap. only works on tines right now
|
|
$extra_long_stem_support = false;
|
|
|
|
/* [Advanced] */
|
|
|
|
/* Key */
|
|
// Height in units of key. should remain 1 for most uses
|
|
$key_height = 1.0;
|
|
// Keytop thickness, aka how many millimeters between the inside and outside of the top surface of the key
|
|
$keytop_thickness = 1;
|
|
// Wall thickness, aka the thickness of the sides of the keycap. note this is the total thickness, aka 3 = 1.5mm walls
|
|
$wall_thickness = 3;
|
|
// Radius of corners of keycap
|
|
$corner_radius = 1;
|
|
// Width of the very bottom of the key
|
|
$bottom_key_width = 18.16;
|
|
// Height (from the front) of the very bottom of the key
|
|
$bottom_key_height = 18.16;
|
|
// How much less width there is on the top. eg top_key_width = bottom_key_width - width_difference
|
|
$width_difference = 6;
|
|
// How much less height there is on the top
|
|
$height_difference = 4;
|
|
// How deep the key is, before adding a dish
|
|
$total_depth = 11.5;
|
|
// The tilt of the dish in degrees. divided by key height
|
|
$top_tilt = -6;
|
|
// the y tilt of the dish in degrees. divided by key width.
|
|
// for double axis sculpted keycaps and probably not much else
|
|
$top_tilt_y = 0;
|
|
// How skewed towards the back the top is (0 for center)
|
|
$top_skew = 1.7;
|
|
|
|
// how skewed towards the right the top is. unused, but implemented.
|
|
// for double axis sculpted keycaps and probably not much else
|
|
$top_skew_x = 0;
|
|
|
|
/* Stem */
|
|
|
|
// How far the throw distance of the switch is. determines how far the 'cross' in the cherry switch digs into the stem, and how long the keystem needs to be before supports can start. luckily, alps and cherries have a pretty similar throw. can modify to have stouter keycaps for low profile switches, etc
|
|
$stem_throw = 4;
|
|
// Diameter of the outside of the rounded cherry stem
|
|
$rounded_cherry_stem_d = 5.5;
|
|
|
|
|
|
// How much higher the stem is than the bottom of the keycap.
|
|
// Inset stem requires support but is more accurate in some profiles
|
|
$stem_inset = 0;
|
|
// How many degrees to rotate the stems. useful for sideways keycaps, maybe
|
|
$stem_rotation = 0;
|
|
|
|
/* Shape */
|
|
|
|
// Key shape type, determines the shape of the key. default is 'rounded square'
|
|
$key_shape_type = "rounded_square";
|
|
// ISO enter needs to be linear extruded NOT from the center. this tells the program how far up 'not from the center' is
|
|
$linear_extrude_height_adjustment = 0;
|
|
// How many slices will be made, to approximate curves on corners. Leave at 1 if you are not curving corners
|
|
// If you're doing fancy bowed keycap sides, this controls how many slices you take
|
|
$height_slices = 1;
|
|
|
|
/* Dish */
|
|
|
|
// What type of dish the key has. note that unlike stems and supports a dish ALWAYS gets rendered.
|
|
$dish_type = "cylindrical"; // [cylindrical, spherical, sideways cylindrical, old spherical, disable]
|
|
// How deep the dish 'digs' into the top of the keycap. this is max depth, so you can't find the height from total_depth - dish_depth. besides the top is skewed anyways
|
|
$dish_depth = 1;
|
|
// How skewed in the x direction the dish is
|
|
$dish_skew_x = 0;
|
|
// How skewed in the y direction (height) the dish is
|
|
$dish_skew_y = 0;
|
|
// If you need the dish to extend further, you can 'overdraw' the rectangle it will hit
|
|
$dish_overdraw_width = 0;
|
|
// Same as width but for height
|
|
$dish_overdraw_height = 0;
|
|
|
|
/* Misc */
|
|
// There's a bevel on the cherry stems to aid insertion / guard against first layer squishing making a hard-to-fit stem.
|
|
$cherry_bevel = true;
|
|
|
|
// How tall in mm the stem support is, if there is any. stem support sits around the keystem and helps to secure it while printing.
|
|
$stem_support_height = .8;
|
|
// Font used for text
|
|
$font="DejaVu Sans Mono:style=Book";
|
|
// Whether or not to render fake keyswitches to check clearances
|
|
$clearance_check = false;
|
|
// Use linear_extrude instead of hull slices to make the shape of the key
|
|
// Should be faster, also required for concave shapes
|
|
$linear_extrude_shape = false;
|
|
|
|
// brand new, more correct, hopefully faster, lots more work
|
|
// warns in trajectory.scad but it looks benign
|
|
$skin_extrude_shape = false;
|
|
//should the key be rounded? unnecessary for most printers, and very slow
|
|
$rounded_key = false;
|
|
//minkowski radius. radius of sphere used in minkowski sum for minkowski_key function. 1.75 for G20
|
|
$minkowski_radius = .33;
|
|
|
|
/* Features */
|
|
|
|
//insert locating bump
|
|
$key_bump = false;
|
|
//height of the location bump from the top surface of the key
|
|
$key_bump_depth = 0.5;
|
|
//distance to move the bump from the front edge of the key
|
|
$key_bump_edge = 0.4;
|
|
|
|
/* [Hidden] */
|
|
|
|
//list of legends to place on a key format: [text, halign, valign, size]
|
|
//halign = "left" or "center" or "right"
|
|
//valign = "top" or "center" or "bottom"
|
|
// Currently does not work with thingiverse customizer, and actually breaks it
|
|
$legends = [];
|
|
|
|
//list of front legends to place on a key format: [text, halign, valign, size]
|
|
//halign = "left" or "center" or "right"
|
|
//valign = "top" or "center" or "bottom"
|
|
// Currently does not work with thingiverse customizer, and actually breaks it
|
|
$front_legends = [];
|
|
|
|
// make legends outset instead of inset.
|
|
// broken off from artisan support since who wants outset legends?
|
|
$outset_legends = false;
|
|
|
|
// print legends on the front of the key instead of the top
|
|
$front_print_legends = false;
|
|
|
|
// how recessed inset legends / artisans are from the top of the key
|
|
$inset_legend_depth = 0.2;
|
|
|
|
// Dimensions of alps stem
|
|
$alps_stem = [4.45, 2.25];
|
|
|
|
// Enable stabilizer stems, to hold onto your cherry or costar stabilizers
|
|
$stabilizer_type = "costar_stabilizer"; // [costar_stabilizer, cherry_stabilizer, disable]
|
|
|
|
// Ternaries are ONLY for customizer. they will NOT work if you're using this in
|
|
// OpenSCAD. you should use stabilized(), openSCAD customizer,
|
|
// or set $stabilizers directly
|
|
// Array of positions of stabilizers
|
|
$stabilizers = $key_length >= 6 ? [[-50, 0], [50, 0]] : $key_length >= 2 ? [[-12,0],[12,0]] : [];
|
|
|
|
// Where the stems are in relation to the center of the keycap, in units. default is one in the center
|
|
// Shouldn't work in thingiverse customizer, though it has been...
|
|
$stem_positions = [[0,0]];
|
|
|
|
// key width functions
|
|
|
|
module u(u=1) {
|
|
$key_length = u;
|
|
children();
|
|
}
|
|
|
|
module 1u() {
|
|
u(1) children();
|
|
}
|
|
|
|
module 1_25u() {
|
|
u(1.25) children();
|
|
}
|
|
|
|
module 1_5u() {
|
|
u(1.5) children();
|
|
}
|
|
|
|
module 2u() {
|
|
u(2) children();
|
|
}
|
|
|
|
module 2_25u() {
|
|
u(2.25) children();
|
|
}
|
|
|
|
module 2_75u() {
|
|
u(2.75) children();
|
|
}
|
|
|
|
module 6_25u() {
|
|
u(6.25) children();
|
|
}
|
|
|
|
// key height functions
|
|
|
|
module uh(u=1) {
|
|
$key_height = u;
|
|
children();
|
|
}
|
|
|
|
module 1uh() {
|
|
uh(1) children();
|
|
}
|
|
|
|
module 2uh() {
|
|
uh(2) children();
|
|
}
|
|
|
|
module 1_25uh() {
|
|
uh(1.25) children();
|
|
}
|
|
|
|
module 1_5uh() {
|
|
uh(1.5) children();
|
|
}
|
|
|
|
module 2_25uh() {
|
|
uh(2.25) children();
|
|
}
|
|
|
|
module 2_75uh() {
|
|
uh(2.75) children();
|
|
}
|
|
|
|
module 6_25uh() {
|
|
uh(6.25) children();
|
|
}
|
|
// key profile definitions
|
|
|
|
// unlike the other files with their own dedicated folders, this one doesn't
|
|
// need a selector. I wrote one anyways for customizer support though
|
|
module dcs_row(row=3, column=0) {
|
|
$bottom_key_width = 18.16;
|
|
$bottom_key_height = 18.16;
|
|
$width_difference = 6;
|
|
$height_difference = 4;
|
|
$dish_type = "cylindrical";
|
|
$dish_depth = 0.5;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
$top_skew = 1.75;
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
// this dish depth should match the depth of the uberdishing in fully sculpted mode
|
|
// but it doesn't, and it's very slight for any reasonable double sculpting
|
|
/* $dish_depth = $double_sculpt_radius - sin(acos(top_total_key_width()/2 /$double_sculpt_radius)) * $double_sculpt_radius; */
|
|
|
|
/* echo("DISH DEPTH", $dish_depth, "column", column); */
|
|
|
|
// 5/0 is a hack so you can do these in a for loop
|
|
if (row == 5 || row == 0) {
|
|
$total_depth = 11.5 + extra_height;
|
|
$top_tilt = -6;
|
|
|
|
children();
|
|
} else if (row == 1) {
|
|
$total_depth = 8.5 + extra_height;
|
|
$top_tilt = -1;
|
|
|
|
children();
|
|
} else if (row == 2) {
|
|
$total_depth = 7.5 + extra_height;
|
|
$top_tilt = 3;
|
|
children();
|
|
} else if (row == 3) {
|
|
$total_depth = 6 + extra_height;
|
|
$top_tilt = 7;
|
|
children();
|
|
} else if (row == 4) {
|
|
$total_depth = 6 + extra_height;
|
|
$top_tilt = 16;
|
|
children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
module oem_row(row=3, column = 0) {
|
|
$bottom_key_width = 18.05;
|
|
$bottom_key_height = 18.05;
|
|
$width_difference = 5.8;
|
|
$height_difference = 4;
|
|
$dish_type = "cylindrical";
|
|
$dish_depth = 1;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
$top_skew = 1.75;
|
|
$stem_inset = 1.2;
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
if (row == 5 || row == 0) {
|
|
$total_depth = 11.2 + extra_height;
|
|
$top_tilt = -3;
|
|
children();
|
|
} else if (row == 1) {
|
|
$total_depth = 9.45 + extra_height;
|
|
$top_tilt = 1;
|
|
children();
|
|
} else if (row == 2) {
|
|
$total_depth = 9 + extra_height;
|
|
$top_tilt = 6;
|
|
children();
|
|
} else if (row == 3) {
|
|
$total_depth = 9.25 + extra_height;
|
|
$top_tilt = 9;
|
|
children();
|
|
} else if (row == 4) {
|
|
$total_depth = 9.25 + extra_height;
|
|
$top_tilt = 10;
|
|
children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
module dsa_row(row=3, column = 0) {
|
|
$key_shape_type = "sculpted_square";
|
|
$bottom_key_width = 18.24; // 18.4;
|
|
$bottom_key_height = 18.24; // 18.4;
|
|
$width_difference = 6; // 5.7;
|
|
$height_difference = 6; // 5.7;
|
|
$top_tilt = row == 5 ? -21 : (row-3) * 7;
|
|
$top_skew = 0;
|
|
$dish_type = "spherical";
|
|
$dish_depth = 1.2;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
$height_slices = 10;
|
|
$enable_side_sculpting = true;
|
|
$corner_radius = 0.25;
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
depth_raisers = [0, 3.5, 1, 0, 1, 3];
|
|
if (row < 1 || row > 4) {
|
|
$total_depth = 8.1 + depth_raisers[row] + extra_height;
|
|
children();
|
|
} else if (row == 1) {
|
|
$total_depth = 8.1 + depth_raisers[row] + extra_height;
|
|
children();
|
|
} else if (row == 2) {
|
|
$total_depth = 8.1 + depth_raisers[row] + extra_height;
|
|
children();
|
|
} else if (row == 3) {
|
|
$total_depth = 8.1 + depth_raisers[row] + extra_height;
|
|
children();
|
|
} else if (row == 4) {
|
|
$total_depth = 8.1 + depth_raisers[row] + extra_height;
|
|
children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
module sa_row(n=3, column=0) {
|
|
$key_shape_type = "sculpted_square";
|
|
$bottom_key_width = 18.4;
|
|
$bottom_key_height = 18.4;
|
|
$width_difference = 5.7;
|
|
$height_difference = 5.7;
|
|
$dish_type = "spherical";
|
|
$dish_depth = 0.85;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
$top_skew = 0;
|
|
$height_slices = 10;
|
|
// might wanna change this if you don't minkowski
|
|
// do you even minkowski bro
|
|
$corner_radius = 0.25;
|
|
|
|
// this is _incredibly_ intensive
|
|
/* $rounded_key = true; */
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
// 5th row is usually unsculpted or the same as the row below it
|
|
// making a super-sculpted top row (or bottom row!) would be real easy
|
|
// bottom row would just be 13 tilt and 14.89 total depth
|
|
// top row would be something new entirely - 18 tilt maybe?
|
|
if (n <= 1){
|
|
$total_depth = 14.89 + extra_height;
|
|
$top_tilt = -13;
|
|
children();
|
|
} else if (n == 2) {
|
|
$total_depth = 12.925 + extra_height;
|
|
$top_tilt = -7;
|
|
children();
|
|
} else if (n == 3) {
|
|
$total_depth = 12.5 + extra_height;
|
|
$top_tilt = 0;
|
|
children();
|
|
} else if (n == 4){
|
|
$total_depth = 12.925 + extra_height;
|
|
$top_tilt = 7;
|
|
children();
|
|
} else {
|
|
$total_depth = 12.5 + extra_height;
|
|
$top_tilt = 0;
|
|
children();
|
|
}
|
|
}
|
|
module g20_row(row=3, column = 0) {
|
|
$bottom_key_width = 18.16;
|
|
$bottom_key_height = 18.16;
|
|
$width_difference = 2;
|
|
$height_difference = 2;
|
|
$top_tilt = 2.5;
|
|
$top_skew = 0.75;
|
|
$dish_type = "disable";
|
|
// something weird is going on with this and legends - can't put it below 1.2 or they won't show
|
|
$dish_depth = 1.2;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
$minkowski_radius = 1.75;
|
|
$key_bump_depth = 0.6;
|
|
$key_bump_edge = 2;
|
|
//also,
|
|
$rounded_key = true;
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
$total_depth = 6 + abs((row-3) * 0.5) + extra_height;
|
|
|
|
if (row == 5 || row == 0) {
|
|
|
|
$top_tilt = -18.55;
|
|
children();
|
|
} else if (row == 1) {
|
|
$top_tilt = (row-3) * 7 + 2.5;
|
|
children();
|
|
} else if (row == 2) {
|
|
$top_tilt = (row-3) * 7 + 2.5;
|
|
children();
|
|
} else if (row == 3) {
|
|
$top_tilt = (row-3) * 7 + 2.5;
|
|
children();
|
|
} else if (row == 4) {
|
|
$top_tilt = (row-3) * 7 + 2.5;
|
|
children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
// my own measurements
|
|
module hipro_row(row=3, column=0) {
|
|
$key_shape_type = "sculpted_square";
|
|
|
|
$bottom_key_width = 18.35;
|
|
$bottom_key_height = 18.17;
|
|
|
|
$width_difference = ($bottom_key_width - 12.3);
|
|
$height_difference = ($bottom_key_height - 12.65);
|
|
$dish_type = "spherical";
|
|
$dish_depth = 0.75;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
$top_skew = 0;
|
|
$height_slices = 10;
|
|
// might wanna change this if you don't minkowski
|
|
// do you even minkowski bro
|
|
$corner_radius = 0.25;
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
if (row <= 1){
|
|
$total_depth = 13.7 + extra_height;
|
|
// TODO I didn't change these yet
|
|
$top_tilt = -13;
|
|
children();
|
|
} else if (row == 2) {
|
|
$total_depth = 11.1 + extra_height;
|
|
$top_tilt = -7;
|
|
children();
|
|
} else if (row == 3) {
|
|
$total_depth = 11.1 + extra_height;
|
|
$top_tilt = 7;
|
|
children();
|
|
} else if (row == 4 || row == 5){
|
|
$total_depth = 12.25 + extra_height;
|
|
$top_tilt = 13;
|
|
children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
module grid_row(row=3, column = 0) {
|
|
$bottom_key_width = 18.16;
|
|
$bottom_key_height = 18.16;
|
|
$width_difference = 0.2;
|
|
$height_difference = 0.2;
|
|
$top_tilt = 0;
|
|
$top_skew = 0;
|
|
$dish_type = "old spherical";
|
|
// something weird is going on with this and legends - can't put it below 1.2 or they won't show
|
|
$dish_depth = 1;
|
|
$dish_skew_x = 0;
|
|
$dish_skew_y = 0;
|
|
|
|
$linear_extrude_shape = true;
|
|
|
|
|
|
$dish_overdraw_width = -8;
|
|
$dish_overdraw_height = -8;
|
|
|
|
$minkowski_radius = 0.5;
|
|
//also,
|
|
/* $rounded_key = true; */
|
|
|
|
$top_tilt_y = side_tilt(column);
|
|
extra_height = $double_sculpted ? extra_side_tilt_height(column) : 0;
|
|
|
|
$total_depth = 6 + abs((row-3) * 0.5) + extra_height;
|
|
|
|
if (row == 5 || row == 0) {
|
|
/* $top_tilt = -18.55; */
|
|
children();
|
|
} else if (row == 1) {
|
|
/* $top_tilt = (row-3) * 7 + 2.5; */
|
|
children();
|
|
} else if (row == 2) {
|
|
/* $top_tilt = (row-3) * 7 + 2.5; */
|
|
children();
|
|
} else if (row == 3) {
|
|
/* $top_tilt = (row-3) * 7 + 2.5; */
|
|
children();
|
|
} else if (row == 4) {
|
|
/* $top_tilt = (row-3) * 7 + 2.5; */
|
|
children();
|
|
} else {
|
|
children();
|
|
}
|
|
}
|
|
|
|
// man, wouldn't it be so cool if functions were first order
|
|
module key_profile(key_profile_type, row, column=0) {
|
|
if (key_profile_type == "dcs") {
|
|
dcs_row(row, column) children();
|
|
} else if (key_profile_type == "oem") {
|
|
oem_row(row, column) children();
|
|
} else if (key_profile_type == "dsa") {
|
|
dsa_row(row, column) children();
|
|
} else if (key_profile_type == "sa") {
|
|
sa_row(row, column) children();
|
|
} else if (key_profile_type == "g20") {
|
|
g20_row(row, column) children();
|
|
} else if (key_profile_type == "hipro") {
|
|
hipro_row(row, column) children();
|
|
} else if (key_profile_type == "grid") {
|
|
grid_row(row, column) children();
|
|
} else if (key_profile_type == "disable") {
|
|
children();
|
|
} else {
|
|
echo("Warning: unsupported key_profile_type");
|
|
}
|
|
}
|
|
module spacebar() {
|
|
$inverted_dish = true;
|
|
$dish_type = "sideways cylindrical";
|
|
6_25u() stabilized(mm=50) children();
|
|
}
|
|
|
|
module lshift() {
|
|
2_25u() stabilized() children();
|
|
}
|
|
|
|
module rshift() {
|
|
2_75u() stabilized() children();
|
|
}
|
|
|
|
module backspace() {
|
|
2u() stabilized() children();
|
|
}
|
|
|
|
module enter() {
|
|
2_25u() stabilized() children();
|
|
}
|
|
|
|
module numpad_enter() {
|
|
2uh() stabilized(vertical=true) children();
|
|
}
|
|
|
|
module numpad_plus() {
|
|
numpad_enter() children();
|
|
}
|
|
|
|
module numpad_0() {
|
|
backspace() children();
|
|
}
|
|
|
|
module stepped_caps_lock() {
|
|
u(1.75) {
|
|
$stem_positions = [[-5, 0]];
|
|
children();
|
|
}
|
|
}
|
|
|
|
module iso_enter() {
|
|
$key_length = 1.5;
|
|
$key_height = 2;
|
|
|
|
$top_tilt = 0;
|
|
$stem_support_type = "disable";
|
|
$key_shape_type = "iso_enter";
|
|
/* $linear_extrude_shape = true; */
|
|
$linear_extrude_height_adjustment = 19.05 * 0.5;
|
|
// this equals (unit_length(1.5) - unit_length(1.25)) / 2
|
|
$dish_overdraw_width = 2.38125;
|
|
|
|
|
|
stabilized(vertical=true) {
|
|
children();
|
|
}
|
|
}
|
|
// kind of a catch-all at this point for any directive that doesn't fit in the other files
|
|
|
|
//TODO duplicate def to not make this a special var. maybe not worth it
|
|
unit = 19.05;
|
|
|
|
module translate_u(x=0, y=0, z=0){
|
|
translate([x * unit, y*unit, z*unit]) children();
|
|
}
|
|
|
|
module no_stem_support() {
|
|
$stem_support_type = "disable";
|
|
children();
|
|
}
|
|
|
|
module brimmed_stem_support(height = 0.4) {
|
|
$stem_support_type = "brim";
|
|
$stem_support_height = height;
|
|
children();
|
|
}
|
|
|
|
module tined_stem_support(height = 0.4) {
|
|
$stem_support_type = "tines";
|
|
$stem_support_height = height;
|
|
children();
|
|
}
|
|
|
|
module unsupported_stem() {
|
|
$stem_support_type = "disable";
|
|
children();
|
|
}
|
|
|
|
module rounded() {
|
|
$rounded_key = true;
|
|
children();
|
|
}
|
|
|
|
module inverted() {
|
|
$inverted_dish = true;
|
|
children();
|
|
}
|
|
|
|
module rotated() {
|
|
$stem_rotation = 90;
|
|
children();
|
|
}
|
|
|
|
module stabilized(mm=12, vertical = false, type=undef) {
|
|
if (vertical) {
|
|
$stabilizer_type = (type ? type : ($stabilizer_type ? $stabilizer_type : "costar_stabilizer"));
|
|
$stabilizers = [
|
|
[0, mm],
|
|
[0, -mm]
|
|
];
|
|
|
|
children();
|
|
} else {
|
|
$stabilizer_type = (type ? type : ($stabilizer_type ? $stabilizer_type : "costar_stabilizer"));
|
|
|
|
|
|
$stabilizers = [
|
|
[mm, 0],
|
|
[-mm, 0]
|
|
];
|
|
|
|
children();
|
|
}
|
|
}
|
|
|
|
module dishless() {
|
|
$dish_type = "disable";
|
|
children();
|
|
}
|
|
|
|
module inset(val=1) {
|
|
$stem_inset = val;
|
|
children();
|
|
}
|
|
|
|
module filled() {
|
|
$stem_type = "filled";
|
|
children();
|
|
}
|
|
|
|
module blank() {
|
|
$stem_type = "disable";
|
|
children();
|
|
}
|
|
|
|
module cherry(slop) {
|
|
$stem_slop = slop ? slop : $stem_slop;
|
|
$stem_type = "cherry";
|
|
children();
|
|
}
|
|
|
|
module alps(slop) {
|
|
$stem_slop = slop ? slop : $stem_slop;
|
|
$stem_type = "alps";
|
|
children();
|
|
}
|
|
|
|
module rounded_cherry(slop) {
|
|
$stem_slop = slop ? slop : $stem_slop;
|
|
$stem_type = "rounded_cherry";
|
|
children();
|
|
}
|
|
|
|
module box_cherry(slop) {
|
|
$stem_slop = slop ? slop : $stem_slop;
|
|
$stem_type = "box_cherry";
|
|
children();
|
|
}
|
|
|
|
module flared_support() {
|
|
$support_type = "flared";
|
|
children();
|
|
}
|
|
|
|
module bar_support() {
|
|
$support_type = "bars";
|
|
children();
|
|
}
|
|
|
|
module flat_support() {
|
|
$support_type = "flat";
|
|
children();
|
|
}
|
|
|
|
module legend(text, position=[0,0], size=undef) {
|
|
font_size = size == undef ? $font_size : size;
|
|
$legends = [for(L=[$legends, [[text, position, font_size]]], a=L) a];
|
|
children();
|
|
}
|
|
|
|
module front_legend(text, position=[0,0], size=undef) {
|
|
font_size = size == undef ? $font_size : size;
|
|
$front_legends = [for(L=[$front_legends, [[text, position, font_size]]], a=L) a];
|
|
children();
|
|
}
|
|
|
|
module bump(depth=undef) {
|
|
$key_bump = true;
|
|
$key_bump_depth = depth == undef ? $key_bump_depth : depth;
|
|
children();
|
|
}
|
|
|
|
// kinda dirty, but it works
|
|
// might not work great with fully sculpted profiles yet
|
|
module upside_down() {
|
|
if ($stem_inner_slop != 0) {
|
|
echo("it is recommended you set inner stem slop to 0 when you use upside_down()");
|
|
}
|
|
// $top_tilt*2 because top_placement rotates by top_tilt for us
|
|
// first rotate 180 to get the keycaps to face the same direction
|
|
rotate([0,0,180]) top_placement() rotate([180+$top_tilt*2,0,0]) {
|
|
children();
|
|
}
|
|
}
|
|
|
|
module sideways() {
|
|
$key_shape_type = "flat_sided_square";
|
|
$dish_overdraw_width = abs(extra_keytop_length_for_flat_sides());
|
|
extra_y_rotation = atan2($width_difference/2,$total_depth);
|
|
translate([0,0,cos(extra_y_rotation) * total_key_width()/2])
|
|
rotate([0,90 + extra_y_rotation ,0]) children();
|
|
}
|
|
module arrows(profile, rows = [4,4,4,3]) {
|
|
positions = [[0, 0], [1, 0], [2, 0], [1, 1]];
|
|
legends = ["←", "↓", "→", "↑"];
|
|
|
|
for (i = [0:3]) {
|
|
translate_u(positions[i].x, positions[i].y) key_profile(profile, rows[i]) legend(legends[i]) cherry() key(true);
|
|
}
|
|
}
|
|
|
|
module f_cluster(profile, row=5) {
|
|
legends = ["F1", "F2", "F3", "F4"];
|
|
for (i =[0:len(legends)-1]) {
|
|
translate_u(i) key_profile(profile, row) cherry() legend(legends[i]) key(true);
|
|
}
|
|
}
|
|
|
|
module wasd(profile, rows = [2,2,2,1]) {
|
|
positions = [[0, 0], [1, 0], [2, 0], [1, 1]];
|
|
legends = ["A", "S", "D", "W"];
|
|
|
|
for (i = [0:3]) {
|
|
translate_u(positions[i].x, positions[i].y) key_profile(profile, rows[i]) legend(legends[i]) cherry() key(true);
|
|
}
|
|
}
|
|
|
|
module row_profile(profile, unsculpted = false) {
|
|
rows = [5, 1, 2, 3, 4];
|
|
for(row = [0:len(rows)-1]) {
|
|
translate_u(0, -row) key_profile(profile, unsculpted ? 3 : rows[row]) children();
|
|
}
|
|
}
|
|
|
|
// files
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
$fs=.1;
|
|
unit = 19.05;
|
|
|
|
// corollary is rounded_square
|
|
// NOT 3D
|
|
function unit_length(length) = unit * (length - 1) + 18.16;
|
|
|
|
module ISO_enter_shape(size, delta, progress){
|
|
width = size[0];
|
|
height = size[1];
|
|
|
|
|
|
// in order to make the ISO keycap shape generic, we are going to express the
|
|
// 'elbow point' in terms of ratios. an ISO enter is just a 1.5u key stuck on
|
|
// top of a 1.25u key, but since our key_shape function doesnt understand that
|
|
// and wants to pass just width and height, we make these ratios to know where
|
|
// to put the elbow joint
|
|
|
|
width_ratio = unit_length(1.25) / unit_length(1.5);
|
|
height_ratio = unit_length(1) / unit_length(2);
|
|
|
|
pointArray = [
|
|
[ 0, 0], // top right
|
|
[ 0, -height], // bottom right
|
|
[-width * width_ratio, -height], // bottom left
|
|
[-width * width_ratio,-height * height_ratio], // inner middle point
|
|
[ -width,-height * height_ratio], // outer middle point
|
|
[ -width, 0] // top left
|
|
];
|
|
|
|
minkowski(){
|
|
circle(r=corner_size);
|
|
// gives us rounded inner corner
|
|
offset(r=-corner_size*2) {
|
|
translate([(width * width_ratio)/2, height/2]) polygon(points=pointArray);
|
|
}
|
|
}
|
|
}
|
|
|
|
function iso_enter_vertices(width, height, width_ratio, height_ratio, wd, hd) = [
|
|
[ 0-wd, 0-hd], // top right
|
|
[ 0-wd, -height+hd], // bottom right
|
|
[-width * width_ratio+wd, -height+hd], // bottom left
|
|
[-width * width_ratio+wd,-height * height_ratio+hd], // inner middle point
|
|
[ -width+wd,-height * height_ratio+hd], // outer middle point
|
|
[ -width+wd, 0-hd] // top left
|
|
] + [
|
|
[(width * width_ratio)/2, height/2 ],
|
|
[(width * width_ratio)/2, height/2 ],
|
|
[(width * width_ratio)/2, height/2 ],
|
|
[(width * width_ratio)/2, height/2 ],
|
|
[(width * width_ratio)/2, height/2 ],
|
|
[(width * width_ratio)/2, height/2 ]
|
|
];
|
|
|
|
// no rounding on the corners at all
|
|
function skin_iso_enter_shape(size, delta, progress, thickness_difference) =
|
|
iso_enter_vertices(size.x, size.y, unit_length(1.25) / unit_length(1.5), unit_length(1) / unit_length(2), thickness_difference/2 + delta.x * progress/2, thickness_difference/2 + delta.y * progress/2);
|
|
function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
|
|
for (index = [0:fn-1])
|
|
let(a = index/fn*360)
|
|
r * [cos(a), sin(a)]
|
|
+ sign_x(index, fn) * [size[0]/2-r,0]
|
|
+ sign_y(index, fn) * [0,size[1]/2-r]
|
|
];
|
|
|
|
function sign_x(i,n) =
|
|
i < n/4 || i > n-n/4 ? 1 :
|
|
i > n/4 && i < n-n/4 ? -1 :
|
|
0;
|
|
|
|
function sign_y(i,n) =
|
|
i > 0 && i < n/2 ? 1 :
|
|
i > n/2 ? -1 :
|
|
0;
|
|
|
|
// rounded square shape with additional sculpting functions to better approximate
|
|
|
|
// When sculpting sides, how much in should the tops come
|
|
$side_sculpting_factor = 4.5;
|
|
// When sculpting corners, how much extra radius should be added
|
|
$corner_sculpting_factor = 1;
|
|
// When doing more side sculpting corners, how much extra radius should be added
|
|
$more_side_sculpting_factor = 0.4;
|
|
|
|
|
|
// side sculpting functions
|
|
// bows the sides out on stuff like SA and DSA keycaps
|
|
function side_sculpting(progress) = (1 - progress) * $side_sculpting_factor;
|
|
// makes the rounded corners of the keycap grow larger as they move upwards
|
|
function corner_sculpting(progress) = pow(progress, 2) * $corner_sculpting_factor;
|
|
|
|
module sculpted_square_shape(size, delta, progress) {
|
|
width = size[0];
|
|
height = size[1];
|
|
|
|
width_difference = delta[0];
|
|
height_difference = delta[1];
|
|
// makes the sides bow
|
|
extra_side_size = side_sculpting(progress);
|
|
// makes the rounded corners of the keycap grow larger as they move upwards
|
|
extra_corner_size = corner_sculpting(progress);
|
|
|
|
// computed values for this slice
|
|
extra_width_this_slice = (width_difference - extra_side_size) * progress;
|
|
extra_height_this_slice = (height_difference - extra_side_size) * progress;
|
|
extra_corner_radius_this_slice = ($corner_radius + extra_corner_size);
|
|
|
|
square_size = [
|
|
width - extra_width_this_slice,
|
|
height - extra_height_this_slice
|
|
];
|
|
|
|
offset(r = extra_corner_radius_this_slice) {
|
|
offset(r = -extra_corner_radius_this_slice) {
|
|
side_rounded_square(square_size, r = $more_side_sculpting_factor * progress);
|
|
}
|
|
}
|
|
}
|
|
|
|
// fudging the hell out of this, I don't remember what the negative-offset-positive-offset was doing in the module above
|
|
// also no 'bowed' square shape for now
|
|
function skin_sculpted_square_shape(size, delta, progress) =
|
|
let(
|
|
width = size[0],
|
|
height = size[1],
|
|
|
|
width_difference = delta[0],
|
|
height_difference = delta[1],
|
|
// makes the sides bow
|
|
extra_side_size = side_sculpting(progress),
|
|
// makes the rounded corners of the keycap grow larger as they move upwards
|
|
extra_corner_size = corner_sculpting(progress),
|
|
|
|
// computed values for this slice
|
|
extra_width_this_slice = (width_difference - extra_side_size) * progress,
|
|
extra_height_this_slice = (height_difference - extra_side_size) * progress,
|
|
extra_corner_radius_this_slice = ($corner_radius + extra_corner_size),
|
|
|
|
square_size = [
|
|
width - extra_width_this_slice,
|
|
height - extra_height_this_slice
|
|
]
|
|
) rounded_rectangle_profile(square_size - [extra_corner_radius_this_slice, extra_corner_radius_this_slice]/4, fn=36, r=extra_corner_radius_this_slice/1.5 + $more_side_sculpting_factor * progress);
|
|
|
|
/* offset(r = extra_corner_radius_this_slice) {
|
|
offset(r = -extra_corner_radius_this_slice) {
|
|
side_rounded_square(square_size, r = $more_side_sculpting_factor * progress);
|
|
}
|
|
} */
|
|
|
|
|
|
module side_rounded_square(size, r) {
|
|
iw = size.x - 2 * r;
|
|
ih = size.y - 2 * r;
|
|
resolution = 100;
|
|
sr = r / resolution * 2;
|
|
sh = ih / resolution;
|
|
sw = iw / resolution;
|
|
union() {
|
|
if (sr > 0) {
|
|
translate([-iw/2, 0]) scale([sr, sh]) circle(d = resolution);
|
|
translate([iw/2, 0]) scale([sr, sh]) circle(d = resolution);
|
|
translate([0, -ih/2]) scale([sw, sr]) circle(d = resolution);
|
|
translate([0, ih/2]) scale([sw, sr]) circle(d = resolution);
|
|
}
|
|
square([iw, ih], center=true);
|
|
}
|
|
}
|
|
function rounded_rectangle_profile(size=[1,1],r=1,fn=32) = [
|
|
for (index = [0:fn-1])
|
|
let(a = index/fn*360)
|
|
r * [cos(a), sin(a)]
|
|
+ sign_x(index, fn) * [size[0]/2-r,0]
|
|
+ sign_y(index, fn) * [0,size[1]/2-r]
|
|
];
|
|
|
|
function sign_x(i,n) =
|
|
i < n/4 || i > n-n/4 ? 1 :
|
|
i > n/4 && i < n-n/4 ? -1 :
|
|
0;
|
|
|
|
function sign_y(i,n) =
|
|
i > 0 && i < n/2 ? 1 :
|
|
i > n/2 ? -1 :
|
|
0;
|
|
|
|
module rounded_square_shape(size, delta, progress, center = true) {
|
|
offset(r=$corner_radius){
|
|
square_shape([size.x - $corner_radius*2, size.y - $corner_radius*2], delta, progress);
|
|
}
|
|
}
|
|
|
|
// for skin
|
|
|
|
function skin_rounded_square(size, delta, progress) =
|
|
rounded_rectangle_profile(size - (delta * progress), fn=36, r=$corner_radius);
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// we do this weird key_shape_type check here because rounded_square uses
|
|
// square_shape, and we want flat sides to work for that too.
|
|
// could be refactored, idk
|
|
module square_shape(size, delta, progress){
|
|
if ($key_shape_type == "flat_sided_square") {
|
|
flat_sided_square_shape(size, delta,progress);
|
|
} else {
|
|
square(size - delta * progress, center = true);
|
|
}
|
|
}
|
|
/*
|
|
[-size.x /2,-size.y / 2],
|
|
[size.x / 2,-size.y / 2],
|
|
[size.x / 2, size.y / 2],
|
|
[-size.x / 2, size.y / 2] */
|
|
|
|
// for side-printed keycaps. Any amount of top tilt (on a keycap with a smaller
|
|
// top than bottom) makes the left and right side of the keycap convex. This
|
|
// shape makes the sides flat by making the top a trapezoid.
|
|
// This obviously doesn't work with rounded sides at all
|
|
module flat_sided_square_shape(size, delta, progress) {
|
|
polygon(points=[
|
|
[(-size.x + (delta.x + extra_keytop_length_for_flat_sides()) * progress)/2, (-size.y + delta.y * progress)/2],
|
|
[(size.x - (delta.x + extra_keytop_length_for_flat_sides()) * progress)/2,(-size.y + delta.y * progress)/2],
|
|
[(size.x - (delta.x - extra_keytop_length_for_flat_sides()) * progress)/2, (size.y - delta.y * progress)/2],
|
|
[(-size.x + (delta.x - extra_keytop_length_for_flat_sides()) * progress)/2, (size.y - delta.y * progress)/2]
|
|
]);
|
|
}
|
|
module oblong_shape(size, delta, progress) {
|
|
// .05 is because of offset. if we set offset to be half the height of the shape, and then subtract height from the shape, the height of the shape will be zero (because the shape would be [width - height, height - height]). that doesn't play well with openSCAD (understandably), so we add this tiny fudge factor to make sure the shape we offset has a positive width
|
|
height = size[1] - delta[1] * progress - .05;
|
|
|
|
if (progress < 0.5) {
|
|
} else {
|
|
offset(r=height / 2) {
|
|
square(size - [height, height] - delta * progress, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// size: at progress 0, the shape is supposed to be this size
|
|
// delta: at progress 1, the keycap is supposed to be size - delta
|
|
// progress: how far along the transition you are.
|
|
// it's not always linear - specifically sculpted_square
|
|
module key_shape(size, delta, progress = 0) {
|
|
if ($key_shape_type == "iso_enter") {
|
|
ISO_enter_shape(size, delta, progress);
|
|
} else if ($key_shape_type == "sculpted_square") {
|
|
sculpted_square_shape(size, delta, progress);
|
|
} else if ($key_shape_type == "rounded_square") {
|
|
rounded_square_shape(size, delta, progress);
|
|
} else if ($key_shape_type == "flat_sided_square") {
|
|
// rounded_square_shape handles this
|
|
rounded_square_shape(size, delta, progress);
|
|
} else if ($key_shape_type == "square") {
|
|
square_shape(size, delta, progress);
|
|
} else if ($key_shape_type == "oblong") {
|
|
oblong_shape(size, delta, progress);
|
|
} else {
|
|
echo("Warning: unsupported $key_shape_type");
|
|
}
|
|
}
|
|
|
|
function skin_key_shape(size, delta, progress = 0, thickness_difference) =
|
|
$key_shape_type == "rounded_square" ?
|
|
skin_rounded_square(size, delta, progress) :
|
|
$key_shape_type == "sculpted_square" ?
|
|
skin_sculpted_square_shape(size, delta, progress) :
|
|
$key_shape_type == "iso_enter" ?
|
|
skin_iso_enter_shape(size, delta, progress, thickness_difference) :
|
|
echo("Warning: unsupported $key_shape_type for skin shape. disable skin_extrude_shape or pick a new shape");
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
// splits the stem into halves - allows easier fitment
|
|
extra_vertical = 0.6;
|
|
|
|
module inside_cherry_cross(slop) {
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
linear_extrude(height = $stem_throw) {
|
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
|
}
|
|
}
|
|
|
|
// Guides to assist insertion and mitigate first layer squishing
|
|
if ($cherry_bevel){
|
|
for (i = cherry_cross(slop, extra_vertical)) hull() {
|
|
linear_extrude(height = 0.01, center = false) offset(delta = 0.4) square(i, center=true);
|
|
translate([0, 0, 0.5]) linear_extrude(height = 0.01, center = false) square(i, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cherry_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_cherry_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross($stem_inner_slop);
|
|
}
|
|
}
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
// splits the stem into halves - allows easier fitment
|
|
extra_vertical = 0.6;
|
|
|
|
module inside_cherry_cross(slop) {
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
linear_extrude(height = $stem_throw) {
|
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
|
}
|
|
}
|
|
|
|
// Guides to assist insertion and mitigate first layer squishing
|
|
if ($cherry_bevel){
|
|
for (i = cherry_cross(slop, extra_vertical)) hull() {
|
|
linear_extrude(height = 0.01, center = false) offset(delta = 0.4) square(i, center=true);
|
|
translate([0, 0, 0.5]) linear_extrude(height = 0.01, center = false) square(i, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cherry_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_cherry_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross($stem_inner_slop);
|
|
}
|
|
}
|
|
|
|
module rounded_cherry_stem(depth, slop) {
|
|
difference(){
|
|
cylinder(d=$rounded_cherry_stem_d, h=depth);
|
|
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
inside_cherry_cross(slop);
|
|
}
|
|
}
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
// splits the stem into halves - allows easier fitment
|
|
extra_vertical = 0.6;
|
|
|
|
module inside_cherry_cross(slop) {
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
linear_extrude(height = $stem_throw) {
|
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
|
}
|
|
}
|
|
|
|
// Guides to assist insertion and mitigate first layer squishing
|
|
if ($cherry_bevel){
|
|
for (i = cherry_cross(slop, extra_vertical)) hull() {
|
|
linear_extrude(height = 0.01, center = false) offset(delta = 0.4) square(i, center=true);
|
|
translate([0, 0, 0.5]) linear_extrude(height = 0.01, center = false) square(i, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cherry_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_cherry_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross($stem_inner_slop);
|
|
}
|
|
}
|
|
|
|
module box_cherry_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_box_cherry_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
// inside cross
|
|
inside_cherry_cross(slop);
|
|
}
|
|
}
|
|
module alps_stem(depth, has_brim, slop){
|
|
linear_extrude(height=depth) {
|
|
square($alps_stem, center = true);
|
|
}
|
|
}
|
|
module filled_stem() {
|
|
// I broke the crap out of this stem type due to the changes I made around how stems are differenced
|
|
// now that we just take the dish out of stems in order to support stuff like
|
|
// bare stem keycaps (and buckling spring eventually) we can't just make a
|
|
// cube. shape() works but means that you certainly couldn't render this
|
|
// stem without the presence of the entire library
|
|
|
|
shape($wall_thickness);
|
|
}
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
// splits the stem into halves - allows easier fitment
|
|
extra_vertical = 0.6;
|
|
|
|
module inside_cherry_stabilizer_cross(slop) {
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
linear_extrude(height = $stem_throw) {
|
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cherry_stabilizer_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_cherry_stabilizer_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_stabilizer_cross(slop);
|
|
}
|
|
}
|
|
|
|
|
|
//whole stem, alps or cherry, trimmed to fit
|
|
module stem(stem_type, depth, slop){
|
|
if (stem_type == "alps") {
|
|
alps_stem(depth, slop);
|
|
} else if (stem_type == "cherry" || stem_type == "costar_stabilizer") {
|
|
cherry_stem(depth, slop);
|
|
} else if (stem_type == "rounded_cherry") {
|
|
rounded_cherry_stem(depth, slop);
|
|
} else if (stem_type == "box_cherry") {
|
|
box_cherry_stem(depth, slop);
|
|
} else if (stem_type == "filled") {
|
|
filled_stem();
|
|
} else if (stem_type == "cherry_stabilizer") {
|
|
cherry_stabilizer_stem(depth, slop);
|
|
} else if (stem_type == "disable") {
|
|
children();
|
|
} else {
|
|
echo("Warning: unsupported $stem_type: ");
|
|
echo(stem_type);
|
|
}
|
|
}
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
// splits the stem into halves - allows easier fitment
|
|
extra_vertical = 0.6;
|
|
|
|
module inside_cherry_cross(slop) {
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
linear_extrude(height = $stem_throw) {
|
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
|
}
|
|
}
|
|
|
|
// Guides to assist insertion and mitigate first layer squishing
|
|
if ($cherry_bevel){
|
|
for (i = cherry_cross(slop, extra_vertical)) hull() {
|
|
linear_extrude(height = 0.01, center = false) offset(delta = 0.4) square(i, center=true);
|
|
translate([0, 0, 0.5]) linear_extrude(height = 0.01, center = false) square(i, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cherry_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_cherry_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross($stem_inner_slop);
|
|
}
|
|
}
|
|
|
|
module brim_support(stem_type, stem_support_height, slop) {
|
|
if(stem_type == "alps") {
|
|
linear_extrude(height=stem_support_height) {
|
|
offset(r=1){
|
|
square($alps_stem + [2,2], center=true);
|
|
}
|
|
}
|
|
} else if (stem_type == "cherry" || stem_type == "costar_stabilizer") {
|
|
difference() {
|
|
linear_extrude(height = stem_support_height){
|
|
offset(r=1){
|
|
square(outer_cherry_stem(slop) + [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross(slop);
|
|
}
|
|
} else if (stem_type == "rounded_cherry") {
|
|
difference() {
|
|
cylinder(d=$rounded_cherry_stem_d * 2, h=stem_support_height);
|
|
inside_cherry_cross(slop);
|
|
}
|
|
} else if (stem_type == "box_cherry") {
|
|
difference() {
|
|
linear_extrude(height = stem_support_height){
|
|
offset(r=1){
|
|
square(outer_box_cherry_stem(slop) + [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross(slop);
|
|
}
|
|
} else if (stem_type == "cherry_stabilizer") {
|
|
difference() {
|
|
linear_extrude(height = stem_support_height){
|
|
offset(r=1){
|
|
square(outer_cherry_stabilizer_stem(slop) + [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross(slop);
|
|
}
|
|
}
|
|
}
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
|
|
// extra length to the vertical tine of the inside cherry cross
|
|
// splits the stem into halves - allows easier fitment
|
|
extra_vertical = 0.6;
|
|
|
|
module inside_cherry_cross(slop) {
|
|
// inside cross
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
linear_extrude(height = $stem_throw) {
|
|
square(cherry_cross(slop, extra_vertical)[0], center=true);
|
|
square(cherry_cross(slop, extra_vertical)[1], center=true);
|
|
}
|
|
}
|
|
|
|
// Guides to assist insertion and mitigate first layer squishing
|
|
if ($cherry_bevel){
|
|
for (i = cherry_cross(slop, extra_vertical)) hull() {
|
|
linear_extrude(height = 0.01, center = false) offset(delta = 0.4) square(i, center=true);
|
|
translate([0, 0, 0.5]) linear_extrude(height = 0.01, center = false) square(i, center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
module cherry_stem(depth, slop) {
|
|
difference(){
|
|
// outside shape
|
|
linear_extrude(height = depth) {
|
|
offset(r=1){
|
|
square(outer_cherry_stem(slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross($stem_inner_slop);
|
|
}
|
|
}
|
|
|
|
module centered_tines(stem_support_height) {
|
|
if ($key_length < 2) {
|
|
translate([0,0,$stem_support_height / 2]) {
|
|
cube([total_key_width(), 0.5, $stem_support_height], center = true);
|
|
}
|
|
}
|
|
|
|
translate([0,0,$stem_support_height / 2]) {
|
|
cube([
|
|
1,
|
|
total_key_height(),
|
|
$stem_support_height
|
|
],
|
|
center = true);
|
|
}
|
|
}
|
|
|
|
module tines_support(stem_type, stem_support_height, slop) {
|
|
extra_height = $extra_long_stem_support ? ($unit - total_key_height()) + 0.1 : -$wall_thickness/4; // fudge
|
|
extra_width = $extra_long_stem_support ? ($unit - total_key_width()) + 0.1 : -$wall_thickness/4;
|
|
|
|
if (stem_type == "cherry" || stem_type == "costar_stabilizer") {
|
|
difference () {
|
|
union() {
|
|
if ($key_length < 2) {
|
|
translate([0,0,$stem_support_height / 2]) {
|
|
cube([
|
|
total_key_width() + extra_width*2,
|
|
0.5,
|
|
$stem_support_height
|
|
], center = true);
|
|
}
|
|
}
|
|
|
|
// 2 vertical tines holding either side of the cruciform
|
|
for (x = [1.15, -1.15]) {
|
|
translate([x,0,$stem_support_height / 2]) {
|
|
cube([
|
|
0.5,
|
|
total_key_height() + extra_height*2, // this is to extend past
|
|
$stem_support_height
|
|
], center = true);
|
|
}
|
|
}
|
|
}
|
|
|
|
inside_cherry_cross(slop);
|
|
}
|
|
} else if (stem_type == "cherry_stabilizer") {
|
|
difference () {
|
|
for (x = [1.15, -1.15]) {
|
|
translate([x,0,$stem_support_height / 2]) {
|
|
cube([
|
|
1,
|
|
total_key_height($wall_thickness),
|
|
$stem_support_height
|
|
], center = true);
|
|
}
|
|
}
|
|
|
|
inside_cherry_stabilizer_cross(slop);
|
|
}
|
|
} else if (stem_type == "box_cherry") {
|
|
difference () {
|
|
centered_tines(stem_support_height);
|
|
|
|
inside_cherry_cross(slop);
|
|
}
|
|
} else if (stem_type == "rounded_cherry") {
|
|
difference () {
|
|
centered_tines(stem_support_height);
|
|
|
|
inside_cherry_cross(slop);
|
|
}
|
|
} else if (stem_type == "alps"){
|
|
centered_tines(stem_support_height);
|
|
}
|
|
}
|
|
|
|
|
|
//whole stem, alps or cherry, trimmed to fit
|
|
module stem_support(support_type, stem_type, stem_support_height, slop){
|
|
if (support_type == "brim") {
|
|
brim_support(stem_type, stem_support_height, slop);
|
|
} else if (support_type == "tines") {
|
|
tines_support(stem_type, stem_support_height, slop);
|
|
} else if (support_type == "disable") {
|
|
children();
|
|
} else {
|
|
echo("Warning: unsupported $stem_support_type");
|
|
}
|
|
}
|
|
// from https://www.thingiverse.com/thing:1484333
|
|
// public domain license
|
|
// same syntax and semantics as built-in sphere, so should be a drop-in replacement
|
|
// it's a bit slow for large numbers of facets
|
|
module geodesic_sphere(r=-1, d=-1) {
|
|
// if neither parameter specified, radius is taken to be 1
|
|
rad = r > 0 ? r : d > 0 ? d/2 : 1;
|
|
|
|
pentside_pr = 2*sin(36); // side length compared to radius of a pentagon
|
|
pentheight_pr = sqrt(pentside_pr*pentside_pr - 1);
|
|
// from center of sphere, icosahedron edge subtends this angle
|
|
edge_subtend = 2*atan(pentheight_pr);
|
|
|
|
// vertical rotation by 72 degrees
|
|
c72 = cos(72);
|
|
s72 = sin(72);
|
|
function zrot(pt) = [ c72*pt[0]-s72*pt[1], s72*pt[0]+c72*pt[1], pt[2] ];
|
|
|
|
// rotation from north to vertex along positive x
|
|
ces = cos(edge_subtend);
|
|
ses = sin(edge_subtend);
|
|
function yrot(pt) = [ ces*pt[0] + ses*pt[2], pt[1], ces*pt[2]-ses*pt[0] ];
|
|
|
|
// 12 icosahedron vertices generated from north, south, yrot and zrot
|
|
ic1 = [ 0, 0, 1 ]; // north
|
|
ic2 = yrot(ic1); // north and +x
|
|
ic3 = zrot(ic2); // north and +x and +y
|
|
ic4 = zrot(ic3); // north and -x and +y
|
|
ic5 = zrot(ic4); // north and -x and -y
|
|
ic6 = zrot(ic5); // north and +x and -y
|
|
ic12 = [ 0, 0, -1]; // south
|
|
ic10 = yrot(ic12); // south and -x
|
|
ic11 = zrot(ic10); // south and -x and -y
|
|
ic7 = zrot(ic11); // south and +x and -y
|
|
ic8 = zrot(ic7); // south and +x and +y
|
|
ic9 = zrot(ic8); // south and -x and +y
|
|
|
|
// start with icosahedron, icos[0] is vertices and icos[1] is faces
|
|
icos = [ [ic1, ic2, ic3, ic4, ic5, ic6, ic7, ic8, ic9, ic10, ic11, ic12 ],
|
|
[ [0, 2, 1], [0, 3, 2], [0, 4, 3], [0, 5, 4], [0, 1, 5],
|
|
[1, 2, 7], [2, 3, 8], [3, 4, 9], [4, 5, 10], [5, 1, 6],
|
|
[7, 6, 1], [8, 7, 2], [9, 8, 3], [10, 9, 4], [6, 10, 5],
|
|
[6, 7, 11], [7, 8, 11], [8, 9, 11], [9, 10, 11], [10, 6, 11]]];
|
|
|
|
// now for polyhedron subdivision functions
|
|
|
|
// given two 3D points on the unit sphere, find the half-way point on the great circle
|
|
// (euclidean midpoint renormalized to be 1 unit away from origin)
|
|
function midpt(p1, p2) =
|
|
let (midx = (p1[0] + p2[0])/2, midy = (p1[1] + p2[1])/2, midz = (p1[2] + p2[2])/2)
|
|
let (midlen = sqrt(midx*midx + midy*midy + midz*midz))
|
|
[ midx/midlen, midy/midlen, midz/midlen ];
|
|
|
|
// given a "struct" where pf[0] is vertices and pf[1] is faces, subdivide all faces into
|
|
// 4 faces by dividing each edge in half along a great circle (midpt function)
|
|
// and returns a struct of the same format, i.e. pf[0] is a (larger) list of vertices and
|
|
// pf[1] is a larger list of faces.
|
|
function subdivpf(pf) =
|
|
let (p=pf[0], faces=pf[1])
|
|
[ // for each face, barf out six points
|
|
[ for (f=faces)
|
|
let (p0 = p[f[0]], p1 = p[f[1]], p2=p[f[2]])
|
|
// "identity" for-loop saves having to flatten
|
|
for (outp=[ p0, p1, p2, midpt(p0, p1), midpt(p1, p2), midpt(p0, p2) ]) outp
|
|
],
|
|
// now, again for each face, spit out four faces that connect those six points
|
|
[ for (i=[0:len(faces)-1])
|
|
let (base = 6*i) // points generated in multiples of 6
|
|
for (outf =
|
|
[[ base, base+3, base+5],
|
|
[base+3, base+1, base+4],
|
|
[base+5, base+4, base+2],
|
|
[base+3, base+4, base+5]]) outf // "identity" for-loop saves having to flatten
|
|
]
|
|
];
|
|
|
|
// recursive wrapper for subdivpf that subdivides "levels" times
|
|
function multi_subdiv_pf(pf, levels) =
|
|
levels == 0 ? pf :
|
|
multi_subdiv_pf(subdivpf(pf), levels-1);
|
|
|
|
// subdivision level based on $fa:
|
|
// level 0 has edge angle of edge_subtend so subdivision factor should be edge_subtend/$fa
|
|
// must round up to next power of 2.
|
|
// Take log base 2 of angle ratio and round up to next integer
|
|
ang_levels = ceil(log(edge_subtend/$fa)/log(2));
|
|
|
|
// subdivision level based on $fs:
|
|
// icosahedron edge length is rad*2*tan(edge_subtend/2)
|
|
// actually a chord and not circumference but let's say it's close enough
|
|
// subdivision factor should be rad*2*tan(edge_subtend/2)/$fs
|
|
side_levels = ceil(log(rad*2*tan(edge_subtend/2)/$fs)/log(2));
|
|
|
|
// subdivision level based on $fn: (fragments around circumference, not total facets)
|
|
// icosahedron circumference around equator is about 5 (level 1 is exactly 10)
|
|
// ratio of requested to equatorial segments is $fn/5
|
|
// level of subdivison is log base 2 of $fn/5
|
|
// round up to the next whole level so we get at least $fn
|
|
facet_levels = ceil(log($fn/5)/log(2));
|
|
|
|
// $fn takes precedence, otherwise facet_levels is NaN (-inf) but it's ok
|
|
// because it falls back to $fa or $fs, whichever translates to fewer levels
|
|
levels = $fn ? facet_levels : min(ang_levels, side_levels);
|
|
|
|
// subdivide icosahedron by these levels
|
|
subdiv_icos = multi_subdiv_pf(icos, levels);
|
|
|
|
scale(rad)
|
|
polyhedron(points=subdiv_icos[0], faces=subdiv_icos[1]);
|
|
}
|
|
|
|
module cylindrical_dish(width, height, depth, inverted){
|
|
// .5 has problems starting around 3u
|
|
$fa=.25;
|
|
/* we do some funky math here
|
|
* basically you want to have the dish "dig in" to the keycap x millimeters
|
|
* in order to do that you have to solve a small (2d) system of equations
|
|
* where the chord of the spherical cross section of the dish is
|
|
* the width of the keycap.
|
|
*/
|
|
// the distance you have to move the dish so it digs in depth millimeters
|
|
chord_length = (pow(width, 2) - 4 * pow(depth, 2)) / (8 * depth);
|
|
//the radius of the dish
|
|
rad = (pow(width, 2) + 4 * pow(depth, 2)) / (8 * depth);
|
|
direction = inverted ? -1 : 1;
|
|
|
|
translate([0,0, chord_length * direction]){
|
|
rotate([90, 0, 0]) cylinder(h=height + 20, r=rad, center=true);
|
|
}
|
|
}
|
|
//the older, 'more accurate', and MUCH slower spherical dish.
|
|
// generates the largest sphere possible that still contains the chord we are looking for
|
|
// much more graduated curvature at an immense cost
|
|
module old_spherical_dish(width, height, depth, inverted){
|
|
|
|
//same thing as the cylindrical dish here, but we need the corners to just touch - so we have to find the hypotenuse of the top
|
|
chord = pow((pow(width,2) + pow(height, 2)),0.5); //getting diagonal of the top
|
|
|
|
// the distance you have to move the dish up so it digs in depth millimeters
|
|
chord_length = (pow(chord, 2) - 4 * pow(depth, 2)) / (8 * depth);
|
|
//the radius of the dish
|
|
rad = (pow(chord, 2) + 4 * pow(depth, 2)) / (8 * depth);
|
|
direction = inverted ? -1 : 1;
|
|
|
|
translate([0,0,chord_length * direction]){
|
|
if (geodesic){
|
|
$fa=7;
|
|
geodesic_sphere(r=rad);
|
|
} else {
|
|
$fa=1;
|
|
// rotate 1 because the bottom of the sphere looks like trash
|
|
sphere(r=rad);
|
|
}
|
|
}
|
|
}
|
|
module sideways_cylindrical_dish(width, height, depth, inverted){
|
|
$fa=1;
|
|
chord_length = (pow(height, 2) - 4 * pow(depth, 2)) / (8 * depth);
|
|
rad = (pow(height, 2) + 4 * pow(depth, 2)) / (8 * depth);
|
|
|
|
direction = inverted ? -1 : 1;
|
|
|
|
translate([0,0, chord_length * direction]){
|
|
// cylinder is rendered facing up, so we rotate it on the y axis first
|
|
rotate([0,90,0]) cylinder(h = width + 20,r=rad, center=true); // +20 for fudge factor
|
|
}
|
|
}
|
|
module spherical_dish(width, height, depth, inverted){
|
|
|
|
//same thing as the cylindrical dish here, but we need the corners to just touch - so we have to find the hypotenuse of the top
|
|
chord = pow((pow(width,2) + pow(height, 2)),0.5); //getting diagonal of the top
|
|
|
|
// the distance you have to move the dish up so it digs in depth millimeters
|
|
chord_length = (pow(chord, 2) - 4 * pow(depth, 2)) / (8 * depth);
|
|
//the radius of the dish
|
|
rad = (pow(chord, 2) + 4 * pow(depth, 2)) / (8 * depth);
|
|
direction = inverted ? -1 : 1;
|
|
|
|
translate([0,0,0 * direction]){
|
|
if (geodesic){
|
|
$fa=20;
|
|
scale([chord/2/depth, chord/2/depth]) {
|
|
geodesic_sphere(r=depth);
|
|
}
|
|
} else {
|
|
$fa=6.5;
|
|
// rotate 1 because the bottom of the sphere looks like trash.
|
|
scale([chord/2/depth, chord/2/depth]) {
|
|
sphere(r=depth);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
module flat_dish(width, height, depth, inverted){
|
|
cube([width + 100,height + 100, depth], center=true);
|
|
}
|
|
|
|
//geodesic looks much better, but runs very slow for anything above a 2u
|
|
geodesic=false;
|
|
|
|
//dish selector
|
|
module dish(width, height, depth, inverted) {
|
|
if($dish_type == "cylindrical"){
|
|
cylindrical_dish(width, height, depth, inverted);
|
|
}
|
|
else if ($dish_type == "spherical") {
|
|
spherical_dish(width, height, depth, inverted);
|
|
}
|
|
else if ($dish_type == "sideways cylindrical"){
|
|
sideways_cylindrical_dish(width, height, depth, inverted);
|
|
}
|
|
else if ($dish_type == "old spherical") {
|
|
old_spherical_dish(width, height, depth, inverted);
|
|
} else if ($dish_type == "flat") {
|
|
flat_dish(width, height, depth, inverted);
|
|
} else if ($dish_type == "disable") {
|
|
// else no dish
|
|
} else {
|
|
echo("WARN: $dish_type unsupported");
|
|
}
|
|
}
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
|
|
// I use functions when I need to compute special variables off of other special variables
|
|
// functions need to be explicitly included, unlike special variables, which
|
|
// just need to have been set before they are used. hence this file
|
|
|
|
// cherry stem dimensions
|
|
function outer_cherry_stem(slop) = [7.2 - slop * 2, 5.5 - slop * 2];
|
|
|
|
// cherry stabilizer stem dimensions
|
|
function outer_cherry_stabilizer_stem(slop) = [4.85 - slop * 2, 6.05 - slop * 2];
|
|
|
|
// box (kailh) switches have a bit less to work with
|
|
function outer_box_cherry_stem(slop) = [6 - slop, 6 - slop];
|
|
|
|
// .005 purely for aesthetics, to get rid of that ugly crosshatch
|
|
function cherry_cross(slop, extra_vertical = 0) = [
|
|
// horizontal tine
|
|
[4.03 + slop, 1.25 + slop / 3],
|
|
// vertical tine
|
|
[1.15 + slop / 3, 4.23 + extra_vertical + slop / 3 + SMALLEST_POSSIBLE],
|
|
];
|
|
|
|
// actual mm key width and height
|
|
function total_key_width(delta = 0) = $bottom_key_width + $unit * ($key_length - 1) - delta;
|
|
function total_key_height(delta = 0) = $bottom_key_height + $unit * ($key_height - 1) - delta;
|
|
|
|
// actual mm key width and height at the top
|
|
function top_total_key_width() = $bottom_key_width + ($unit * ($key_length - 1)) - $width_difference;
|
|
function top_total_key_height() = $bottom_key_height + ($unit * ($key_height - 1)) - $height_difference;
|
|
|
|
function side_tilt(column) = asin($unit * column / $double_sculpt_radius);
|
|
// tan of 0 is 0, division by 0 is nan, so we have to guard
|
|
function extra_side_tilt_height(column) = side_tilt(column) ? ($double_sculpt_radius - (unit * abs(column)) / tan(abs(side_tilt(column)))) : 0;
|
|
|
|
// (I think) extra length of the side of the keycap due to the keytop being tilted.
|
|
// necessary for calculating flat sided keycaps
|
|
function vertical_inclination_due_to_top_tilt() = sin($top_tilt) * (top_total_key_height() - $corner_radius * 2) * 0.5;
|
|
// how much you have to expand the front or back of the keytop to make the side
|
|
// of the keycap a flat plane. 1 = front, -1 = back
|
|
// I derived this through a bunch of trig reductions I don't really understand.
|
|
function extra_keytop_length_for_flat_sides() = ($width_difference * vertical_inclination_due_to_top_tilt()) / ($total_depth);
|
|
// TODO this define doesn't do anything besides tell me I used flat() in this file
|
|
// is it better than not having it at all?
|
|
module flat(stem_type, loft, height) {
|
|
translate([0,0,loft + 500]){
|
|
cube(1000, center=true);
|
|
}
|
|
}
|
|
|
|
// figures out the scale factor needed to make a 45 degree wall
|
|
function scale_for_45(height, starting_size) = (height * 2 + starting_size) / starting_size;
|
|
|
|
// complicated since we want the different stems to work well
|
|
// also kind of messy... oh well
|
|
module flared(stem_type, loft, height) {
|
|
// flat support. straight flat support has a tendency to shear off; flared support
|
|
// all the way to the top has a tendency to warp the outside of the keycap.
|
|
// hopefully the compromise is both
|
|
flat(stem_type, loft + height/4, height);
|
|
|
|
translate([0,0,loft]){
|
|
if (stem_type == "rounded_cherry") {
|
|
linear_extrude(height=height, scale = scale_for_45(height, $rounded_cherry_stem_d)){
|
|
circle(d=$rounded_cherry_stem_d);
|
|
}
|
|
} else if (stem_type == "alps") {
|
|
alps_scale = [scale_for_45(height, $alps_stem[0]), scale_for_45(height, $alps_stem[1])];
|
|
linear_extrude(height=height, scale = alps_scale){
|
|
square($alps_stem, center=true);
|
|
}
|
|
} else if (stem_type == "box_cherry") {
|
|
// always render cherry if no stem type. this includes stem_type = false!
|
|
// this avoids a bug where the keycap is rendered filled when not desired
|
|
cherry_scale = [scale_for_45(height, outer_box_cherry_stem($stem_slop)[0]), scale_for_45(height, outer_box_cherry_stem($stem_slop)[1])];
|
|
linear_extrude(height=height, scale = cherry_scale){
|
|
offset(r=1){
|
|
square(outer_box_cherry_stem($stem_slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
} else if (stem_type == "cherry_stabilizer") {
|
|
cherry_scale = [scale_for_45(height, outer_cherry_stabilizer_stem($stem_slop)[0]), scale_for_45(height, outer_cherry_stabilizer_stem($stem_slop)[1])];
|
|
linear_extrude(height=height, scale = cherry_scale){
|
|
offset(r=1){
|
|
square(outer_cherry_stabilizer_stem($stem_slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
} else {
|
|
// always render cherry if no stem type. this includes stem_type = false!
|
|
// this avoids a bug where the keycap is rendered filled when not desired
|
|
cherry_scale = [scale_for_45(height, outer_cherry_stem($stem_slop)[0]), scale_for_45(height, outer_cherry_stem($stem_slop)[1])];
|
|
linear_extrude(height=height, scale = cherry_scale){
|
|
offset(r=1){
|
|
square(outer_cherry_stem($stem_slop) - [2,2], center=true);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
module flat(stem_type, loft, height) {
|
|
translate([0,0,loft + 500]){
|
|
cube(1000, center=true);
|
|
}
|
|
}
|
|
module bars(stem_type, loft, height) {
|
|
translate([0,0,loft + height / 2]){
|
|
cube([2, 100, height], center = true);
|
|
cube([100, 2, height], center = true);
|
|
}
|
|
}
|
|
|
|
module supports(type, stem_type, loft, height) {
|
|
if (type == "flared") {
|
|
flared(stem_type, loft, height);
|
|
} else if (type == "flat") {
|
|
flat(stem_type, loft, height);
|
|
} else if (type == "bars") {
|
|
bars(stem_type, loft, height);
|
|
} else if (type == "disable") {
|
|
children();
|
|
} else {
|
|
echo("Warning: unsupported $support_type");
|
|
}
|
|
}
|
|
module keybump(depth = 0, edge_inset=0.4) {
|
|
radius = 0.5;
|
|
translate([0, -top_total_key_height()/2 + edge_inset, depth]){
|
|
rotate([90,0,90]) cylinder($font_size, radius, radius, true);
|
|
translate([0,0,-radius]) cube([$font_size, radius*2, radius*2], true);
|
|
}
|
|
}
|
|
|
|
// from https://www.thingiverse.com/thing:1484333
|
|
// public domain license
|
|
// same syntax and semantics as built-in sphere, so should be a drop-in replacement
|
|
// it's a bit slow for large numbers of facets
|
|
module geodesic_sphere(r=-1, d=-1) {
|
|
// if neither parameter specified, radius is taken to be 1
|
|
rad = r > 0 ? r : d > 0 ? d/2 : 1;
|
|
|
|
pentside_pr = 2*sin(36); // side length compared to radius of a pentagon
|
|
pentheight_pr = sqrt(pentside_pr*pentside_pr - 1);
|
|
// from center of sphere, icosahedron edge subtends this angle
|
|
edge_subtend = 2*atan(pentheight_pr);
|
|
|
|
// vertical rotation by 72 degrees
|
|
c72 = cos(72);
|
|
s72 = sin(72);
|
|
function zrot(pt) = [ c72*pt[0]-s72*pt[1], s72*pt[0]+c72*pt[1], pt[2] ];
|
|
|
|
// rotation from north to vertex along positive x
|
|
ces = cos(edge_subtend);
|
|
ses = sin(edge_subtend);
|
|
function yrot(pt) = [ ces*pt[0] + ses*pt[2], pt[1], ces*pt[2]-ses*pt[0] ];
|
|
|
|
// 12 icosahedron vertices generated from north, south, yrot and zrot
|
|
ic1 = [ 0, 0, 1 ]; // north
|
|
ic2 = yrot(ic1); // north and +x
|
|
ic3 = zrot(ic2); // north and +x and +y
|
|
ic4 = zrot(ic3); // north and -x and +y
|
|
ic5 = zrot(ic4); // north and -x and -y
|
|
ic6 = zrot(ic5); // north and +x and -y
|
|
ic12 = [ 0, 0, -1]; // south
|
|
ic10 = yrot(ic12); // south and -x
|
|
ic11 = zrot(ic10); // south and -x and -y
|
|
ic7 = zrot(ic11); // south and +x and -y
|
|
ic8 = zrot(ic7); // south and +x and +y
|
|
ic9 = zrot(ic8); // south and -x and +y
|
|
|
|
// start with icosahedron, icos[0] is vertices and icos[1] is faces
|
|
icos = [ [ic1, ic2, ic3, ic4, ic5, ic6, ic7, ic8, ic9, ic10, ic11, ic12 ],
|
|
[ [0, 2, 1], [0, 3, 2], [0, 4, 3], [0, 5, 4], [0, 1, 5],
|
|
[1, 2, 7], [2, 3, 8], [3, 4, 9], [4, 5, 10], [5, 1, 6],
|
|
[7, 6, 1], [8, 7, 2], [9, 8, 3], [10, 9, 4], [6, 10, 5],
|
|
[6, 7, 11], [7, 8, 11], [8, 9, 11], [9, 10, 11], [10, 6, 11]]];
|
|
|
|
// now for polyhedron subdivision functions
|
|
|
|
// given two 3D points on the unit sphere, find the half-way point on the great circle
|
|
// (euclidean midpoint renormalized to be 1 unit away from origin)
|
|
function midpt(p1, p2) =
|
|
let (midx = (p1[0] + p2[0])/2, midy = (p1[1] + p2[1])/2, midz = (p1[2] + p2[2])/2)
|
|
let (midlen = sqrt(midx*midx + midy*midy + midz*midz))
|
|
[ midx/midlen, midy/midlen, midz/midlen ];
|
|
|
|
// given a "struct" where pf[0] is vertices and pf[1] is faces, subdivide all faces into
|
|
// 4 faces by dividing each edge in half along a great circle (midpt function)
|
|
// and returns a struct of the same format, i.e. pf[0] is a (larger) list of vertices and
|
|
// pf[1] is a larger list of faces.
|
|
function subdivpf(pf) =
|
|
let (p=pf[0], faces=pf[1])
|
|
[ // for each face, barf out six points
|
|
[ for (f=faces)
|
|
let (p0 = p[f[0]], p1 = p[f[1]], p2=p[f[2]])
|
|
// "identity" for-loop saves having to flatten
|
|
for (outp=[ p0, p1, p2, midpt(p0, p1), midpt(p1, p2), midpt(p0, p2) ]) outp
|
|
],
|
|
// now, again for each face, spit out four faces that connect those six points
|
|
[ for (i=[0:len(faces)-1])
|
|
let (base = 6*i) // points generated in multiples of 6
|
|
for (outf =
|
|
[[ base, base+3, base+5],
|
|
[base+3, base+1, base+4],
|
|
[base+5, base+4, base+2],
|
|
[base+3, base+4, base+5]]) outf // "identity" for-loop saves having to flatten
|
|
]
|
|
];
|
|
|
|
// recursive wrapper for subdivpf that subdivides "levels" times
|
|
function multi_subdiv_pf(pf, levels) =
|
|
levels == 0 ? pf :
|
|
multi_subdiv_pf(subdivpf(pf), levels-1);
|
|
|
|
// subdivision level based on $fa:
|
|
// level 0 has edge angle of edge_subtend so subdivision factor should be edge_subtend/$fa
|
|
// must round up to next power of 2.
|
|
// Take log base 2 of angle ratio and round up to next integer
|
|
ang_levels = ceil(log(edge_subtend/$fa)/log(2));
|
|
|
|
// subdivision level based on $fs:
|
|
// icosahedron edge length is rad*2*tan(edge_subtend/2)
|
|
// actually a chord and not circumference but let's say it's close enough
|
|
// subdivision factor should be rad*2*tan(edge_subtend/2)/$fs
|
|
side_levels = ceil(log(rad*2*tan(edge_subtend/2)/$fs)/log(2));
|
|
|
|
// subdivision level based on $fn: (fragments around circumference, not total facets)
|
|
// icosahedron circumference around equator is about 5 (level 1 is exactly 10)
|
|
// ratio of requested to equatorial segments is $fn/5
|
|
// level of subdivison is log base 2 of $fn/5
|
|
// round up to the next whole level so we get at least $fn
|
|
facet_levels = ceil(log($fn/5)/log(2));
|
|
|
|
// $fn takes precedence, otherwise facet_levels is NaN (-inf) but it's ok
|
|
// because it falls back to $fa or $fs, whichever translates to fewer levels
|
|
levels = $fn ? facet_levels : min(ang_levels, side_levels);
|
|
|
|
// subdivide icosahedron by these levels
|
|
subdiv_icos = multi_subdiv_pf(icos, levels);
|
|
|
|
scale(rad)
|
|
polyhedron(points=subdiv_icos[0], faces=subdiv_icos[1]);
|
|
}
|
|
|
|
// for skin hulls
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// so3
|
|
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
|
|
function rodrigues_so3_exp(w, A, B) = [
|
|
[1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
|
|
[B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
|
|
[B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
|
|
];
|
|
|
|
function so3_exp(w) = so3_exp_rad(w/180*PI);
|
|
function so3_exp_rad(w) =
|
|
combine_so3_exp(w,
|
|
w*w < 1e-8
|
|
? so3_exp_1(w*w)
|
|
: w*w < 1e-6
|
|
? so3_exp_2(w*w)
|
|
: so3_exp_3(w*w));
|
|
|
|
function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
|
|
|
|
// Taylor series expansions close to 0
|
|
function so3_exp_1(theta_sq) = [
|
|
1 - 1/6*theta_sq,
|
|
0.5
|
|
];
|
|
|
|
function so3_exp_2(theta_sq) = [
|
|
1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
|
|
0.5 - 0.25/6 * theta_sq
|
|
];
|
|
|
|
function so3_exp_3_0(theta_deg, inv_theta) = [
|
|
sin(theta_deg) * inv_theta,
|
|
(1 - cos(theta_deg)) * (inv_theta * inv_theta)
|
|
];
|
|
|
|
function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
|
|
|
|
|
|
function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
|
|
|
|
function so3_ln(m) = 180/PI*so3_ln_rad(m);
|
|
function so3_ln_rad(m) = so3_ln_0(m,
|
|
cos_angle = rot_cos_angle(m),
|
|
preliminary_result = rot_axis_part(m));
|
|
|
|
function so3_ln_0(m, cos_angle, preliminary_result) =
|
|
so3_ln_1(m, cos_angle, preliminary_result,
|
|
sin_angle_abs = sqrt(preliminary_result*preliminary_result));
|
|
|
|
function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
|
|
cos_angle > sqrt(1/2)
|
|
? sin_angle_abs > 0
|
|
? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
|
|
: preliminary_result
|
|
: cos_angle > -sqrt(1/2)
|
|
? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
|
|
: so3_get_symmetric_part_rotation(
|
|
preliminary_result,
|
|
m,
|
|
angle = PI - asin(sin_angle_abs)*PI/180,
|
|
d0 = m[0][0] - cos_angle,
|
|
d1 = m[1][1] - cos_angle,
|
|
d2 = m[2][2] - cos_angle
|
|
);
|
|
|
|
function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
|
|
so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
|
|
|
|
function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
|
|
angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
|
|
|
|
function so3_largest_column(m, d0, d1, d2) =
|
|
d0*d0 > d1*d1 && d0*d0 > d2*d2
|
|
? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
|
|
: d1*d1 > d2*d2
|
|
? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
|
|
: [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
|
|
|
|
__so3_test = [12,-125,110];
|
|
echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);
|
|
|
|
function combine_se3_exp(w, ABt) = construct_Rt(rodrigues_so3_exp(w, ABt[0], ABt[1]), ABt[2]);
|
|
|
|
// [A,B,t]
|
|
function se3_exp_1(t,w) = concat(
|
|
so3_exp_1(w*w),
|
|
[t + 0.5 * cross(w,t)]
|
|
);
|
|
|
|
function se3_exp_2(t,w) = se3_exp_2_0(t,w,w*w);
|
|
function se3_exp_2_0(t,w,theta_sq) =
|
|
se3_exp_23(
|
|
so3_exp_2(theta_sq),
|
|
C = (1.0 - theta_sq/20) / 6,
|
|
t=t,w=w);
|
|
|
|
function se3_exp_3(t,w) = se3_exp_3_0(t,w,sqrt(w*w)*180/PI,1/sqrt(w*w));
|
|
|
|
function se3_exp_3_0(t,w,theta_deg,inv_theta) =
|
|
se3_exp_23(
|
|
so3_exp_3_0(theta_deg = theta_deg, inv_theta = inv_theta),
|
|
C = (1 - sin(theta_deg) * inv_theta) * (inv_theta * inv_theta),
|
|
t=t,w=w);
|
|
|
|
function se3_exp_23(AB,C,t,w) =
|
|
[AB[0], AB[1], t + AB[1] * cross(w,t) + C * cross(w,cross(w,t)) ];
|
|
|
|
function se3_exp(mu) = se3_exp_0(t=take3(mu),w=tail3(mu)/180*PI);
|
|
|
|
function se3_exp_0(t,w) =
|
|
combine_se3_exp(w,
|
|
// Evaluate by Taylor expansion when near 0
|
|
w*w < 1e-8
|
|
? se3_exp_1(t,w)
|
|
: w*w < 1e-6
|
|
? se3_exp_2(t,w)
|
|
: se3_exp_3(t,w)
|
|
);
|
|
|
|
function se3_ln(m) = se3_ln_to_deg(se3_ln_rad(m));
|
|
function se3_ln_to_deg(v) = concat(take3(v),tail3(v)*180/PI);
|
|
|
|
function se3_ln_rad(m) = se3_ln_0(m,
|
|
rot = so3_ln_rad(rotation_part(m)));
|
|
function se3_ln_0(m,rot) = se3_ln_1(m,rot,
|
|
theta = sqrt(rot*rot));
|
|
function se3_ln_1(m,rot,theta) = se3_ln_2(m,rot,theta,
|
|
shtot = theta > 0.00001 ? sin(theta/2*180/PI)/theta : 0.5,
|
|
halfrotator = so3_exp_rad(rot * -.5));
|
|
function se3_ln_2(m,rot,theta,shtot,halfrotator) =
|
|
concat( (halfrotator * translation_part(m) -
|
|
(theta > 0.001
|
|
? rot * ((translation_part(m) * rot) * (1-2*shtot) / (rot*rot))
|
|
: rot * ((translation_part(m) * rot)/24)
|
|
)) / (2 * shtot), rot);
|
|
|
|
__se3_test = [20,-40,60,-80,100,-120];
|
|
echo(UNITTEST_se3=norm(__se3_test-se3_ln(se3_exp(__se3_test))) < 1e-8);
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// List helpers
|
|
|
|
/*!
|
|
Flattens a list one level:
|
|
|
|
flatten([[0,1],[2,3]]) => [0,1,2,3]
|
|
*/
|
|
function flatten(list) = [ for (i = list, v = i) v ];
|
|
|
|
|
|
/*!
|
|
Creates a list from a range:
|
|
|
|
range([0:2:6]) => [0,2,4,6]
|
|
*/
|
|
function range(r) = [ for(x=r) x ];
|
|
|
|
/*!
|
|
Reverses a list:
|
|
|
|
reverse([1,2,3]) => [3,2,1]
|
|
*/
|
|
function reverse(list) = [for (i = [len(list)-1:-1:0]) list[i]];
|
|
|
|
/*!
|
|
Extracts a subarray from index begin (inclusive) to end (exclusive)
|
|
FIXME: Change name to use list instead of array?
|
|
|
|
subarray([1,2,3,4], 1, 2) => [2,3]
|
|
*/
|
|
function subarray(list,begin=0,end=-1) = [
|
|
let(end = end < 0 ? len(list) : end)
|
|
for (i = [begin : 1 : end-1])
|
|
list[i]
|
|
];
|
|
|
|
/*!
|
|
Returns a copy of a list with the element at index i set to x
|
|
|
|
set([1,2,3,4], 2, 5) => [1,2,5,4]
|
|
*/
|
|
function set(list, i, x) = [for (i_=[0:len(list)-1]) i == i_ ? x : list[i_]];
|
|
|
|
/*!
|
|
Remove element from the list by index.
|
|
remove([4,3,2,1],1) => [4,2,1]
|
|
*/
|
|
function remove(list, i) = [for (i_=[0:1:len(list)-2]) list[i_ < i ? i_ : i_ + 1]];
|
|
|
|
/*!
|
|
Creates a rotation matrix
|
|
|
|
xyz = euler angles = rz * ry * rx
|
|
axis = rotation_axis * rotation_angle
|
|
*/
|
|
function rotation(xyz=undef, axis=undef) =
|
|
xyz != undef && axis != undef ? undef :
|
|
xyz == undef ? se3_exp([0,0,0,axis[0],axis[1],axis[2]]) :
|
|
len(xyz) == undef ? rotation(axis=[0,0,xyz]) :
|
|
(len(xyz) >= 3 ? rotation(axis=[0,0,xyz[2]]) : identity4()) *
|
|
(len(xyz) >= 2 ? rotation(axis=[0,xyz[1],0]) : identity4()) *
|
|
(len(xyz) >= 1 ? rotation(axis=[xyz[0],0,0]) : identity4());
|
|
|
|
/*!
|
|
Creates a scaling matrix
|
|
*/
|
|
function scaling(v) = [
|
|
[v[0],0,0,0],
|
|
[0,v[1],0,0],
|
|
[0,0,v[2],0],
|
|
[0,0,0,1],
|
|
];
|
|
|
|
/*!
|
|
Creates a translation matrix
|
|
*/
|
|
function translation(v) = [
|
|
[1,0,0,v[0]],
|
|
[0,1,0,v[1]],
|
|
[0,0,1,v[2]],
|
|
[0,0,0,1],
|
|
];
|
|
|
|
// Convert between cartesian and homogenous coordinates
|
|
function project(x) = subarray(x,end=len(x)-1) / x[len(x)-1];
|
|
|
|
function transform(m, list) = [for (p=list) project(m * vec4(p))];
|
|
function to_3d(list) = [ for(v = list) vec3(v) ];
|
|
// List helpers
|
|
|
|
/*!
|
|
Flattens a list one level:
|
|
|
|
flatten([[0,1],[2,3]]) => [0,1,2,3]
|
|
*/
|
|
function flatten(list) = [ for (i = list, v = i) v ];
|
|
|
|
|
|
/*!
|
|
Creates a list from a range:
|
|
|
|
range([0:2:6]) => [0,2,4,6]
|
|
*/
|
|
function range(r) = [ for(x=r) x ];
|
|
|
|
/*!
|
|
Reverses a list:
|
|
|
|
reverse([1,2,3]) => [3,2,1]
|
|
*/
|
|
function reverse(list) = [for (i = [len(list)-1:-1:0]) list[i]];
|
|
|
|
/*!
|
|
Extracts a subarray from index begin (inclusive) to end (exclusive)
|
|
FIXME: Change name to use list instead of array?
|
|
|
|
subarray([1,2,3,4], 1, 2) => [2,3]
|
|
*/
|
|
function subarray(list,begin=0,end=-1) = [
|
|
let(end = end < 0 ? len(list) : end)
|
|
for (i = [begin : 1 : end-1])
|
|
list[i]
|
|
];
|
|
|
|
/*!
|
|
Returns a copy of a list with the element at index i set to x
|
|
|
|
set([1,2,3,4], 2, 5) => [1,2,5,4]
|
|
*/
|
|
function set(list, i, x) = [for (i_=[0:len(list)-1]) i == i_ ? x : list[i_]];
|
|
|
|
/*!
|
|
Remove element from the list by index.
|
|
remove([4,3,2,1],1) => [4,2,1]
|
|
*/
|
|
function remove(list, i) = [for (i_=[0:1:len(list)-2]) list[i_ < i ? i_ : i_ + 1]];
|
|
function square(size) = [[-size,-size], [-size,size], [size,size], [size,-size]] / 2;
|
|
|
|
function circle(r) = [for (i=[0:$fn-1]) let (a=i*360/$fn) r * [cos(a), sin(a)]];
|
|
|
|
function regular(r, n) = circle(r, $fn=n);
|
|
|
|
function rectangle_profile(size=[1,1]) = [
|
|
// The first point is the anchor point, put it on the point corresponding to [cos(0),sin(0)]
|
|
[ size[0]/2, 0],
|
|
[ size[0]/2, size[1]/2],
|
|
[-size[0]/2, size[1]/2],
|
|
[-size[0]/2, -size[1]/2],
|
|
[ size[0]/2, -size[1]/2],
|
|
];
|
|
|
|
// FIXME: Move rectangle and rounded rectangle from extrusion
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// so3
|
|
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
|
|
function rodrigues_so3_exp(w, A, B) = [
|
|
[1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
|
|
[B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
|
|
[B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
|
|
];
|
|
|
|
function so3_exp(w) = so3_exp_rad(w/180*PI);
|
|
function so3_exp_rad(w) =
|
|
combine_so3_exp(w,
|
|
w*w < 1e-8
|
|
? so3_exp_1(w*w)
|
|
: w*w < 1e-6
|
|
? so3_exp_2(w*w)
|
|
: so3_exp_3(w*w));
|
|
|
|
function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
|
|
|
|
// Taylor series expansions close to 0
|
|
function so3_exp_1(theta_sq) = [
|
|
1 - 1/6*theta_sq,
|
|
0.5
|
|
];
|
|
|
|
function so3_exp_2(theta_sq) = [
|
|
1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
|
|
0.5 - 0.25/6 * theta_sq
|
|
];
|
|
|
|
function so3_exp_3_0(theta_deg, inv_theta) = [
|
|
sin(theta_deg) * inv_theta,
|
|
(1 - cos(theta_deg)) * (inv_theta * inv_theta)
|
|
];
|
|
|
|
function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
|
|
|
|
|
|
function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
|
|
|
|
function so3_ln(m) = 180/PI*so3_ln_rad(m);
|
|
function so3_ln_rad(m) = so3_ln_0(m,
|
|
cos_angle = rot_cos_angle(m),
|
|
preliminary_result = rot_axis_part(m));
|
|
|
|
function so3_ln_0(m, cos_angle, preliminary_result) =
|
|
so3_ln_1(m, cos_angle, preliminary_result,
|
|
sin_angle_abs = sqrt(preliminary_result*preliminary_result));
|
|
|
|
function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
|
|
cos_angle > sqrt(1/2)
|
|
? sin_angle_abs > 0
|
|
? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
|
|
: preliminary_result
|
|
: cos_angle > -sqrt(1/2)
|
|
? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
|
|
: so3_get_symmetric_part_rotation(
|
|
preliminary_result,
|
|
m,
|
|
angle = PI - asin(sin_angle_abs)*PI/180,
|
|
d0 = m[0][0] - cos_angle,
|
|
d1 = m[1][1] - cos_angle,
|
|
d2 = m[2][2] - cos_angle
|
|
);
|
|
|
|
function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
|
|
so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
|
|
|
|
function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
|
|
angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
|
|
|
|
function so3_largest_column(m, d0, d1, d2) =
|
|
d0*d0 > d1*d1 && d0*d0 > d2*d2
|
|
? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
|
|
: d1*d1 > d2*d2
|
|
? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
|
|
: [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
|
|
|
|
__so3_test = [12,-125,110];
|
|
echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);
|
|
|
|
function combine_se3_exp(w, ABt) = construct_Rt(rodrigues_so3_exp(w, ABt[0], ABt[1]), ABt[2]);
|
|
|
|
// [A,B,t]
|
|
function se3_exp_1(t,w) = concat(
|
|
so3_exp_1(w*w),
|
|
[t + 0.5 * cross(w,t)]
|
|
);
|
|
|
|
function se3_exp_2(t,w) = se3_exp_2_0(t,w,w*w);
|
|
function se3_exp_2_0(t,w,theta_sq) =
|
|
se3_exp_23(
|
|
so3_exp_2(theta_sq),
|
|
C = (1.0 - theta_sq/20) / 6,
|
|
t=t,w=w);
|
|
|
|
function se3_exp_3(t,w) = se3_exp_3_0(t,w,sqrt(w*w)*180/PI,1/sqrt(w*w));
|
|
|
|
function se3_exp_3_0(t,w,theta_deg,inv_theta) =
|
|
se3_exp_23(
|
|
so3_exp_3_0(theta_deg = theta_deg, inv_theta = inv_theta),
|
|
C = (1 - sin(theta_deg) * inv_theta) * (inv_theta * inv_theta),
|
|
t=t,w=w);
|
|
|
|
function se3_exp_23(AB,C,t,w) =
|
|
[AB[0], AB[1], t + AB[1] * cross(w,t) + C * cross(w,cross(w,t)) ];
|
|
|
|
function se3_exp(mu) = se3_exp_0(t=take3(mu),w=tail3(mu)/180*PI);
|
|
|
|
function se3_exp_0(t,w) =
|
|
combine_se3_exp(w,
|
|
// Evaluate by Taylor expansion when near 0
|
|
w*w < 1e-8
|
|
? se3_exp_1(t,w)
|
|
: w*w < 1e-6
|
|
? se3_exp_2(t,w)
|
|
: se3_exp_3(t,w)
|
|
);
|
|
|
|
function se3_ln(m) = se3_ln_to_deg(se3_ln_rad(m));
|
|
function se3_ln_to_deg(v) = concat(take3(v),tail3(v)*180/PI);
|
|
|
|
function se3_ln_rad(m) = se3_ln_0(m,
|
|
rot = so3_ln_rad(rotation_part(m)));
|
|
function se3_ln_0(m,rot) = se3_ln_1(m,rot,
|
|
theta = sqrt(rot*rot));
|
|
function se3_ln_1(m,rot,theta) = se3_ln_2(m,rot,theta,
|
|
shtot = theta > 0.00001 ? sin(theta/2*180/PI)/theta : 0.5,
|
|
halfrotator = so3_exp_rad(rot * -.5));
|
|
function se3_ln_2(m,rot,theta,shtot,halfrotator) =
|
|
concat( (halfrotator * translation_part(m) -
|
|
(theta > 0.001
|
|
? rot * ((translation_part(m) * rot) * (1-2*shtot) / (rot*rot))
|
|
: rot * ((translation_part(m) * rot)/24)
|
|
)) / (2 * shtot), rot);
|
|
|
|
__se3_test = [20,-40,60,-80,100,-120];
|
|
echo(UNITTEST_se3=norm(__se3_test-se3_ln(se3_exp(__se3_test))) < 1e-8);
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// List helpers
|
|
|
|
/*!
|
|
Flattens a list one level:
|
|
|
|
flatten([[0,1],[2,3]]) => [0,1,2,3]
|
|
*/
|
|
function flatten(list) = [ for (i = list, v = i) v ];
|
|
|
|
|
|
/*!
|
|
Creates a list from a range:
|
|
|
|
range([0:2:6]) => [0,2,4,6]
|
|
*/
|
|
function range(r) = [ for(x=r) x ];
|
|
|
|
/*!
|
|
Reverses a list:
|
|
|
|
reverse([1,2,3]) => [3,2,1]
|
|
*/
|
|
function reverse(list) = [for (i = [len(list)-1:-1:0]) list[i]];
|
|
|
|
/*!
|
|
Extracts a subarray from index begin (inclusive) to end (exclusive)
|
|
FIXME: Change name to use list instead of array?
|
|
|
|
subarray([1,2,3,4], 1, 2) => [2,3]
|
|
*/
|
|
function subarray(list,begin=0,end=-1) = [
|
|
let(end = end < 0 ? len(list) : end)
|
|
for (i = [begin : 1 : end-1])
|
|
list[i]
|
|
];
|
|
|
|
/*!
|
|
Returns a copy of a list with the element at index i set to x
|
|
|
|
set([1,2,3,4], 2, 5) => [1,2,5,4]
|
|
*/
|
|
function set(list, i, x) = [for (i_=[0:len(list)-1]) i == i_ ? x : list[i_]];
|
|
|
|
/*!
|
|
Remove element from the list by index.
|
|
remove([4,3,2,1],1) => [4,2,1]
|
|
*/
|
|
function remove(list, i) = [for (i_=[0:1:len(list)-2]) list[i_ < i ? i_ : i_ + 1]];
|
|
|
|
/*!
|
|
Creates a rotation matrix
|
|
|
|
xyz = euler angles = rz * ry * rx
|
|
axis = rotation_axis * rotation_angle
|
|
*/
|
|
function rotation(xyz=undef, axis=undef) =
|
|
xyz != undef && axis != undef ? undef :
|
|
xyz == undef ? se3_exp([0,0,0,axis[0],axis[1],axis[2]]) :
|
|
len(xyz) == undef ? rotation(axis=[0,0,xyz]) :
|
|
(len(xyz) >= 3 ? rotation(axis=[0,0,xyz[2]]) : identity4()) *
|
|
(len(xyz) >= 2 ? rotation(axis=[0,xyz[1],0]) : identity4()) *
|
|
(len(xyz) >= 1 ? rotation(axis=[xyz[0],0,0]) : identity4());
|
|
|
|
/*!
|
|
Creates a scaling matrix
|
|
*/
|
|
function scaling(v) = [
|
|
[v[0],0,0,0],
|
|
[0,v[1],0,0],
|
|
[0,0,v[2],0],
|
|
[0,0,0,1],
|
|
];
|
|
|
|
/*!
|
|
Creates a translation matrix
|
|
*/
|
|
function translation(v) = [
|
|
[1,0,0,v[0]],
|
|
[0,1,0,v[1]],
|
|
[0,0,1,v[2]],
|
|
[0,0,0,1],
|
|
];
|
|
|
|
// Convert between cartesian and homogenous coordinates
|
|
function project(x) = subarray(x,end=len(x)-1) / x[len(x)-1];
|
|
|
|
function transform(m, list) = [for (p=list) project(m * vec4(p))];
|
|
function to_3d(list) = [ for(v = list) vec3(v) ];
|
|
// List helpers
|
|
|
|
/*!
|
|
Flattens a list one level:
|
|
|
|
flatten([[0,1],[2,3]]) => [0,1,2,3]
|
|
*/
|
|
function flatten(list) = [ for (i = list, v = i) v ];
|
|
|
|
|
|
/*!
|
|
Creates a list from a range:
|
|
|
|
range([0:2:6]) => [0,2,4,6]
|
|
*/
|
|
function range(r) = [ for(x=r) x ];
|
|
|
|
/*!
|
|
Reverses a list:
|
|
|
|
reverse([1,2,3]) => [3,2,1]
|
|
*/
|
|
function reverse(list) = [for (i = [len(list)-1:-1:0]) list[i]];
|
|
|
|
/*!
|
|
Extracts a subarray from index begin (inclusive) to end (exclusive)
|
|
FIXME: Change name to use list instead of array?
|
|
|
|
subarray([1,2,3,4], 1, 2) => [2,3]
|
|
*/
|
|
function subarray(list,begin=0,end=-1) = [
|
|
let(end = end < 0 ? len(list) : end)
|
|
for (i = [begin : 1 : end-1])
|
|
list[i]
|
|
];
|
|
|
|
/*!
|
|
Returns a copy of a list with the element at index i set to x
|
|
|
|
set([1,2,3,4], 2, 5) => [1,2,5,4]
|
|
*/
|
|
function set(list, i, x) = [for (i_=[0:len(list)-1]) i == i_ ? x : list[i_]];
|
|
|
|
/*!
|
|
Remove element from the list by index.
|
|
remove([4,3,2,1],1) => [4,2,1]
|
|
*/
|
|
function remove(list, i) = [for (i_=[0:1:len(list)-2]) list[i_ < i ? i_ : i_ + 1]];
|
|
|
|
// Skin a set of profiles with a polyhedral mesh
|
|
module skin(profiles, loop=false /* unimplemented */) {
|
|
P = max_len(profiles);
|
|
N = len(profiles);
|
|
|
|
profiles = [
|
|
for (p = profiles)
|
|
for (pp = augment_profile(to_3d(p),P))
|
|
pp
|
|
];
|
|
|
|
function quad(i,P,o) = [[o+i, o+i+P, o+i%P+P+1], [o+i, o+i%P+P+1, o+i%P+1]];
|
|
|
|
function profile_triangles(tindex) = [
|
|
for (index = [0:P-1])
|
|
let (qs = quad(index+1, P, P*(tindex-1)-1))
|
|
for (q = qs) q
|
|
];
|
|
|
|
triangles = [
|
|
for(index = [1:N-1])
|
|
for(t = profile_triangles(index))
|
|
t
|
|
];
|
|
|
|
start_cap = [range([0:P-1])];
|
|
end_cap = [range([P*N-1 : -1 : P*(N-1)])];
|
|
|
|
polyhedron(convexity=2, points=profiles, faces=concat(start_cap, triangles, end_cap));
|
|
}
|
|
|
|
// Augments the profile with steiner points making the total number of vertices n
|
|
function augment_profile(profile, n) =
|
|
subdivide(profile,insert_extra_vertices_0([profile_lengths(profile),dup(0,len(profile))],n-len(profile))[1]);
|
|
|
|
function subdivide(profile,subdivisions) = let (N=len(profile)) [
|
|
for (i = [0:N-1])
|
|
let(n = len(subdivisions)>0 ? subdivisions[i] : subdivisions)
|
|
for (p = interpolate(profile[i],profile[(i+1)%N],n+1))
|
|
p
|
|
];
|
|
|
|
function interpolate(a,b,subdivisions) = [
|
|
for (index = [0:subdivisions-1])
|
|
let(t = index/subdivisions)
|
|
a*(1-t)+b*t
|
|
];
|
|
|
|
function distribute_extra_vertex(lengths_count,ma_=-1) = ma_<0 ? distribute_extra_vertex(lengths_count, max_element(lengths_count[0])) :
|
|
concat([set(lengths_count[0],ma_,lengths_count[0][ma_] * (lengths_count[1][ma_]+1) / (lengths_count[1][ma_]+2))], [increment(lengths_count[1],max_element(lengths_count[0]),1)]);
|
|
|
|
function insert_extra_vertices_0(lengths_count,n_extra) = n_extra <= 0 ? lengths_count :
|
|
insert_extra_vertices_0(distribute_extra_vertex(lengths_count),n_extra-1);
|
|
|
|
// Find the index of the maximum element of arr
|
|
function max_element(arr,ma_,ma_i_=-1,i_=0) = i_ >= len(arr) ? ma_i_ :
|
|
i_ == 0 || arr[i_] > ma_ ? max_element(arr,arr[i_],i_,i_+1) : max_element(arr,ma_,ma_i_,i_+1);
|
|
|
|
function max_len(arr) = max([for (i=arr) len(i)]);
|
|
|
|
function increment(arr,i,x=1) = set(arr,i,arr[i]+x);
|
|
|
|
function profile_lengths(profile) = [
|
|
for (i = [0:len(profile)-1])
|
|
profile_segment_length(profile,i)
|
|
];
|
|
|
|
function profile_segment_length(profile,i) = norm(profile[(i+1)%len(profile)] - profile[i]);
|
|
|
|
// Generates an array with n copies of value (default 0)
|
|
function dup(value=0,n) = [for (i = [1:n]) value];
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// so3
|
|
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
|
|
function rodrigues_so3_exp(w, A, B) = [
|
|
[1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
|
|
[B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
|
|
[B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
|
|
];
|
|
|
|
function so3_exp(w) = so3_exp_rad(w/180*PI);
|
|
function so3_exp_rad(w) =
|
|
combine_so3_exp(w,
|
|
w*w < 1e-8
|
|
? so3_exp_1(w*w)
|
|
: w*w < 1e-6
|
|
? so3_exp_2(w*w)
|
|
: so3_exp_3(w*w));
|
|
|
|
function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
|
|
|
|
// Taylor series expansions close to 0
|
|
function so3_exp_1(theta_sq) = [
|
|
1 - 1/6*theta_sq,
|
|
0.5
|
|
];
|
|
|
|
function so3_exp_2(theta_sq) = [
|
|
1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
|
|
0.5 - 0.25/6 * theta_sq
|
|
];
|
|
|
|
function so3_exp_3_0(theta_deg, inv_theta) = [
|
|
sin(theta_deg) * inv_theta,
|
|
(1 - cos(theta_deg)) * (inv_theta * inv_theta)
|
|
];
|
|
|
|
function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
|
|
|
|
|
|
function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
|
|
|
|
function so3_ln(m) = 180/PI*so3_ln_rad(m);
|
|
function so3_ln_rad(m) = so3_ln_0(m,
|
|
cos_angle = rot_cos_angle(m),
|
|
preliminary_result = rot_axis_part(m));
|
|
|
|
function so3_ln_0(m, cos_angle, preliminary_result) =
|
|
so3_ln_1(m, cos_angle, preliminary_result,
|
|
sin_angle_abs = sqrt(preliminary_result*preliminary_result));
|
|
|
|
function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
|
|
cos_angle > sqrt(1/2)
|
|
? sin_angle_abs > 0
|
|
? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
|
|
: preliminary_result
|
|
: cos_angle > -sqrt(1/2)
|
|
? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
|
|
: so3_get_symmetric_part_rotation(
|
|
preliminary_result,
|
|
m,
|
|
angle = PI - asin(sin_angle_abs)*PI/180,
|
|
d0 = m[0][0] - cos_angle,
|
|
d1 = m[1][1] - cos_angle,
|
|
d2 = m[2][2] - cos_angle
|
|
);
|
|
|
|
function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
|
|
so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
|
|
|
|
function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
|
|
angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
|
|
|
|
function so3_largest_column(m, d0, d1, d2) =
|
|
d0*d0 > d1*d1 && d0*d0 > d2*d2
|
|
? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
|
|
: d1*d1 > d2*d2
|
|
? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
|
|
: [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
|
|
|
|
__so3_test = [12,-125,110];
|
|
echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);
|
|
|
|
function combine_se3_exp(w, ABt) = construct_Rt(rodrigues_so3_exp(w, ABt[0], ABt[1]), ABt[2]);
|
|
|
|
// [A,B,t]
|
|
function se3_exp_1(t,w) = concat(
|
|
so3_exp_1(w*w),
|
|
[t + 0.5 * cross(w,t)]
|
|
);
|
|
|
|
function se3_exp_2(t,w) = se3_exp_2_0(t,w,w*w);
|
|
function se3_exp_2_0(t,w,theta_sq) =
|
|
se3_exp_23(
|
|
so3_exp_2(theta_sq),
|
|
C = (1.0 - theta_sq/20) / 6,
|
|
t=t,w=w);
|
|
|
|
function se3_exp_3(t,w) = se3_exp_3_0(t,w,sqrt(w*w)*180/PI,1/sqrt(w*w));
|
|
|
|
function se3_exp_3_0(t,w,theta_deg,inv_theta) =
|
|
se3_exp_23(
|
|
so3_exp_3_0(theta_deg = theta_deg, inv_theta = inv_theta),
|
|
C = (1 - sin(theta_deg) * inv_theta) * (inv_theta * inv_theta),
|
|
t=t,w=w);
|
|
|
|
function se3_exp_23(AB,C,t,w) =
|
|
[AB[0], AB[1], t + AB[1] * cross(w,t) + C * cross(w,cross(w,t)) ];
|
|
|
|
function se3_exp(mu) = se3_exp_0(t=take3(mu),w=tail3(mu)/180*PI);
|
|
|
|
function se3_exp_0(t,w) =
|
|
combine_se3_exp(w,
|
|
// Evaluate by Taylor expansion when near 0
|
|
w*w < 1e-8
|
|
? se3_exp_1(t,w)
|
|
: w*w < 1e-6
|
|
? se3_exp_2(t,w)
|
|
: se3_exp_3(t,w)
|
|
);
|
|
|
|
function se3_ln(m) = se3_ln_to_deg(se3_ln_rad(m));
|
|
function se3_ln_to_deg(v) = concat(take3(v),tail3(v)*180/PI);
|
|
|
|
function se3_ln_rad(m) = se3_ln_0(m,
|
|
rot = so3_ln_rad(rotation_part(m)));
|
|
function se3_ln_0(m,rot) = se3_ln_1(m,rot,
|
|
theta = sqrt(rot*rot));
|
|
function se3_ln_1(m,rot,theta) = se3_ln_2(m,rot,theta,
|
|
shtot = theta > 0.00001 ? sin(theta/2*180/PI)/theta : 0.5,
|
|
halfrotator = so3_exp_rad(rot * -.5));
|
|
function se3_ln_2(m,rot,theta,shtot,halfrotator) =
|
|
concat( (halfrotator * translation_part(m) -
|
|
(theta > 0.001
|
|
? rot * ((translation_part(m) * rot) * (1-2*shtot) / (rot*rot))
|
|
: rot * ((translation_part(m) * rot)/24)
|
|
)) / (2 * shtot), rot);
|
|
|
|
__se3_test = [20,-40,60,-80,100,-120];
|
|
echo(UNITTEST_se3=norm(__se3_test-se3_ln(se3_exp(__se3_test))) < 1e-8);
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// List helpers
|
|
|
|
/*!
|
|
Flattens a list one level:
|
|
|
|
flatten([[0,1],[2,3]]) => [0,1,2,3]
|
|
*/
|
|
function flatten(list) = [ for (i = list, v = i) v ];
|
|
|
|
|
|
/*!
|
|
Creates a list from a range:
|
|
|
|
range([0:2:6]) => [0,2,4,6]
|
|
*/
|
|
function range(r) = [ for(x=r) x ];
|
|
|
|
/*!
|
|
Reverses a list:
|
|
|
|
reverse([1,2,3]) => [3,2,1]
|
|
*/
|
|
function reverse(list) = [for (i = [len(list)-1:-1:0]) list[i]];
|
|
|
|
/*!
|
|
Extracts a subarray from index begin (inclusive) to end (exclusive)
|
|
FIXME: Change name to use list instead of array?
|
|
|
|
subarray([1,2,3,4], 1, 2) => [2,3]
|
|
*/
|
|
function subarray(list,begin=0,end=-1) = [
|
|
let(end = end < 0 ? len(list) : end)
|
|
for (i = [begin : 1 : end-1])
|
|
list[i]
|
|
];
|
|
|
|
/*!
|
|
Returns a copy of a list with the element at index i set to x
|
|
|
|
set([1,2,3,4], 2, 5) => [1,2,5,4]
|
|
*/
|
|
function set(list, i, x) = [for (i_=[0:len(list)-1]) i == i_ ? x : list[i_]];
|
|
|
|
/*!
|
|
Remove element from the list by index.
|
|
remove([4,3,2,1],1) => [4,2,1]
|
|
*/
|
|
function remove(list, i) = [for (i_=[0:1:len(list)-2]) list[i_ < i ? i_ : i_ + 1]];
|
|
|
|
/*!
|
|
Creates a rotation matrix
|
|
|
|
xyz = euler angles = rz * ry * rx
|
|
axis = rotation_axis * rotation_angle
|
|
*/
|
|
function rotation(xyz=undef, axis=undef) =
|
|
xyz != undef && axis != undef ? undef :
|
|
xyz == undef ? se3_exp([0,0,0,axis[0],axis[1],axis[2]]) :
|
|
len(xyz) == undef ? rotation(axis=[0,0,xyz]) :
|
|
(len(xyz) >= 3 ? rotation(axis=[0,0,xyz[2]]) : identity4()) *
|
|
(len(xyz) >= 2 ? rotation(axis=[0,xyz[1],0]) : identity4()) *
|
|
(len(xyz) >= 1 ? rotation(axis=[xyz[0],0,0]) : identity4());
|
|
|
|
/*!
|
|
Creates a scaling matrix
|
|
*/
|
|
function scaling(v) = [
|
|
[v[0],0,0,0],
|
|
[0,v[1],0,0],
|
|
[0,0,v[2],0],
|
|
[0,0,0,1],
|
|
];
|
|
|
|
/*!
|
|
Creates a translation matrix
|
|
*/
|
|
function translation(v) = [
|
|
[1,0,0,v[0]],
|
|
[0,1,0,v[1]],
|
|
[0,0,1,v[2]],
|
|
[0,0,0,1],
|
|
];
|
|
|
|
// Convert between cartesian and homogenous coordinates
|
|
function project(x) = subarray(x,end=len(x)-1) / x[len(x)-1];
|
|
|
|
function transform(m, list) = [for (p=list) project(m * vec4(p))];
|
|
function to_3d(list) = [ for(v = list) vec3(v) ];
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
// so3
|
|
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
|
|
function rodrigues_so3_exp(w, A, B) = [
|
|
[1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
|
|
[B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
|
|
[B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
|
|
];
|
|
|
|
function so3_exp(w) = so3_exp_rad(w/180*PI);
|
|
function so3_exp_rad(w) =
|
|
combine_so3_exp(w,
|
|
w*w < 1e-8
|
|
? so3_exp_1(w*w)
|
|
: w*w < 1e-6
|
|
? so3_exp_2(w*w)
|
|
: so3_exp_3(w*w));
|
|
|
|
function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
|
|
|
|
// Taylor series expansions close to 0
|
|
function so3_exp_1(theta_sq) = [
|
|
1 - 1/6*theta_sq,
|
|
0.5
|
|
];
|
|
|
|
function so3_exp_2(theta_sq) = [
|
|
1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
|
|
0.5 - 0.25/6 * theta_sq
|
|
];
|
|
|
|
function so3_exp_3_0(theta_deg, inv_theta) = [
|
|
sin(theta_deg) * inv_theta,
|
|
(1 - cos(theta_deg)) * (inv_theta * inv_theta)
|
|
];
|
|
|
|
function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
|
|
|
|
|
|
function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
|
|
|
|
function so3_ln(m) = 180/PI*so3_ln_rad(m);
|
|
function so3_ln_rad(m) = so3_ln_0(m,
|
|
cos_angle = rot_cos_angle(m),
|
|
preliminary_result = rot_axis_part(m));
|
|
|
|
function so3_ln_0(m, cos_angle, preliminary_result) =
|
|
so3_ln_1(m, cos_angle, preliminary_result,
|
|
sin_angle_abs = sqrt(preliminary_result*preliminary_result));
|
|
|
|
function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
|
|
cos_angle > sqrt(1/2)
|
|
? sin_angle_abs > 0
|
|
? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
|
|
: preliminary_result
|
|
: cos_angle > -sqrt(1/2)
|
|
? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
|
|
: so3_get_symmetric_part_rotation(
|
|
preliminary_result,
|
|
m,
|
|
angle = PI - asin(sin_angle_abs)*PI/180,
|
|
d0 = m[0][0] - cos_angle,
|
|
d1 = m[1][1] - cos_angle,
|
|
d2 = m[2][2] - cos_angle
|
|
);
|
|
|
|
function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
|
|
so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
|
|
|
|
function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
|
|
angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
|
|
|
|
function so3_largest_column(m, d0, d1, d2) =
|
|
d0*d0 > d1*d1 && d0*d0 > d2*d2
|
|
? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
|
|
: d1*d1 > d2*d2
|
|
? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
|
|
: [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
|
|
|
|
__so3_test = [12,-125,110];
|
|
echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);
|
|
|
|
function combine_se3_exp(w, ABt) = construct_Rt(rodrigues_so3_exp(w, ABt[0], ABt[1]), ABt[2]);
|
|
|
|
// [A,B,t]
|
|
function se3_exp_1(t,w) = concat(
|
|
so3_exp_1(w*w),
|
|
[t + 0.5 * cross(w,t)]
|
|
);
|
|
|
|
function se3_exp_2(t,w) = se3_exp_2_0(t,w,w*w);
|
|
function se3_exp_2_0(t,w,theta_sq) =
|
|
se3_exp_23(
|
|
so3_exp_2(theta_sq),
|
|
C = (1.0 - theta_sq/20) / 6,
|
|
t=t,w=w);
|
|
|
|
function se3_exp_3(t,w) = se3_exp_3_0(t,w,sqrt(w*w)*180/PI,1/sqrt(w*w));
|
|
|
|
function se3_exp_3_0(t,w,theta_deg,inv_theta) =
|
|
se3_exp_23(
|
|
so3_exp_3_0(theta_deg = theta_deg, inv_theta = inv_theta),
|
|
C = (1 - sin(theta_deg) * inv_theta) * (inv_theta * inv_theta),
|
|
t=t,w=w);
|
|
|
|
function se3_exp_23(AB,C,t,w) =
|
|
[AB[0], AB[1], t + AB[1] * cross(w,t) + C * cross(w,cross(w,t)) ];
|
|
|
|
function se3_exp(mu) = se3_exp_0(t=take3(mu),w=tail3(mu)/180*PI);
|
|
|
|
function se3_exp_0(t,w) =
|
|
combine_se3_exp(w,
|
|
// Evaluate by Taylor expansion when near 0
|
|
w*w < 1e-8
|
|
? se3_exp_1(t,w)
|
|
: w*w < 1e-6
|
|
? se3_exp_2(t,w)
|
|
: se3_exp_3(t,w)
|
|
);
|
|
|
|
function se3_ln(m) = se3_ln_to_deg(se3_ln_rad(m));
|
|
function se3_ln_to_deg(v) = concat(take3(v),tail3(v)*180/PI);
|
|
|
|
function se3_ln_rad(m) = se3_ln_0(m,
|
|
rot = so3_ln_rad(rotation_part(m)));
|
|
function se3_ln_0(m,rot) = se3_ln_1(m,rot,
|
|
theta = sqrt(rot*rot));
|
|
function se3_ln_1(m,rot,theta) = se3_ln_2(m,rot,theta,
|
|
shtot = theta > 0.00001 ? sin(theta/2*180/PI)/theta : 0.5,
|
|
halfrotator = so3_exp_rad(rot * -.5));
|
|
function se3_ln_2(m,rot,theta,shtot,halfrotator) =
|
|
concat( (halfrotator * translation_part(m) -
|
|
(theta > 0.001
|
|
? rot * ((translation_part(m) * rot) * (1-2*shtot) / (rot*rot))
|
|
: rot * ((translation_part(m) * rot)/24)
|
|
)) / (2 * shtot), rot);
|
|
|
|
__se3_test = [20,-40,60,-80,100,-120];
|
|
echo(UNITTEST_se3=norm(__se3_test-se3_ln(se3_exp(__se3_test))) < 1e-8);
|
|
|
|
function left_multiply(a,bs,i_=0) = i_ >= len(bs) ? [] :
|
|
concat([
|
|
a * bs[i_]
|
|
], left_multiply(a,bs,i_+1));
|
|
|
|
|
|
function right_multiply(as,b,i_=0) = i_ >= len(as) ? [] :
|
|
concat([
|
|
as[i_] * b
|
|
], right_multiply(as,b,i_+1));
|
|
|
|
function quantize_trajectory(trajectory,step=undef,start_position=0,steps=undef,i_=0,length_=undef) =
|
|
length_ == undef ? quantize_trajectory(
|
|
trajectory=trajectory,
|
|
start_position=(step==undef?norm(take3(trajectory))/steps*start_position:start_position),
|
|
length_=norm(take3(trajectory)),
|
|
step=step,steps=steps,i_=i_) :
|
|
(steps==undef?start_position > length_:i_>=steps) ? [] :
|
|
concat([
|
|
// if steps is defined, ignore start_position
|
|
se3_exp(trajectory*(steps==undef ? start_position/length_
|
|
: i_/(steps>1?steps-1:1)))
|
|
], quantize_trajectory(trajectory=trajectory,step=step,start_position=(steps==undef?start_position+step:start_position),steps=steps,i_=i_+1,length_=length_));
|
|
|
|
function close_trajectory_loop(trajectories) = concat(trajectories,[se3_ln(invert_rt(trajectories_end_position(trajectories)))]);
|
|
|
|
function quantize_trajectories(trajectories,step=undef,start_position=0,steps=undef,loop=false,last_=identity4(),i_=0,current_length_=undef,j_=0) =
|
|
// due to quantization differences, the last step may be missed. In that case, add it:
|
|
loop==true ? quantize_trajectories(
|
|
trajectories=close_trajectory_loop(trajectories),
|
|
step=step,
|
|
start_position = start_position,
|
|
steps=steps,
|
|
loop=false,
|
|
last_=last_,
|
|
i_=i_,
|
|
current_length_=current_length_,
|
|
j_=j_) :
|
|
i_ >= len(trajectories) ? (j_ < steps ? [last_] : []) :
|
|
current_length_ == undef ?
|
|
quantize_trajectories(
|
|
trajectories=trajectories,
|
|
step = (step == undef ? trajectories_length(trajectories) / steps : step),
|
|
start_position = (step == undef ? start_position * trajectories_length(trajectories) / steps : start_position),
|
|
steps=steps,
|
|
loop=loop,
|
|
last_=last_,
|
|
i_=i_,
|
|
current_length_=norm(take3(trajectories[i_])),
|
|
j_=j_) :
|
|
concat(
|
|
left_multiply(last_,quantize_trajectory(
|
|
trajectory=trajectories[i_],
|
|
start_position=start_position,
|
|
step=step)),
|
|
quantize_trajectories(
|
|
trajectories=trajectories,
|
|
step=step,
|
|
start_position = start_position > current_length_
|
|
? start_position - current_length_
|
|
: step - ((current_length_-start_position) % step),
|
|
steps=steps,
|
|
loop=loop,
|
|
last_=last_ * se3_exp(trajectories[i_]),
|
|
i_=i_+1,
|
|
current_length_ = undef,
|
|
j_=j_+len(
|
|
|
|
quantize_trajectory(
|
|
trajectory=trajectories[i_],
|
|
start_position=start_position,
|
|
step=step
|
|
|
|
))
|
|
))
|
|
;
|
|
|
|
|
|
function trajectories_length(trajectories, i_=0) = i_ >= len(trajectories) ? 0
|
|
: norm(take3(trajectories[i_])) + trajectories_length(trajectories,i_+1);
|
|
|
|
|
|
function trajectories_end_position(rt,i_=0,last_=identity4()) =
|
|
i_ >= len(rt) ? last_ :
|
|
trajectories_end_position(rt, i_+1, last_ * se3_exp(rt[i_]));
|
|
// so3
|
|
|
|
// very minimal set of linalg functions needed by so3, se3 etc.
|
|
|
|
// cross and norm are builtins
|
|
//function cross(x,y) = [x[1]*y[2]-x[2]*y[1], x[2]*y[0]-x[0]*y[2], x[0]*y[1]-x[1]*y[0]];
|
|
//function norm(v) = sqrt(v*v);
|
|
|
|
function vec3(p) = len(p) < 3 ? concat(p,0) : p;
|
|
function vec4(p) = let (v3=vec3(p)) len(v3) < 4 ? concat(v3,1) : v3;
|
|
function unit(v) = v/norm(v);
|
|
|
|
function identity3()=[[1,0,0],[0,1,0],[0,0,1]];
|
|
function identity4()=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]];
|
|
|
|
|
|
function take3(v) = [v[0],v[1],v[2]];
|
|
function tail3(v) = [v[3],v[4],v[5]];
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function rot_trace(m) = m[0][0] + m[1][1] + m[2][2];
|
|
function rot_cos_angle(m) = (rot_trace(m)-1)/2;
|
|
|
|
function rotation_part(m) = [take3(m[0]),take3(m[1]),take3(m[2])];
|
|
function translation_part(m) = [m[0][3],m[1][3],m[2][3]];
|
|
function transpose_3(m) = [[m[0][0],m[1][0],m[2][0]],[m[0][1],m[1][1],m[2][1]],[m[0][2],m[1][2],m[2][2]]];
|
|
function transpose_4(m) = [[m[0][0],m[1][0],m[2][0],m[3][0]],
|
|
[m[0][1],m[1][1],m[2][1],m[3][1]],
|
|
[m[0][2],m[1][2],m[2][2],m[3][2]],
|
|
[m[0][3],m[1][3],m[2][3],m[3][3]]];
|
|
function invert_rt(m) = construct_Rt(transpose_3(rotation_part(m)), -(transpose_3(rotation_part(m)) * translation_part(m)));
|
|
function construct_Rt(R,t) = [concat(R[0],t[0]),concat(R[1],t[1]),concat(R[2],t[2]),[0,0,0,1]];
|
|
|
|
// Hadamard product of n-dimensional arrays
|
|
function hadamard(a,b) = !(len(a)>0) ? a*b : [ for(i = [0:len(a)-1]) hadamard(a[i],b[i]) ];
|
|
|
|
function rodrigues_so3_exp(w, A, B) = [
|
|
[1.0 - B*(w[1]*w[1] + w[2]*w[2]), B*(w[0]*w[1]) - A*w[2], B*(w[0]*w[2]) + A*w[1]],
|
|
[B*(w[0]*w[1]) + A*w[2], 1.0 - B*(w[0]*w[0] + w[2]*w[2]), B*(w[1]*w[2]) - A*w[0]],
|
|
[B*(w[0]*w[2]) - A*w[1], B*(w[1]*w[2]) + A*w[0], 1.0 - B*(w[0]*w[0] + w[1]*w[1])]
|
|
];
|
|
|
|
function so3_exp(w) = so3_exp_rad(w/180*PI);
|
|
function so3_exp_rad(w) =
|
|
combine_so3_exp(w,
|
|
w*w < 1e-8
|
|
? so3_exp_1(w*w)
|
|
: w*w < 1e-6
|
|
? so3_exp_2(w*w)
|
|
: so3_exp_3(w*w));
|
|
|
|
function combine_so3_exp(w,AB) = rodrigues_so3_exp(w,AB[0],AB[1]);
|
|
|
|
// Taylor series expansions close to 0
|
|
function so3_exp_1(theta_sq) = [
|
|
1 - 1/6*theta_sq,
|
|
0.5
|
|
];
|
|
|
|
function so3_exp_2(theta_sq) = [
|
|
1.0 - theta_sq * (1.0 - theta_sq/20) / 6,
|
|
0.5 - 0.25/6 * theta_sq
|
|
];
|
|
|
|
function so3_exp_3_0(theta_deg, inv_theta) = [
|
|
sin(theta_deg) * inv_theta,
|
|
(1 - cos(theta_deg)) * (inv_theta * inv_theta)
|
|
];
|
|
|
|
function so3_exp_3(theta_sq) = so3_exp_3_0(sqrt(theta_sq)*180/PI, 1/sqrt(theta_sq));
|
|
|
|
|
|
function rot_axis_part(m) = [m[2][1] - m[1][2], m[0][2] - m[2][0], m[1][0] - m[0][1]]*0.5;
|
|
|
|
function so3_ln(m) = 180/PI*so3_ln_rad(m);
|
|
function so3_ln_rad(m) = so3_ln_0(m,
|
|
cos_angle = rot_cos_angle(m),
|
|
preliminary_result = rot_axis_part(m));
|
|
|
|
function so3_ln_0(m, cos_angle, preliminary_result) =
|
|
so3_ln_1(m, cos_angle, preliminary_result,
|
|
sin_angle_abs = sqrt(preliminary_result*preliminary_result));
|
|
|
|
function so3_ln_1(m, cos_angle, preliminary_result, sin_angle_abs) =
|
|
cos_angle > sqrt(1/2)
|
|
? sin_angle_abs > 0
|
|
? preliminary_result * asin(sin_angle_abs)*PI/180 / sin_angle_abs
|
|
: preliminary_result
|
|
: cos_angle > -sqrt(1/2)
|
|
? preliminary_result * acos(cos_angle)*PI/180 / sin_angle_abs
|
|
: so3_get_symmetric_part_rotation(
|
|
preliminary_result,
|
|
m,
|
|
angle = PI - asin(sin_angle_abs)*PI/180,
|
|
d0 = m[0][0] - cos_angle,
|
|
d1 = m[1][1] - cos_angle,
|
|
d2 = m[2][2] - cos_angle
|
|
);
|
|
|
|
function so3_get_symmetric_part_rotation(preliminary_result, m, angle, d0, d1, d2) =
|
|
so3_get_symmetric_part_rotation_0(preliminary_result,angle,so3_largest_column(m, d0, d1, d2));
|
|
|
|
function so3_get_symmetric_part_rotation_0(preliminary_result, angle, c_max) =
|
|
angle * unit(c_max * preliminary_result < 0 ? -c_max : c_max);
|
|
|
|
function so3_largest_column(m, d0, d1, d2) =
|
|
d0*d0 > d1*d1 && d0*d0 > d2*d2
|
|
? [d0, (m[1][0]+m[0][1])/2, (m[0][2]+m[2][0])/2]
|
|
: d1*d1 > d2*d2
|
|
? [(m[1][0]+m[0][1])/2, d1, (m[2][1]+m[1][2])/2]
|
|
: [(m[0][2]+m[2][0])/2, (m[2][1]+m[1][2])/2, d2];
|
|
|
|
__so3_test = [12,-125,110];
|
|
echo(UNITTEST_so3=norm(__so3_test-so3_ln(so3_exp(__so3_test))) < 1e-8);
|
|
|
|
function val(a=undef,default=undef) = a == undef ? default : a;
|
|
function vec_is_undef(x,index_=0) = index_ >= len(x) ? true :
|
|
is_undef(x[index_]) && vec_is_undef(x,index_+1);
|
|
|
|
function is_undef(x) = len(x) > 0 ? vec_is_undef(x) : x == undef;
|
|
// Either a or b, but not both
|
|
function either(a,b,default=undef) = is_undef(a) ? (is_undef(b) ? default : b) : is_undef(b) ? a : undef;
|
|
|
|
function translationv(left=undef,right=undef,up=undef,down=undef,forward=undef,backward=undef,translation=undef) =
|
|
translationv_2(
|
|
x = either(up,-down),
|
|
y = either(right,-left),
|
|
z = either(forward,-backward),
|
|
translation = translation);
|
|
|
|
function translationv_2(x,y,z,translation) =
|
|
x == undef && y == undef && z == undef ? translation :
|
|
is_undef(translation) ? [val(x,0),val(y,0),val(z,0)]
|
|
: undef;
|
|
|
|
function rotationv(pitch=undef,yaw=undef,roll=undef,rotation=undef) =
|
|
rotation == undef ? [val(yaw,0),val(pitch,0),val(roll,0)] :
|
|
pitch == undef && yaw == undef && roll == undef ? rotation :
|
|
undef;
|
|
|
|
function trajectory(
|
|
left=undef, right=undef,
|
|
up=undef, down=undef,
|
|
forward=undef, backward=undef,
|
|
translation=undef,
|
|
|
|
pitch=undef,
|
|
yaw=undef,
|
|
roll=undef,
|
|
rotation=undef
|
|
) = concat(
|
|
translationv(left=left,right=right,up=up,down=down,forward=forward,backward=backward,translation=translation),
|
|
rotationv(pitch=pitch,yaw=yaw,roll=roll,rotation=rotation)
|
|
);
|
|
|
|
function rotationm(rotation=undef,pitch=undef,yaw=undef,roll=undef) = so3_exp(rotationv(rotation=rotation,pitch=pitch,yaw=yaw,roll=roll));
|
|
function square(size) = [[-size,-size], [-size,size], [size,size], [size,-size]] / 2;
|
|
|
|
function circle(r) = [for (i=[0:$fn-1]) let (a=i*360/$fn) r * [cos(a), sin(a)]];
|
|
|
|
function regular(r, n) = circle(r, $fn=n);
|
|
|
|
function rectangle_profile(size=[1,1]) = [
|
|
// The first point is the anchor point, put it on the point corresponding to [cos(0),sin(0)]
|
|
[ size[0]/2, 0],
|
|
[ size[0]/2, size[1]/2],
|
|
[-size[0]/2, size[1]/2],
|
|
[-size[0]/2, -size[1]/2],
|
|
[ size[0]/2, -size[1]/2],
|
|
];
|
|
|
|
// FIXME: Move rectangle and rounded rectangle from extrusion
|
|
|
|
module fakeISOEnter(thickness_difference = 0){
|
|
// 1u is the space taken upy by a 1u keycap.
|
|
// unit is the space taken up by a unit space for a keycap.
|
|
// formula is 1u + unit *(length - 1)
|
|
|
|
// t is all modifications to the polygon array
|
|
t = thickness_difference/2 - (19.02 - 18.16);
|
|
|
|
function unit(length) = 19.02 * length;
|
|
|
|
pointArray = [
|
|
[19.05 * (-.5) + t, 19.05 * (-1) + t],
|
|
[19.05 * (0.5) - t, 19.05 * (-1) + t],
|
|
[19.05 * (0.5) - t, 19.05 * (1) - t],
|
|
[19.05 * (-0.75) + t, 19.05 * (1) - t],
|
|
[19.05 * (-0.75) + t, 19.05 * (0) + t],
|
|
[19.05 * (-0.5) + t, 19.05 * (0) + t]
|
|
];
|
|
|
|
|
|
/*translate([unit(-.5), unit(-1) + 0.86]){*/
|
|
minkowski() {
|
|
circle($corner_radius, $fn=20);
|
|
offset(r=-$corner_radius * 2, $fn=20) polygon(points=pointArray);
|
|
}
|
|
/*}*/
|
|
}
|
|
|
|
function isoEnter() = [
|
|
[19.05 * (-.5) + (19.02 - 18.16), 19.05 * (-1) + (19.02 - 18.16)],
|
|
[19.05 * (0.5) - (19.02 - 18.16), 19.05 * (-1) + (19.02 - 18.16)],
|
|
[19.05 * (0.5) - (19.02 - 18.16), 19.05 * (1) - (19.02 - 18.16)],
|
|
[19.05 * (-0.75) + (19.02 - 18.16), 19.05 * (1) - (19.02 - 18.16)],
|
|
[19.05 * (-0.75) + (19.02 - 18.16), 19.05 * (0) + (19.02 - 18.16)],
|
|
[19.05 * (-0.5) + (19.02 - 18.16), 19.05 * (0) + (19.02 - 18.16)]
|
|
];
|
|
|
|
|
|
path_definition = [
|
|
trajectory(forward = 10, roll = 0),
|
|
];
|
|
|
|
// sweep
|
|
path = quantize_trajectories(path_definition, steps=100);
|
|
|
|
// skin
|
|
myLen = len(path)-1;
|
|
trans = [ for (i=[0:len(path)-1]) transform(path[i], isoEnter()) ];
|
|
|
|
translate([0,10,0])
|
|
skin(trans);
|
|
|
|
|
|
/* [Hidden] */
|
|
SMALLEST_POSSIBLE = 1/128;
|
|
$fs = .1;
|
|
$unit = 19.05;
|
|
blue = [.2667,.5882,1];
|
|
color2 = [.5412, .4784, 1];
|
|
purple = [.4078, .3569, .749];
|
|
yellow = [1, .6941, .2];
|
|
transparent_red = [1,0,0, 0.15];
|
|
|
|
// key shape including dish. used as the ouside and inside shape in keytop(). allows for itself to be shrunk in depth and width / height
|
|
module shape(thickness_difference, depth_difference=0){
|
|
dished(depth_difference, $inverted_dish) {
|
|
color(blue) shape_hull(thickness_difference, depth_difference, $inverted_dish ? 2 : 0);
|
|
}
|
|
}
|
|
|
|
// shape of the key but with soft, rounded edges. no longer includes dish
|
|
// randomly doesnt work sometimes
|
|
// the dish doesn't _quite_ reach as far as it should
|
|
module rounded_shape() {
|
|
dished(-$minkowski_radius, $inverted_dish) {
|
|
color(blue) minkowski(){
|
|
// half minkowski in the z direction
|
|
color(blue) shape_hull($minkowski_radius * 2, $minkowski_radius/2, $inverted_dish ? 2 : 0);
|
|
/* cube($minkowski_radius); */
|
|
sphere(r=$minkowski_radius, $fn=48);
|
|
}
|
|
}
|
|
/* %envelope(); */
|
|
}
|
|
|
|
// this function is more correct, but takes _forever_
|
|
// the main difference is minkowski happens after dishing, meaning the dish is
|
|
// also minkowski'd
|
|
/* module rounded_shape() {
|
|
color(blue) minkowski(){
|
|
// half minkowski in the z direction
|
|
shape($minkowski_radius * 2, $minkowski_radius/2);
|
|
difference(){
|
|
sphere(r=$minkowski_radius, $fn=20);
|
|
translate([0,0,-$minkowski_radius]){
|
|
cube($minkowski_radius * 2, center=true);
|
|
}
|
|
}
|
|
}
|
|
} */
|
|
|
|
|
|
|
|
// basic key shape, no dish, no inside
|
|
// which is only used for dishing to cut the dish off correctly
|
|
// $height_difference used for keytop thickness
|
|
// extra_slices is a hack to make inverted dishes still work
|
|
module shape_hull(thickness_difference, depth_difference, extra_slices = 0){
|
|
render() {
|
|
if ($skin_extrude_shape) {
|
|
skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
|
|
} else if ($linear_extrude_shape) {
|
|
linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices);
|
|
} else {
|
|
hull_shape_hull(thickness_difference, depth_difference, extra_slices);
|
|
}
|
|
}
|
|
}
|
|
|
|
// use skin() instead of successive hulls. much more correct, and looks faster
|
|
// too, in most cases. successive hull relies on overlapping faces which are
|
|
// not good. But, skin works on vertex sets instead of shapes, which makes it
|
|
// a lot more difficult to use
|
|
module skin_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0 ) {
|
|
skin([
|
|
for (index = [0:$height_slices + extra_slices])
|
|
let(
|
|
progress = (index / $height_slices),
|
|
skew_this_slice = $top_skew * progress,
|
|
x_skew_this_slice = $top_skew_x * progress,
|
|
depth_this_slice = ($total_depth - depth_difference) * progress,
|
|
tilt_this_slice = -$top_tilt / $key_height * progress,
|
|
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0
|
|
)
|
|
skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice)
|
|
]);
|
|
}
|
|
|
|
function skin_shape_slice(progress, thickness_difference, skew_this_slice, x_skew_this_slice, depth_this_slice, tilt_this_slice, y_tilt_this_slice) =
|
|
transform(
|
|
translation([x_skew_this_slice,skew_this_slice,depth_this_slice]),
|
|
transform(
|
|
rotation([tilt_this_slice,y_tilt_this_slice,0]),
|
|
skin_key_shape([
|
|
total_key_width(0),
|
|
total_key_height(0),
|
|
],
|
|
[$width_difference, $height_difference],
|
|
progress,
|
|
thickness_difference
|
|
)
|
|
)
|
|
);
|
|
|
|
// corollary is hull_shape_hull
|
|
// extra_slices unused, only to match argument signatures
|
|
module linear_extrude_shape_hull(thickness_difference, depth_difference, extra_slices = 0){
|
|
height = $total_depth - depth_difference;
|
|
width_scale = top_total_key_width() / total_key_width();
|
|
height_scale = top_total_key_height() / total_key_height();
|
|
|
|
translate([0,$linear_extrude_height_adjustment,0]){
|
|
linear_extrude(height = height, scale = [width_scale, height_scale]) {
|
|
translate([0,-$linear_extrude_height_adjustment,0]){
|
|
key_shape(
|
|
[total_key_width(thickness_difference), total_key_height(thickness_difference)],
|
|
[$width_difference, $height_difference]
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module hull_shape_hull(thickness_difference, depth_difference, extra_slices = 0) {
|
|
for (index = [0:$height_slices - 1 + extra_slices]) {
|
|
hull() {
|
|
shape_slice(index / $height_slices, thickness_difference, depth_difference);
|
|
shape_slice((index + 1) / $height_slices, thickness_difference, depth_difference);
|
|
}
|
|
}
|
|
}
|
|
|
|
module shape_slice(progress, thickness_difference, depth_difference) {
|
|
skew_this_slice = $top_skew * progress;
|
|
x_skew_this_slice = $top_skew_x * progress;
|
|
|
|
depth_this_slice = ($total_depth - depth_difference) * progress;
|
|
|
|
tilt_this_slice = -$top_tilt / $key_height * progress;
|
|
y_tilt_this_slice = $double_sculpted ? (-$top_tilt_y / $key_length * progress) : 0;
|
|
|
|
translate([x_skew_this_slice, skew_this_slice, depth_this_slice]) {
|
|
rotate([tilt_this_slice,y_tilt_this_slice,0]){
|
|
linear_extrude(height = SMALLEST_POSSIBLE){
|
|
key_shape(
|
|
[
|
|
total_key_width(thickness_difference),
|
|
total_key_height(thickness_difference)
|
|
],
|
|
[$width_difference, $height_difference],
|
|
progress
|
|
);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// for when you want something to only exist inside the keycap.
|
|
// used for the support structure
|
|
module inside() {
|
|
intersection() {
|
|
shape($wall_thickness, $keytop_thickness);
|
|
children();
|
|
}
|
|
}
|
|
|
|
// put something at the top of the key, with no adjustments for dishing
|
|
module top_placement(depth_difference=0) {
|
|
top_tilt_by_height = -$top_tilt / $key_height;
|
|
top_tilt_y_by_length = $double_sculpted ? (-$top_tilt_y / $key_length) : 0;
|
|
|
|
minkowski_height = $rounded_key ? $minkowski_radius : 0;
|
|
|
|
translate([$top_skew_x + $dish_skew_x, $top_skew + $dish_skew_y, $total_depth - depth_difference + minkowski_height/2]){
|
|
rotate([top_tilt_by_height, top_tilt_y_by_length,0]){
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
|
|
module front_placement() {
|
|
// all this math is to take top skew and tilt into account
|
|
// we need to find the new effective height and depth of the top, front lip
|
|
// of the keycap to find the angle so we can rotate things correctly into place
|
|
total_depth_difference = sin(-$top_tilt) * (top_total_key_height()/2);
|
|
total_height_difference = $top_skew + (1 - cos(-$top_tilt)) * (top_total_key_height()/2);
|
|
|
|
angle = atan2(($total_depth - total_depth_difference), ($height_difference/2 + total_height_difference));
|
|
hypotenuse = ($total_depth -total_depth_difference) / sin(angle);
|
|
|
|
translate([0,-total_key_height()/2,0]) {
|
|
rotate([-(90-angle), 0, 0]) {
|
|
translate([0,0,hypotenuse/2]){
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// just to DRY up the code
|
|
module _dish() {
|
|
dish(top_total_key_width() + $dish_overdraw_width, top_total_key_height() + $dish_overdraw_height, $dish_depth, $inverted_dish);
|
|
}
|
|
|
|
module envelope(depth_difference=0) {
|
|
s = 1.5;
|
|
hull(){
|
|
cube([total_key_width() * s, total_key_height() * s, 0.01], center = true);
|
|
top_placement(SMALLEST_POSSIBLE + depth_difference){
|
|
cube([top_total_key_width() * s, top_total_key_height() * s, 0.01], center = true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// I think this is unused
|
|
module dished_for_show() {
|
|
difference(){
|
|
union() {
|
|
envelope();
|
|
if ($inverted_dish) top_placement(0) _dish();
|
|
}
|
|
if (!$inverted_dish) top_placement(0) _dish();
|
|
}
|
|
}
|
|
|
|
|
|
// for when you want to take the dish out of things
|
|
// used for adding the dish to the key shape and making sure stems don't stick out the top
|
|
// creates a bounding box 1.5 times larger in width and height than the keycap.
|
|
module dished(depth_difference = 0, inverted = false) {
|
|
intersection() {
|
|
children();
|
|
difference(){
|
|
union() {
|
|
envelope(depth_difference);
|
|
if (inverted) top_placement(depth_difference) _dish();
|
|
}
|
|
if (!inverted) top_placement(depth_difference) _dish();
|
|
}
|
|
}
|
|
}
|
|
|
|
// puts it's children at the center of the dishing on the key, including dish height
|
|
// more user-friendly than top_placement
|
|
module top_of_key(){
|
|
// if there is a dish, we need to account for how much it digs into the top
|
|
dish_depth = ($dish_type == "disable") ? 0 : $dish_depth;
|
|
// if the dish is inverted, we need to account for that too. in this case we do half, otherwise the children would be floating on top of the dish
|
|
corrected_dish_depth = ($inverted_dish) ? -dish_depth / 2 : dish_depth;
|
|
|
|
top_placement(corrected_dish_depth) {
|
|
children();
|
|
}
|
|
}
|
|
|
|
module keytext(text, position, font_size, depth) {
|
|
woffset = (top_total_key_width()/3.5) * position[0];
|
|
hoffset = (top_total_key_height()/3.5) * -position[1];
|
|
translate([woffset, hoffset, -depth]){
|
|
linear_extrude(height=$dish_depth){
|
|
text(text=text, font=$font, size=font_size, halign="center", valign="center");
|
|
}
|
|
}
|
|
}
|
|
|
|
module keystem_positions(positions) {
|
|
for (connector_pos = positions) {
|
|
translate(connector_pos) {
|
|
rotate([0, 0, $stem_rotation]){
|
|
children();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module support_for(positions, stem_type) {
|
|
keystem_positions(positions) {
|
|
color(yellow) supports($support_type, stem_type, $stem_throw, $total_depth - $stem_throw);
|
|
}
|
|
}
|
|
|
|
module stems_for(positions, stem_type) {
|
|
keystem_positions(positions) {
|
|
color(yellow) stem(stem_type, $total_depth, $stem_slop);
|
|
if ($stem_support_type != "disable") {
|
|
color(color2) stem_support($stem_support_type, stem_type, $stem_support_height, $stem_slop);
|
|
}
|
|
}
|
|
}
|
|
|
|
// a fake cherry keyswitch, abstracted out to maybe replace with a better one later
|
|
module cherry_keyswitch() {
|
|
union() {
|
|
hull() {
|
|
cube([15.6, 15.6, 0.01], center=true);
|
|
translate([0,1,5 - 0.01]) cube([10.5,9.5, 0.01], center=true);
|
|
}
|
|
hull() {
|
|
cube([15.6, 15.6, 0.01], center=true);
|
|
translate([0,0,-5.5]) cube([13.5,13.5,0.01], center=true);
|
|
}
|
|
}
|
|
}
|
|
|
|
//approximate (fully depressed) cherry key to check clearances
|
|
module clearance_check() {
|
|
if($stem_type == "cherry" || $stem_type == "cherry_rounded"){
|
|
color(transparent_red){
|
|
translate([0,0,3.6 + $stem_inset - 5]) {
|
|
cherry_keyswitch();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
module legends(depth=0) {
|
|
|
|
if (len($front_legends) > 0) {
|
|
front_placement() {
|
|
if (len($front_legends) > 0) {
|
|
for (i=[0:len($front_legends)-1]) {
|
|
rotate([90,0,0]) keytext($front_legends[i][0], $front_legends[i][1], $front_legends[i][2], depth);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
if (len($legends) > 0) {
|
|
top_of_key() {
|
|
// outset legend
|
|
if (len($legends) > 0) {
|
|
for (i=[0:len($legends)-1]) {
|
|
keytext($legends[i][0], $legends[i][1], $legends[i][2], depth);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// legends / artisan support
|
|
module artisan(depth) {
|
|
top_of_key() {
|
|
// artisan objects / outset shape legends
|
|
children();
|
|
}
|
|
}
|
|
|
|
// key with hollowed inside but no stem
|
|
module keytop() {
|
|
difference(){
|
|
if ($rounded_key) {
|
|
rounded_shape();
|
|
} else {
|
|
shape(0, 0);
|
|
}
|
|
// translation purely for aesthetic purposes, to get rid of that awful lattice
|
|
translate([0,0,-SMALLEST_POSSIBLE]) {
|
|
shape($wall_thickness, $keytop_thickness);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
// The final, penultimate key generation function.
|
|
// takes all the bits and glues them together. requires configuration with special variables.
|
|
module key(inset = false) {
|
|
difference() {
|
|
union(){
|
|
// the shape of the key, inside and out
|
|
keytop();
|
|
if($key_bump) top_of_key() keybump($key_bump_depth, $key_bump_edge);
|
|
// additive objects at the top of the key
|
|
if(!inset) artisan(0) children();
|
|
if($outset_legends) legends(0);
|
|
// render the clearance check if it's enabled, but don't have it intersect with anything
|
|
if ($clearance_check) %clearance_check();
|
|
}
|
|
|
|
// subtractive objects at the top of the key
|
|
if (inset) artisan($inset_legend_depth) children();
|
|
if(!$outset_legends) legends($inset_legend_depth);
|
|
// subtract the clearance check if it's enabled, letting the user see the
|
|
// parts of the keycap that will hit the cherry switch
|
|
if ($clearance_check) clearance_check();
|
|
}
|
|
|
|
// both stem and support are optional
|
|
if ($stem_type != "disable" || ($stabilizers != [] && $stabilizer_type != "disable")) {
|
|
dished($keytop_thickness, $inverted_dish) {
|
|
translate([0, 0, $stem_inset]) {
|
|
if ($stabilizer_type != "disable") stems_for($stabilizers, $stabilizer_type);
|
|
|
|
if ($stem_type != "disable") stems_for($stem_positions, $stem_type);
|
|
}
|
|
}
|
|
}
|
|
|
|
if ($support_type != "disable"){
|
|
inside() {
|
|
translate([0, 0, $stem_inset]) {
|
|
if ($stabilizer_type != "disable") support_for($stabilizers, $stabilizer_type);
|
|
|
|
// always render stem support even if there isn't a stem.
|
|
// rendering flat support w/no stem is much more common than a hollow keycap
|
|
// so if you want a hollow keycap you'll have to turn support off entirely
|
|
support_for($stem_positions, $stem_type);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// actual full key with space carved out and keystem/stabilizer connectors
|
|
// this is an example key with all the fixins from settings.scad
|
|
module example_key(){
|
|
/* [Basic-Settings] */
|
|
|
|
// Length in units of key. A regular key is 1 unit; spacebar is usually 6.25
|
|
$key_length = 1.0; // Range not working in thingiverse customizer atm [1:0.25:16]
|
|
|
|
// What type of stem you want. Most people want Cherry.
|
|
$stem_type = "cherry"; // [cherry, alps, rounded_cherry, box_cherry, filled, disable]
|
|
|
|
// The stem is the hardest part to print, so this variable controls how much 'slop' there is in the stem
|
|
// if your keycaps stick in the switch raise this value
|
|
$stem_slop = 0.35; // Not working in thingiverse customizer atm [0:0.01:1]
|
|
// broke this out. if your keycaps are falling off lower this value. only works for cherry stems rn
|
|
$stem_inner_slop = 0.2;
|
|
|
|
// Font size used for text
|
|
$font_size = 6;
|
|
|
|
// Set this to true if you're making a spacebar!
|
|
$inverted_dish = false;
|
|
|
|
// set this to true if you are making double sculpted keycaps
|
|
$double_sculpted = false;
|
|
// change aggressiveness of double sculpting
|
|
// this is the radius of the cylinder the keytops are placed on
|
|
$double_sculpt_radius = 200;
|
|
|
|
|
|
// Support type. default is "flared" for easy FDM printing; bars are more realistic, and flat could be for artisans
|
|
$support_type = "flared"; // [flared, bars, flat, disable]
|
|
|
|
// Supports for the stem, as it often comes off during printing. Reccommended for most machines
|
|
$stem_support_type = "tines"; // [tines, brim, disabled]
|
|
|
|
// enable to have stem support extend past the keycap bottom, to (hopefully) the next
|
|
// keycap. only works on tines right now
|
|
$extra_long_stem_support = false;
|
|
|
|
/* [Advanced] */
|
|
|
|
/* Key */
|
|
// Height in units of key. should remain 1 for most uses
|
|
$key_height = 1.0;
|
|
// Keytop thickness, aka how many millimeters between the inside and outside of the top surface of the key
|
|
$keytop_thickness = 1;
|
|
// Wall thickness, aka the thickness of the sides of the keycap. note this is the total thickness, aka 3 = 1.5mm walls
|
|
$wall_thickness = 3;
|
|
// Radius of corners of keycap
|
|
$corner_radius = 1;
|
|
// Width of the very bottom of the key
|
|
$bottom_key_width = 18.16;
|
|
// Height (from the front) of the very bottom of the key
|
|
$bottom_key_height = 18.16;
|
|
// How much less width there is on the top. eg top_key_width = bottom_key_width - width_difference
|
|
$width_difference = 6;
|
|
// How much less height there is on the top
|
|
$height_difference = 4;
|
|
// How deep the key is, before adding a dish
|
|
$total_depth = 11.5;
|
|
// The tilt of the dish in degrees. divided by key height
|
|
$top_tilt = -6;
|
|
// the y tilt of the dish in degrees. divided by key width.
|
|
// for double axis sculpted keycaps and probably not much else
|
|
$top_tilt_y = 0;
|
|
// How skewed towards the back the top is (0 for center)
|
|
$top_skew = 1.7;
|
|
|
|
// how skewed towards the right the top is. unused, but implemented.
|
|
// for double axis sculpted keycaps and probably not much else
|
|
$top_skew_x = 0;
|
|
|
|
/* Stem */
|
|
|
|
// How far the throw distance of the switch is. determines how far the 'cross' in the cherry switch digs into the stem, and how long the keystem needs to be before supports can start. luckily, alps and cherries have a pretty similar throw. can modify to have stouter keycaps for low profile switches, etc
|
|
$stem_throw = 4;
|
|
// Diameter of the outside of the rounded cherry stem
|
|
$rounded_cherry_stem_d = 5.5;
|
|
|
|
|
|
// How much higher the stem is than the bottom of the keycap.
|
|
// Inset stem requires support but is more accurate in some profiles
|
|
$stem_inset = 0;
|
|
// How many degrees to rotate the stems. useful for sideways keycaps, maybe
|
|
$stem_rotation = 0;
|
|
|
|
/* Shape */
|
|
|
|
// Key shape type, determines the shape of the key. default is 'rounded square'
|
|
$key_shape_type = "rounded_square";
|
|
// ISO enter needs to be linear extruded NOT from the center. this tells the program how far up 'not from the center' is
|
|
$linear_extrude_height_adjustment = 0;
|
|
// How many slices will be made, to approximate curves on corners. Leave at 1 if you are not curving corners
|
|
// If you're doing fancy bowed keycap sides, this controls how many slices you take
|
|
$height_slices = 1;
|
|
|
|
/* Dish */
|
|
|
|
// What type of dish the key has. note that unlike stems and supports a dish ALWAYS gets rendered.
|
|
$dish_type = "cylindrical"; // [cylindrical, spherical, sideways cylindrical, old spherical, disable]
|
|
// How deep the dish 'digs' into the top of the keycap. this is max depth, so you can't find the height from total_depth - dish_depth. besides the top is skewed anyways
|
|
$dish_depth = 1;
|
|
// How skewed in the x direction the dish is
|
|
$dish_skew_x = 0;
|
|
// How skewed in the y direction (height) the dish is
|
|
$dish_skew_y = 0;
|
|
// If you need the dish to extend further, you can 'overdraw' the rectangle it will hit
|
|
$dish_overdraw_width = 0;
|
|
// Same as width but for height
|
|
$dish_overdraw_height = 0;
|
|
|
|
/* Misc */
|
|
// There's a bevel on the cherry stems to aid insertion / guard against first layer squishing making a hard-to-fit stem.
|
|
$cherry_bevel = true;
|
|
|
|
// How tall in mm the stem support is, if there is any. stem support sits around the keystem and helps to secure it while printing.
|
|
$stem_support_height = .8;
|
|
// Font used for text
|
|
$font="DejaVu Sans Mono:style=Book";
|
|
// Whether or not to render fake keyswitches to check clearances
|
|
$clearance_check = false;
|
|
// Use linear_extrude instead of hull slices to make the shape of the key
|
|
// Should be faster, also required for concave shapes
|
|
$linear_extrude_shape = false;
|
|
|
|
// brand new, more correct, hopefully faster, lots more work
|
|
// warns in trajectory.scad but it looks benign
|
|
$skin_extrude_shape = false;
|
|
//should the key be rounded? unnecessary for most printers, and very slow
|
|
$rounded_key = false;
|
|
//minkowski radius. radius of sphere used in minkowski sum for minkowski_key function. 1.75 for G20
|
|
$minkowski_radius = .33;
|
|
|
|
/* Features */
|
|
|
|
//insert locating bump
|
|
$key_bump = false;
|
|
//height of the location bump from the top surface of the key
|
|
$key_bump_depth = 0.5;
|
|
//distance to move the bump from the front edge of the key
|
|
$key_bump_edge = 0.4;
|
|
|
|
/* [Hidden] */
|
|
|
|
//list of legends to place on a key format: [text, halign, valign, size]
|
|
//halign = "left" or "center" or "right"
|
|
//valign = "top" or "center" or "bottom"
|
|
// Currently does not work with thingiverse customizer, and actually breaks it
|
|
$legends = [];
|
|
|
|
//list of front legends to place on a key format: [text, halign, valign, size]
|
|
//halign = "left" or "center" or "right"
|
|
//valign = "top" or "center" or "bottom"
|
|
// Currently does not work with thingiverse customizer, and actually breaks it
|
|
$front_legends = [];
|
|
|
|
// make legends outset instead of inset.
|
|
// broken off from artisan support since who wants outset legends?
|
|
$outset_legends = false;
|
|
|
|
// print legends on the front of the key instead of the top
|
|
$front_print_legends = false;
|
|
|
|
// how recessed inset legends / artisans are from the top of the key
|
|
$inset_legend_depth = 0.2;
|
|
|
|
// Dimensions of alps stem
|
|
$alps_stem = [4.45, 2.25];
|
|
|
|
// Enable stabilizer stems, to hold onto your cherry or costar stabilizers
|
|
$stabilizer_type = "costar_stabilizer"; // [costar_stabilizer, cherry_stabilizer, disable]
|
|
|
|
// Ternaries are ONLY for customizer. they will NOT work if you're using this in
|
|
// OpenSCAD. you should use stabilized(), openSCAD customizer,
|
|
// or set $stabilizers directly
|
|
// Array of positions of stabilizers
|
|
$stabilizers = $key_length >= 6 ? [[-50, 0], [50, 0]] : $key_length >= 2 ? [[-12,0],[12,0]] : [];
|
|
|
|
// Where the stems are in relation to the center of the keycap, in units. default is one in the center
|
|
// Shouldn't work in thingiverse customizer, though it has been...
|
|
$stem_positions = [[0,0]];
|
|
key();
|
|
}
|
|
|
|
|
|
key_profile(key_profile, row) legend(legend) {
|
|
key();
|
|
}
|