mirror of
https://github.com/rsheldiii/KeyV2.git
synced 2024-11-26 14:54:21 +00:00
111 lines
4.8 KiB
OpenSCAD
111 lines
4.8 KiB
OpenSCAD
// from https://www.thingiverse.com/thing:1484333
|
|
// public domain license
|
|
// same syntax and semantics as built-in sphere, so should be a drop-in replacement
|
|
// it's a bit slow for large numbers of facets
|
|
module geodesic_sphere(r=-1, d=-1) {
|
|
// if neither parameter specified, radius is taken to be 1
|
|
rad = r > 0 ? r : d > 0 ? d/2 : 1;
|
|
|
|
pentside_pr = 2*sin(36); // side length compared to radius of a pentagon
|
|
pentheight_pr = sqrt(pentside_pr*pentside_pr - 1);
|
|
// from center of sphere, icosahedron edge subtends this angle
|
|
edge_subtend = 2*atan(pentheight_pr);
|
|
|
|
// vertical rotation by 72 degrees
|
|
c72 = cos(72);
|
|
s72 = sin(72);
|
|
function zrot(pt) = [ c72*pt[0]-s72*pt[1], s72*pt[0]+c72*pt[1], pt[2] ];
|
|
|
|
// rotation from north to vertex along positive x
|
|
ces = cos(edge_subtend);
|
|
ses = sin(edge_subtend);
|
|
function yrot(pt) = [ ces*pt[0] + ses*pt[2], pt[1], ces*pt[2]-ses*pt[0] ];
|
|
|
|
// 12 icosahedron vertices generated from north, south, yrot and zrot
|
|
ic1 = [ 0, 0, 1 ]; // north
|
|
ic2 = yrot(ic1); // north and +x
|
|
ic3 = zrot(ic2); // north and +x and +y
|
|
ic4 = zrot(ic3); // north and -x and +y
|
|
ic5 = zrot(ic4); // north and -x and -y
|
|
ic6 = zrot(ic5); // north and +x and -y
|
|
ic12 = [ 0, 0, -1]; // south
|
|
ic10 = yrot(ic12); // south and -x
|
|
ic11 = zrot(ic10); // south and -x and -y
|
|
ic7 = zrot(ic11); // south and +x and -y
|
|
ic8 = zrot(ic7); // south and +x and +y
|
|
ic9 = zrot(ic8); // south and -x and +y
|
|
|
|
// start with icosahedron, icos[0] is vertices and icos[1] is faces
|
|
icos = [ [ic1, ic2, ic3, ic4, ic5, ic6, ic7, ic8, ic9, ic10, ic11, ic12 ],
|
|
[ [0, 2, 1], [0, 3, 2], [0, 4, 3], [0, 5, 4], [0, 1, 5],
|
|
[1, 2, 7], [2, 3, 8], [3, 4, 9], [4, 5, 10], [5, 1, 6],
|
|
[7, 6, 1], [8, 7, 2], [9, 8, 3], [10, 9, 4], [6, 10, 5],
|
|
[6, 7, 11], [7, 8, 11], [8, 9, 11], [9, 10, 11], [10, 6, 11]]];
|
|
|
|
// now for polyhedron subdivision functions
|
|
|
|
// given two 3D points on the unit sphere, find the half-way point on the great circle
|
|
// (euclidean midpoint renormalized to be 1 unit away from origin)
|
|
function midpt(p1, p2) =
|
|
let (midx = (p1[0] + p2[0])/2, midy = (p1[1] + p2[1])/2, midz = (p1[2] + p2[2])/2)
|
|
let (midlen = sqrt(midx*midx + midy*midy + midz*midz))
|
|
[ midx/midlen, midy/midlen, midz/midlen ];
|
|
|
|
// given a "struct" where pf[0] is vertices and pf[1] is faces, subdivide all faces into
|
|
// 4 faces by dividing each edge in half along a great circle (midpt function)
|
|
// and returns a struct of the same format, i.e. pf[0] is a (larger) list of vertices and
|
|
// pf[1] is a larger list of faces.
|
|
function subdivpf(pf) =
|
|
let (p=pf[0], faces=pf[1])
|
|
[ // for each face, barf out six points
|
|
[ for (f=faces)
|
|
let (p0 = p[f[0]], p1 = p[f[1]], p2=p[f[2]])
|
|
// "identity" for-loop saves having to flatten
|
|
for (outp=[ p0, p1, p2, midpt(p0, p1), midpt(p1, p2), midpt(p0, p2) ]) outp
|
|
],
|
|
// now, again for each face, spit out four faces that connect those six points
|
|
[ for (i=[0:len(faces)-1])
|
|
let (base = 6*i) // points generated in multiples of 6
|
|
for (outf =
|
|
[[ base, base+3, base+5],
|
|
[base+3, base+1, base+4],
|
|
[base+5, base+4, base+2],
|
|
[base+3, base+4, base+5]]) outf // "identity" for-loop saves having to flatten
|
|
]
|
|
];
|
|
|
|
// recursive wrapper for subdivpf that subdivides "levels" times
|
|
function multi_subdiv_pf(pf, levels) =
|
|
levels == 0 ? pf :
|
|
multi_subdiv_pf(subdivpf(pf), levels-1);
|
|
|
|
// subdivision level based on $fa:
|
|
// level 0 has edge angle of edge_subtend so subdivision factor should be edge_subtend/$fa
|
|
// must round up to next power of 2.
|
|
// Take log base 2 of angle ratio and round up to next integer
|
|
ang_levels = ceil(log(edge_subtend/$fa)/log(2));
|
|
|
|
// subdivision level based on $fs:
|
|
// icosahedron edge length is rad*2*tan(edge_subtend/2)
|
|
// actually a chord and not circumference but let's say it's close enough
|
|
// subdivision factor should be rad*2*tan(edge_subtend/2)/$fs
|
|
side_levels = ceil(log(rad*2*tan(edge_subtend/2)/$fs)/log(2));
|
|
|
|
// subdivision level based on $fn: (fragments around circumference, not total facets)
|
|
// icosahedron circumference around equator is about 5 (level 1 is exactly 10)
|
|
// ratio of requested to equatorial segments is $fn/5
|
|
// level of subdivison is log base 2 of $fn/5
|
|
// round up to the next whole level so we get at least $fn
|
|
facet_levels = ceil(log($fn/5)/log(2));
|
|
|
|
// $fn takes precedence, otherwise facet_levels is NaN (-inf) but it's ok
|
|
// because it falls back to $fa or $fs, whichever translates to fewer levels
|
|
levels = $fn ? facet_levels : min(ang_levels, side_levels);
|
|
|
|
// subdivide icosahedron by these levels
|
|
subdiv_icos = multi_subdiv_pf(icos, levels);
|
|
|
|
scale(rad)
|
|
polyhedron(points=subdiv_icos[0], faces=subdiv_icos[1]);
|
|
}
|