Add pre-calculated planner.e_factor
This commit is contained in:
parent
24b302c001
commit
3293823642
11 changed files with 110 additions and 85 deletions
|
@ -215,10 +215,6 @@ extern int16_t feedrate_percentage;
|
|||
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)
|
||||
|
||||
extern bool axis_relative_modes[];
|
||||
extern bool volumetric_enabled;
|
||||
extern int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
||||
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
|
||||
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
|
||||
extern bool axis_known_position[XYZ];
|
||||
extern bool axis_homed[XYZ];
|
||||
extern volatile bool wait_for_heatup;
|
||||
|
@ -427,8 +423,6 @@ extern uint8_t active_extruder;
|
|||
extern float mixing_factor[MIXING_STEPPERS];
|
||||
#endif
|
||||
|
||||
void calculate_volumetric_multipliers();
|
||||
|
||||
/**
|
||||
* Blocking movement and shorthand functions
|
||||
*/
|
||||
|
|
|
@ -452,13 +452,10 @@ FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&ho
|
|||
|
||||
float feedrate_mm_s = MMM_TO_MMS(1500.0);
|
||||
static float saved_feedrate_mm_s;
|
||||
int16_t feedrate_percentage = 100, saved_feedrate_percentage,
|
||||
flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
|
||||
int16_t feedrate_percentage = 100, saved_feedrate_percentage;
|
||||
|
||||
// Initialized by settings.load()
|
||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
|
||||
volumetric_enabled;
|
||||
float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
|
||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||
|
||||
#if HAS_WORKSPACE_OFFSET
|
||||
#if HAS_POSITION_SHIFT
|
||||
|
@ -3226,7 +3223,7 @@ static void homeaxis(const AxisEnum axis) {
|
|||
set_destination_from_current();
|
||||
stepper.synchronize(); // Wait for buffered moves to complete
|
||||
|
||||
const float renormalize = 100.0 / flow_percentage[active_extruder] / volumetric_multiplier[active_extruder];
|
||||
const float renormalize = 1.0 / planner.e_factor[active_extruder];
|
||||
|
||||
if (retracting) {
|
||||
// Retract by moving from a faux E position back to the current E position
|
||||
|
@ -6553,7 +6550,7 @@ inline void gcode_M17() {
|
|||
#endif
|
||||
|
||||
void do_pause_e_move(const float &length, const float fr) {
|
||||
current_position[E_AXIS] += length * 100.0 / flow_percentage[active_extruder] / volumetric_multiplier[active_extruder];
|
||||
current_position[E_AXIS] += length / planner.e_factor[active_extruder];
|
||||
set_destination_from_current();
|
||||
RUNPLAN(fr);
|
||||
stepper.synchronize();
|
||||
|
@ -8832,15 +8829,14 @@ inline void gcode_M200() {
|
|||
// setting any extruder filament size disables volumetric on the assumption that
|
||||
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
||||
// for all extruders
|
||||
volumetric_enabled = (parser.value_linear_units() != 0.0);
|
||||
if (volumetric_enabled) {
|
||||
filament_size[target_extruder] = parser.value_linear_units();
|
||||
if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) ) {
|
||||
planner.filament_size[target_extruder] = parser.value_linear_units();
|
||||
// make sure all extruders have some sane value for the filament size
|
||||
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
||||
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
for (uint8_t i = 0; i < COUNT(planner.filament_size); i++)
|
||||
if (!planner.filament_size[i]) planner.filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
}
|
||||
}
|
||||
calculate_volumetric_multipliers();
|
||||
planner.calculate_volumetric_multipliers();
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -9201,8 +9197,10 @@ inline void gcode_M220() {
|
|||
*/
|
||||
inline void gcode_M221() {
|
||||
if (get_target_extruder_from_command(221)) return;
|
||||
if (parser.seenval('S'))
|
||||
flow_percentage[target_extruder] = parser.value_int();
|
||||
if (parser.seenval('S')) {
|
||||
planner.flow_percentage[target_extruder] = parser.value_int();
|
||||
planner.refresh_e_factor(target_extruder);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -9735,7 +9733,7 @@ inline void gcode_M400() { stepper.synchronize(); }
|
|||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
//SERIAL_PROTOCOL(filament_width_meas);
|
||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||
//SERIAL_PROTOCOL(flow_percentage[active_extruder]);
|
||||
//SERIAL_PROTOCOL(planner.flow_percentage[active_extruder]);
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -9743,7 +9741,7 @@ inline void gcode_M400() { stepper.synchronize(); }
|
|||
*/
|
||||
inline void gcode_M406() {
|
||||
filament_sensor = false;
|
||||
calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
||||
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -12967,7 +12965,7 @@ void prepare_move_to_destination() {
|
|||
}
|
||||
#endif // PREVENT_COLD_EXTRUSION
|
||||
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
if (FABS(destination[E_AXIS] - current_position[E_AXIS]) > (EXTRUDE_MAXLENGTH) / volumetric_multiplier[active_extruder]) {
|
||||
if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
|
||||
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
||||
|
@ -13387,16 +13385,6 @@ void prepare_move_to_destination() {
|
|||
|
||||
#endif // FAST_PWM_FAN
|
||||
|
||||
float calculate_volumetric_multiplier(const float diameter) {
|
||||
if (!volumetric_enabled || diameter == 0) return 1.0;
|
||||
return 1.0 / (M_PI * sq(diameter * 0.5));
|
||||
}
|
||||
|
||||
void calculate_volumetric_multipliers() {
|
||||
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
||||
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
||||
}
|
||||
|
||||
void enable_all_steppers() {
|
||||
enable_X();
|
||||
enable_Y();
|
||||
|
|
|
@ -138,8 +138,8 @@
|
|||
* 533 M208 R swap_retract_recover_feedrate_mm_s (float)
|
||||
*
|
||||
* Volumetric Extrusion: 21 bytes
|
||||
* 537 M200 D volumetric_enabled (bool)
|
||||
* 538 M200 T D filament_size (float x5) (T0..3)
|
||||
* 537 M200 D parser.volumetric_enabled (bool)
|
||||
* 538 M200 T D planner.filament_size (float x5) (T0..3)
|
||||
*
|
||||
* HAVE_TMC2130: 22 bytes
|
||||
* 558 M906 X Stepper X current (uint16_t)
|
||||
|
@ -188,10 +188,7 @@ MarlinSettings settings;
|
|||
#include "temperature.h"
|
||||
#include "ultralcd.h"
|
||||
#include "stepper.h"
|
||||
|
||||
#if ENABLED(INCH_MODE_SUPPORT) || (ENABLED(ULTIPANEL) && ENABLED(TEMPERATURE_UNITS_SUPPORT))
|
||||
#include "gcode.h"
|
||||
#endif
|
||||
#include "gcode.h"
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
#include "mesh_bed_leveling.h"
|
||||
|
@ -238,7 +235,7 @@ void MarlinSettings::postprocess() {
|
|||
thermalManager.updatePID();
|
||||
#endif
|
||||
|
||||
calculate_volumetric_multipliers();
|
||||
planner.calculate_volumetric_multipliers();
|
||||
|
||||
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
||||
// Software endstops depend on home_offset
|
||||
|
@ -569,11 +566,11 @@ void MarlinSettings::postprocess() {
|
|||
EEPROM_WRITE(swap_retract_recover_length);
|
||||
EEPROM_WRITE(swap_retract_recover_feedrate_mm_s);
|
||||
|
||||
EEPROM_WRITE(volumetric_enabled);
|
||||
EEPROM_WRITE(parser.volumetric_enabled);
|
||||
|
||||
// Save filament sizes
|
||||
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
||||
if (q < COUNT(filament_size)) dummy = filament_size[q];
|
||||
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
|
||||
EEPROM_WRITE(dummy);
|
||||
}
|
||||
|
||||
|
@ -1018,10 +1015,10 @@ void MarlinSettings::postprocess() {
|
|||
// Volumetric & Filament Size
|
||||
//
|
||||
|
||||
EEPROM_READ(volumetric_enabled);
|
||||
EEPROM_READ(parser.volumetric_enabled);
|
||||
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
||||
EEPROM_READ(dummy);
|
||||
if (q < COUNT(filament_size)) filament_size[q] = dummy;
|
||||
if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy;
|
||||
}
|
||||
|
||||
//
|
||||
|
@ -1424,15 +1421,15 @@ void MarlinSettings::reset() {
|
|||
swap_retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE_SWAP;
|
||||
#endif // FWRETRACT
|
||||
|
||||
volumetric_enabled =
|
||||
parser.volumetric_enabled =
|
||||
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
|
||||
true
|
||||
#else
|
||||
false
|
||||
#endif
|
||||
;
|
||||
for (uint8_t q = 0; q < COUNT(filament_size); q++)
|
||||
filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
|
||||
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
|
||||
endstops.enable_globally(
|
||||
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
|
||||
|
@ -1515,7 +1512,7 @@ void MarlinSettings::reset() {
|
|||
CONFIG_ECHO_START;
|
||||
#if ENABLED(INCH_MODE_SUPPORT)
|
||||
#define LINEAR_UNIT(N) ((N) / parser.linear_unit_factor)
|
||||
#define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
|
||||
#define VOLUMETRIC_UNIT(N) ((N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
|
||||
SERIAL_ECHOPGM(" G2");
|
||||
SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
|
||||
SERIAL_ECHOPGM(" ; Units in ");
|
||||
|
@ -1552,37 +1549,37 @@ void MarlinSettings::reset() {
|
|||
if (!forReplay) {
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOPGM("Filament settings:");
|
||||
if (volumetric_enabled)
|
||||
if (parser.volumetric_enabled)
|
||||
SERIAL_EOL();
|
||||
else
|
||||
SERIAL_ECHOLNPGM(" Disabled");
|
||||
}
|
||||
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
|
||||
SERIAL_ECHOPAIR(" M200 D", planner.filament_size[0]);
|
||||
SERIAL_EOL();
|
||||
#if EXTRUDERS > 1
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
|
||||
SERIAL_ECHOPAIR(" M200 T1 D", planner.filament_size[1]);
|
||||
SERIAL_EOL();
|
||||
#if EXTRUDERS > 2
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
|
||||
SERIAL_ECHOPAIR(" M200 T2 D", planner.filament_size[2]);
|
||||
SERIAL_EOL();
|
||||
#if EXTRUDERS > 3
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
|
||||
SERIAL_ECHOPAIR(" M200 T3 D", planner.filament_size[3]);
|
||||
SERIAL_EOL();
|
||||
#if EXTRUDERS > 4
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
|
||||
SERIAL_ECHOPAIR(" M200 T4 D", planner.filament_size[4]);
|
||||
SERIAL_EOL();
|
||||
#endif // EXTRUDERS > 4
|
||||
#endif // EXTRUDERS > 3
|
||||
#endif // EXTRUDERS > 2
|
||||
#endif // EXTRUDERS > 1
|
||||
|
||||
if (!volumetric_enabled) {
|
||||
if (!parser.volumetric_enabled) {
|
||||
CONFIG_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(" M200 D0");
|
||||
}
|
||||
|
|
|
@ -32,6 +32,8 @@
|
|||
// Must be declared for allocation and to satisfy the linker
|
||||
// Zero values need no initialization.
|
||||
|
||||
bool GCodeParser::volumetric_enabled;
|
||||
|
||||
#if ENABLED(INCH_MODE_SUPPORT)
|
||||
float GCodeParser::linear_unit_factor, GCodeParser::volumetric_unit_factor;
|
||||
#endif
|
||||
|
|
|
@ -44,10 +44,6 @@
|
|||
#include "serial.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(INCH_MODE_SUPPORT)
|
||||
extern bool volumetric_enabled;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* GCode parser
|
||||
*
|
||||
|
@ -76,6 +72,8 @@ public:
|
|||
|
||||
// Global states for GCode-level units features
|
||||
|
||||
static bool volumetric_enabled;
|
||||
|
||||
#if ENABLED(INCH_MODE_SUPPORT)
|
||||
static float linear_unit_factor, volumetric_unit_factor;
|
||||
#endif
|
||||
|
|
|
@ -91,6 +91,12 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
|
|||
uint8_t Planner::last_extruder = 0; // Respond to extruder change
|
||||
#endif
|
||||
|
||||
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
|
||||
|
||||
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
||||
Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
||||
Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
||||
|
||||
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
|
||||
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
|
||||
|
||||
|
@ -521,6 +527,18 @@ void Planner::check_axes_activity() {
|
|||
#endif
|
||||
}
|
||||
|
||||
inline float calculate_volumetric_multiplier(const float &diameter) {
|
||||
if (!parser.volumetric_enabled || diameter == 0) return 1.0;
|
||||
return 1.0 / CIRCLE_AREA(diameter * 0.5);
|
||||
}
|
||||
|
||||
void Planner::calculate_volumetric_multipliers() {
|
||||
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
|
||||
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
||||
refresh_e_factor(i);
|
||||
}
|
||||
}
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
/**
|
||||
* rx, ry, rz - cartesian position in mm
|
||||
|
@ -719,10 +737,8 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
|||
|
||||
long de = target[E_AXIS] - position[E_AXIS];
|
||||
|
||||
const float e_factor = volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
float de_float = e - position_float[E_AXIS];
|
||||
float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
|
||||
#endif
|
||||
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
|
@ -740,8 +756,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
|||
}
|
||||
#endif // PREVENT_COLD_EXTRUSION
|
||||
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
||||
const int32_t de_mm = labs(de * e_factor);
|
||||
if (de_mm > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
||||
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
|
||||
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
||||
de = 0; // no difference
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
@ -782,7 +797,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
|
|||
#endif
|
||||
if (de < 0) SBI(dm, E_AXIS);
|
||||
|
||||
const float esteps_float = de * e_factor;
|
||||
const float esteps_float = de * e_factor[extruder];
|
||||
const int32_t esteps = abs(esteps_float) + 0.5;
|
||||
|
||||
// Calculate the buffer head after we push this byte
|
||||
|
|
|
@ -140,6 +140,13 @@ class Planner {
|
|||
static uint8_t last_extruder; // Respond to extruder change
|
||||
#endif
|
||||
|
||||
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
|
||||
|
||||
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
|
||||
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
|
||||
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
|
||||
// May be auto-adjusted by a filament width sensor
|
||||
|
||||
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
|
||||
axis_steps_per_mm[XYZE_N],
|
||||
steps_to_mm[XYZE_N];
|
||||
|
@ -236,9 +243,15 @@ class Planner {
|
|||
static void reset_acceleration_rates();
|
||||
static void refresh_positioning();
|
||||
|
||||
FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
|
||||
e_factor[e] = volumetric_multiplier[e] * flow_percentage[e] * 0.01;
|
||||
}
|
||||
|
||||
// Manage fans, paste pressure, etc.
|
||||
static void check_axes_activity();
|
||||
|
||||
static void calculate_volumetric_multipliers();
|
||||
|
||||
/**
|
||||
* Number of moves currently in the planner
|
||||
*/
|
||||
|
|
|
@ -815,7 +815,8 @@ void Temperature::manage_heater() {
|
|||
// Get the delayed info and add 100 to reconstitute to a percent of
|
||||
// the nominal filament diameter then square it to get an area
|
||||
const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
|
||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
|
||||
planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
|
||||
planner.refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
||||
}
|
||||
#endif // FILAMENT_WIDTH_SENSOR
|
||||
|
||||
|
|
|
@ -33,6 +33,7 @@
|
|||
#include "stepper.h"
|
||||
#include "configuration_store.h"
|
||||
#include "utility.h"
|
||||
#include "gcode.h"
|
||||
|
||||
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
||||
#include "buzzer.h"
|
||||
|
@ -1248,6 +1249,22 @@ void kill_screen(const char* lcd_msg) {
|
|||
#endif
|
||||
#endif
|
||||
|
||||
// Refresh the E factor after changing flow
|
||||
inline void _lcd_refresh_e_factor_0() { planner.refresh_e_factor(0); }
|
||||
#if EXTRUDERS > 1
|
||||
inline void _lcd_refresh_e_factor() { planner.refresh_e_factor(active_extruder); }
|
||||
inline void _lcd_refresh_e_factor_1() { planner.refresh_e_factor(1); }
|
||||
#if EXTRUDERS > 2
|
||||
inline void _lcd_refresh_e_factor_2() { planner.refresh_e_factor(2); }
|
||||
#if EXTRUDERS > 3
|
||||
inline void _lcd_refresh_e_factor_3() { planner.refresh_e_factor(3); }
|
||||
#if EXTRUDERS > 4
|
||||
inline void _lcd_refresh_e_factor_4() { planner.refresh_e_factor(4); }
|
||||
#endif // EXTRUDERS > 4
|
||||
#endif // EXTRUDERS > 3
|
||||
#endif // EXTRUDERS > 2
|
||||
#endif // EXTRUDERS > 1
|
||||
|
||||
/**
|
||||
*
|
||||
* "Tune" submenu
|
||||
|
@ -1327,17 +1344,17 @@ void kill_screen(const char* lcd_msg) {
|
|||
// Flow [1-5]:
|
||||
//
|
||||
#if EXTRUDERS == 1
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW, &flow_percentage[0], 10, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW, &planner.flow_percentage[0], 10, 999, _lcd_refresh_e_factor_0);
|
||||
#else // EXTRUDERS > 1
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW, &flow_percentage[active_extruder], 10, 999);
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &flow_percentage[0], 10, 999);
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &flow_percentage[1], 10, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW, &planner.flow_percentage[active_extruder], 10, 999, _lcd_refresh_e_factor);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N1, &planner.flow_percentage[0], 10, 999, _lcd_refresh_e_factor_0);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N2, &planner.flow_percentage[1], 10, 999, _lcd_refresh_e_factor_1);
|
||||
#if EXTRUDERS > 2
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &flow_percentage[2], 10, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N3, &planner.flow_percentage[2], 10, 999, _lcd_refresh_e_factor_2);
|
||||
#if EXTRUDERS > 3
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N4, &flow_percentage[3], 10, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N4, &planner.flow_percentage[3], 10, 999, _lcd_refresh_e_factor_3);
|
||||
#if EXTRUDERS > 4
|
||||
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N5, &flow_percentage[4], 10, 999);
|
||||
MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N5, &planner.flow_percentage[4], 10, 999, _lcd_refresh_e_factor_4);
|
||||
#endif // EXTRUDERS > 4
|
||||
#endif // EXTRUDERS > 3
|
||||
#endif // EXTRUDERS > 2
|
||||
|
@ -3678,20 +3695,20 @@ void kill_screen(const char* lcd_msg) {
|
|||
MENU_ITEM_EDIT(float3, MSG_ADVANCE_K, &planner.extruder_advance_k, 0, 999);
|
||||
#endif
|
||||
|
||||
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
|
||||
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &parser.volumetric_enabled, planner.calculate_volumetric_multipliers);
|
||||
|
||||
if (volumetric_enabled) {
|
||||
if (parser.volumetric_enabled) {
|
||||
#if EXTRUDERS == 1
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM, &planner.filament_size[0], 1.5, 3.25, planner.calculate_volumetric_multipliers);
|
||||
#else // EXTRUDERS > 1
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E1, &planner.filament_size[0], 1.5, 3.25, planner.calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E2, &planner.filament_size[1], 1.5, 3.25, planner.calculate_volumetric_multipliers);
|
||||
#if EXTRUDERS > 2
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E3, &planner.filament_size[2], 1.5, 3.25, planner.calculate_volumetric_multipliers);
|
||||
#if EXTRUDERS > 3
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E4, &planner.filament_size[3], 1.5, 3.25, planner.calculate_volumetric_multipliers);
|
||||
#if EXTRUDERS > 4
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E5, &filament_size[4], 1.5, 3.25, calculate_volumetric_multipliers);
|
||||
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_DIAM MSG_DIAM_E5, &planner.filament_size[4], 1.5, 3.25, planner.calculate_volumetric_multipliers);
|
||||
#endif // EXTRUDERS > 4
|
||||
#endif // EXTRUDERS > 3
|
||||
#endif // EXTRUDERS > 2
|
||||
|
|
|
@ -650,7 +650,7 @@ static void lcd_implementation_status_screen() {
|
|||
strcpy(zstring, ftostr52sp(FIXFLOAT(LOGICAL_Z_POSITION(current_position[Z_AXIS]))));
|
||||
#if ENABLED(FILAMENT_LCD_DISPLAY) && DISABLED(SDSUPPORT)
|
||||
strcpy(wstring, ftostr12ns(filament_width_meas));
|
||||
strcpy(mstring, itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
||||
strcpy(mstring, itostr3(100.0 * planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -739,7 +739,7 @@ static void lcd_implementation_status_screen() {
|
|||
lcd_print(ftostr12ns(filament_width_meas));
|
||||
lcd_printPGM(PSTR(" " LCD_STR_FILAM_MUL));
|
||||
u8g.print(':');
|
||||
lcd_print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
||||
lcd_print(itostr3(100.0 * planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
||||
u8g.print('%');
|
||||
}
|
||||
#else
|
||||
|
|
|
@ -857,7 +857,7 @@ static void lcd_implementation_status_screen() {
|
|||
lcd_printPGM(PSTR("Dia "));
|
||||
lcd.print(ftostr12ns(filament_width_meas));
|
||||
lcd_printPGM(PSTR(" V"));
|
||||
lcd.print(itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
||||
lcd.print(itostr3(100.0 * planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
||||
lcd.write('%');
|
||||
return;
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue