🐛 Fix, improve PWM on AVR (#23463)
This commit is contained in:
parent
0204547c09
commit
39e4310c7b
7 changed files with 131 additions and 189 deletions
|
@ -75,6 +75,8 @@ void HAL_init() {
|
|||
#if HAS_SERVO_3
|
||||
INIT_SERVO(3);
|
||||
#endif
|
||||
|
||||
init_pwm_timers(); // Init user timers to default frequency - 1000HZ
|
||||
}
|
||||
|
||||
void HAL_reboot() {
|
||||
|
|
|
@ -207,6 +207,7 @@ inline void HAL_adc_init() {
|
|||
#define strtof strtod
|
||||
|
||||
#define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment
|
||||
#define PWM_FREQUENCY 1000 // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
|
||||
|
||||
/**
|
||||
* set_pwm_frequency
|
||||
|
@ -226,3 +227,9 @@ void set_pwm_frequency(const pin_t pin, const uint16_t f_desired);
|
|||
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
|
||||
*/
|
||||
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);
|
||||
|
||||
/*
|
||||
* init_pwm_timers
|
||||
* sets the default frequency for timers 2-5 to 1000HZ
|
||||
*/
|
||||
void init_pwm_timers();
|
||||
|
|
|
@ -21,10 +21,7 @@
|
|||
*/
|
||||
#ifdef __AVR__
|
||||
|
||||
#include "../../inc/MarlinConfigPre.h"
|
||||
#include "HAL.h"
|
||||
|
||||
#if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
struct Timer {
|
||||
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
|
||||
|
@ -32,6 +29,8 @@ struct Timer {
|
|||
volatile uint16_t* ICRn; // max 1 ICR register per timer
|
||||
uint8_t n; // the timer number [0->5]
|
||||
uint8_t q; // the timer output [0->2] (A->C)
|
||||
bool isPWM; // True if pin is a "hardware timer"
|
||||
bool isProtected; // True if timer is protected
|
||||
};
|
||||
|
||||
// Macros for the Timer structure
|
||||
|
@ -53,16 +52,13 @@ struct Timer {
|
|||
#define _SET_ICRn(ICRn, V) (*(ICRn) = int(V) & 0xFFFF)
|
||||
|
||||
/**
|
||||
* get_pwm_timer
|
||||
* Get the timer information and register of the provided pin.
|
||||
* Return a Timer struct containing this information.
|
||||
* Used by set_pwm_frequency, set_pwm_duty
|
||||
* Return a Timer struct describing a pin's timer.
|
||||
*/
|
||||
Timer get_pwm_timer(const pin_t pin) {
|
||||
|
||||
uint8_t q = 0;
|
||||
|
||||
switch (digitalPinToTimer(pin)) {
|
||||
// Protect reserved timers (TIMER0 & TIMER1)
|
||||
#ifdef TCCR0A
|
||||
IF_DISABLED(AVR_AT90USB1286_FAMILY, case TIMER0A:)
|
||||
case TIMER0B:
|
||||
|
@ -71,212 +67,147 @@ Timer get_pwm_timer(const pin_t pin) {
|
|||
case TIMER1A: case TIMER1B:
|
||||
#endif
|
||||
|
||||
break;
|
||||
break; // Protect reserved timers (TIMER0 & TIMER1)
|
||||
|
||||
#if HAS_TCCR2
|
||||
case TIMER2: {
|
||||
Timer timer = {
|
||||
{ &TCCR2, nullptr, nullptr },
|
||||
{ (uint16_t*)&OCR2, nullptr, nullptr },
|
||||
nullptr,
|
||||
2, 0
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
case TIMER2:
|
||||
return Timer({ { &TCCR2, nullptr, nullptr }, { (uint16_t*)&OCR2, nullptr, nullptr }, nullptr, 2, 0, true, false });
|
||||
#elif ENABLED(USE_OCR2A_AS_TOP)
|
||||
case TIMER2A: break; // protect TIMER2A since its OCR is used by TIMER2B
|
||||
case TIMER2B:
|
||||
return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, 1, true, false });
|
||||
#elif defined(TCCR2A)
|
||||
#if ENABLED(USE_OCR2A_AS_TOP)
|
||||
case TIMER2A: break; // protect TIMER2A
|
||||
case TIMER2B: {
|
||||
Timer timer = {
|
||||
{ &TCCR2A, &TCCR2B, nullptr },
|
||||
{ (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
|
||||
nullptr,
|
||||
2, 1
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
#else
|
||||
case TIMER2B: ++q;
|
||||
case TIMER2A: {
|
||||
Timer timer = {
|
||||
{ &TCCR2A, &TCCR2B, nullptr },
|
||||
{ (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
|
||||
nullptr,
|
||||
2, q
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
#endif
|
||||
case TIMER2B: ++q; case TIMER2A:
|
||||
return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, q, true, false });
|
||||
#endif
|
||||
|
||||
#ifdef OCR3C
|
||||
case TIMER3C: ++q;
|
||||
case TIMER3B: ++q;
|
||||
case TIMER3A: {
|
||||
Timer timer = {
|
||||
{ &TCCR3A, &TCCR3B, &TCCR3C },
|
||||
{ &OCR3A, &OCR3B, &OCR3C },
|
||||
&ICR3,
|
||||
3, q
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
case TIMER3C: ++q; case TIMER3B: ++q; case TIMER3A:
|
||||
return Timer({ { &TCCR3A, &TCCR3B, &TCCR3C }, { &OCR3A, &OCR3B, &OCR3C }, &ICR3, 3, q, true, false });
|
||||
#elif defined(OCR3B)
|
||||
case TIMER3B: ++q;
|
||||
case TIMER3A: {
|
||||
Timer timer = {
|
||||
{ &TCCR3A, &TCCR3B, nullptr },
|
||||
{ &OCR3A, &OCR3B, nullptr },
|
||||
&ICR3,
|
||||
3, q
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
case TIMER3B: ++q; case TIMER3A:
|
||||
return Timer({ { &TCCR3A, &TCCR3B, nullptr }, { &OCR3A, &OCR3B, nullptr }, &ICR3, 3, q, true, false });
|
||||
#endif
|
||||
|
||||
#ifdef TCCR4A
|
||||
case TIMER4C: ++q;
|
||||
case TIMER4B: ++q;
|
||||
case TIMER4A: {
|
||||
Timer timer = {
|
||||
{ &TCCR4A, &TCCR4B, &TCCR4C },
|
||||
{ &OCR4A, &OCR4B, &OCR4C },
|
||||
&ICR4,
|
||||
4, q
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
case TIMER4C: ++q; case TIMER4B: ++q; case TIMER4A:
|
||||
return Timer({ { &TCCR4A, &TCCR4B, &TCCR4C }, { &OCR4A, &OCR4B, &OCR4C }, &ICR4, 4, q, true, false });
|
||||
#endif
|
||||
|
||||
#ifdef TCCR5A
|
||||
case TIMER5C: ++q;
|
||||
case TIMER5B: ++q;
|
||||
case TIMER5A: {
|
||||
Timer timer = {
|
||||
{ &TCCR5A, &TCCR5B, &TCCR5C },
|
||||
{ &OCR5A, &OCR5B, &OCR5C },
|
||||
&ICR5,
|
||||
5, q
|
||||
};
|
||||
return timer;
|
||||
}
|
||||
case TIMER5C: ++q; case TIMER5B: ++q; case TIMER5A:
|
||||
return Timer({ { &TCCR5A, &TCCR5B, &TCCR5C }, { &OCR5A, &OCR5B, &OCR5C }, &ICR5, 5, q, true, false });
|
||||
#endif
|
||||
}
|
||||
|
||||
Timer timer = {
|
||||
{ nullptr, nullptr, nullptr },
|
||||
{ nullptr, nullptr, nullptr },
|
||||
nullptr,
|
||||
0, 0
|
||||
};
|
||||
return timer;
|
||||
return Timer();
|
||||
}
|
||||
|
||||
void set_pwm_frequency(const pin_t pin, const uint16_t f_desired) {
|
||||
Timer timer = get_pwm_timer(pin);
|
||||
if (timer.n == 0) return; // Don't proceed if protected timer or not recognized
|
||||
uint16_t size;
|
||||
if (timer.n == 2) size = 255; else size = 65535;
|
||||
if (timer.isProtected || !timer.isPWM) return; // Don't proceed if protected timer or not recognized
|
||||
|
||||
uint16_t res = 255; // resolution (TOP value)
|
||||
uint8_t j = 0; // prescaler index
|
||||
uint8_t wgm = 1; // waveform generation mode
|
||||
const bool is_timer2 = timer.n == 2;
|
||||
const uint16_t maxtop = is_timer2 ? 0xFF : 0xFFFF;
|
||||
|
||||
uint16_t res = 0xFF; // resolution (TOP value)
|
||||
uint8_t j = CS_NONE; // prescaler index
|
||||
uint8_t wgm = WGM_PWM_PC_8; // waveform generation mode
|
||||
|
||||
// Calculating the prescaler and resolution to use to achieve closest frequency
|
||||
if (f_desired != 0) {
|
||||
int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable
|
||||
uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 };
|
||||
constexpr uint16_t prescaler[] = { 1, 8, (32), 64, (128), 256, 1024 }; // (*) are Timer 2 only
|
||||
uint16_t f = (F_CPU) / (2 * 1024 * maxtop) + 1; // Start with the lowest non-zero frequency achievable (1 or 31)
|
||||
|
||||
// loop over prescaler values
|
||||
LOOP_S_L_N(i, 1, 8) {
|
||||
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255;
|
||||
if (timer.n == 2) {
|
||||
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
|
||||
#if ENABLED(USE_OCR2A_AS_TOP)
|
||||
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
|
||||
res_temp_fast = rtf - 1;
|
||||
res_temp_phase_correct = rtf / 2;
|
||||
LOOP_L_N(i, COUNT(prescaler)) { // Loop through all prescaler values
|
||||
const uint16_t p = prescaler[i];
|
||||
uint16_t res_fast_temp, res_pc_temp;
|
||||
if (is_timer2) {
|
||||
#if ENABLED(USE_OCR2A_AS_TOP) // No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
|
||||
const uint16_t rft = (F_CPU) / (p * f_desired);
|
||||
res_fast_temp = rft - 1;
|
||||
res_pc_temp = rft / 2;
|
||||
#else
|
||||
res_fast_temp = res_pc_temp = maxtop;
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// Skip TIMER2 specific prescalers when not TIMER2
|
||||
if (i == 3 || i == 5) continue;
|
||||
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
|
||||
res_temp_fast = rtf - 1;
|
||||
res_temp_phase_correct = rtf / 2;
|
||||
if (p == 32 || p == 128) continue; // Skip TIMER2 specific prescalers when not TIMER2
|
||||
const uint16_t rft = (F_CPU) / (p * f_desired);
|
||||
res_fast_temp = rft - 1;
|
||||
res_pc_temp = rft / 2;
|
||||
}
|
||||
|
||||
LIMIT(res_temp_fast, 1U, size);
|
||||
LIMIT(res_temp_phase_correct, 1U, size);
|
||||
LIMIT(res_fast_temp, 1U, maxtop);
|
||||
LIMIT(res_pc_temp, 1U, maxtop);
|
||||
|
||||
// Calculate frequencies of test prescaler and resolution values
|
||||
const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)),
|
||||
f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct),
|
||||
f_diff = ABS(f - f_desired),
|
||||
f_fast_diff = ABS(f_temp_fast - f_desired),
|
||||
f_phase_diff = ABS(f_temp_phase_correct - f_desired);
|
||||
const uint32_t f_diff = _MAX(f, f_desired) - _MIN(f, f_desired),
|
||||
f_fast_temp = (F_CPU) / (p * (1 + res_fast_temp)),
|
||||
f_fast_diff = _MAX(f_fast_temp, f_desired) - _MIN(f_fast_temp, f_desired),
|
||||
f_pc_temp = (F_CPU) / (2 * p * res_pc_temp),
|
||||
f_pc_diff = _MAX(f_pc_temp, f_desired) - _MIN(f_pc_temp, f_desired);
|
||||
|
||||
// If FAST values are closest to desired f
|
||||
if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) {
|
||||
// Remember this combination
|
||||
f = f_temp_fast;
|
||||
res = res_temp_fast;
|
||||
j = i;
|
||||
if (f_fast_diff < f_diff && f_fast_diff <= f_pc_diff) { // FAST values are closest to desired f
|
||||
// Set the Wave Generation Mode to FAST PWM
|
||||
if (timer.n == 2)
|
||||
wgm = TERN(USE_OCR2A_AS_TOP, WGM2_FAST_PWM_OCR2A, WGM2_FAST_PWM);
|
||||
else
|
||||
wgm = WGM_FAST_PWM_ICRn;
|
||||
wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_FAST_PWM_OCR2A, WGM2_FAST_PWM)) : uint8_t(WGM_FAST_PWM_ICRn);
|
||||
// Remember this combination
|
||||
f = f_fast_temp; res = res_fast_temp; j = i + 1;
|
||||
}
|
||||
// If PHASE CORRECT values are closes to desired f
|
||||
else if (f_phase_diff < f_diff) {
|
||||
f = f_temp_phase_correct;
|
||||
res = res_temp_phase_correct;
|
||||
j = i;
|
||||
else if (f_pc_diff < f_diff) { // PHASE CORRECT values are closes to desired f
|
||||
// Set the Wave Generation Mode to PWM PHASE CORRECT
|
||||
if (timer.n == 2)
|
||||
wgm = TERN(USE_OCR2A_AS_TOP, WGM2_PWM_PC_OCR2A, WGM2_FAST_PWM);
|
||||
else
|
||||
wgm = WGM_PWM_PC_ICRn;
|
||||
wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_PWM_PC_OCR2A, WGM2_PWM_PC)) : uint8_t(WGM_PWM_PC_ICRn);
|
||||
f = f_pc_temp; res = res_pc_temp; j = i + 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
_SET_WGMnQ(timer.TCCRnQ, wgm);
|
||||
_SET_CSn(timer.TCCRnQ, j);
|
||||
|
||||
if (timer.n == 2) {
|
||||
TERN_(USE_OCR2A_AS_TOP, _SET_OCRnQ(timer.OCRnQ, 0, res)); // Set OCR2A value (TOP) = res
|
||||
if (is_timer2) {
|
||||
TERN_(USE_OCR2A_AS_TOP, _SET_OCRnQ(timer.OCRnQ, 0, res)); // Set OCR2A value (TOP) = res
|
||||
}
|
||||
else
|
||||
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
|
||||
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
|
||||
}
|
||||
|
||||
#endif // NEEDS_HARDWARE_PWM
|
||||
|
||||
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
|
||||
#if NEEDS_HARDWARE_PWM
|
||||
|
||||
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
|
||||
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
|
||||
if (v == 0)
|
||||
digitalWrite(pin, invert);
|
||||
else if (v == v_size)
|
||||
digitalWrite(pin, !invert);
|
||||
else {
|
||||
Timer timer = get_pwm_timer(pin);
|
||||
if (timer.n == 0) return; // Don't proceed if protected timer or not recognized
|
||||
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
|
||||
_SET_COMnQ(timer.TCCRnQ, timer.q TERN_(HAS_TCCR2, + (timer.q == 2)), COM_CLEAR_SET + invert); // COM20 is on bit 4 of TCCR2, so +1 for q==2
|
||||
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
|
||||
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
|
||||
if (v == 0)
|
||||
digitalWrite(pin, invert);
|
||||
else if (v == v_size)
|
||||
digitalWrite(pin, !invert);
|
||||
else {
|
||||
Timer timer = get_pwm_timer(pin);
|
||||
if (timer.isProtected) return; // Leave protected timer unchanged
|
||||
if (timer.isPWM) {
|
||||
_SET_COMnQ(timer.TCCRnQ, SUM_TERN(HAS_TCCR2, timer.q, timer.q == 2), COM_CLEAR_SET + invert); // COM20 is on bit 4 of TCCR2, so +1 for q==2
|
||||
const uint16_t top = timer.n == 2 ? TERN(USE_OCR2A_AS_TOP, *timer.OCRnQ[0], 255) : *timer.ICRn;
|
||||
_SET_OCRnQ(timer.OCRnQ, timer.q, uint16_t(uint32_t(v) * top / v_size)); // Scale 8/16-bit v to top value
|
||||
}
|
||||
else
|
||||
digitalWrite(pin, v < 128 ? LOW : HIGH);
|
||||
}
|
||||
}
|
||||
|
||||
#else
|
||||
void init_pwm_timers() {
|
||||
// Init some timer frequencies to a default 1KHz
|
||||
const pin_t pwm_pin[] = {
|
||||
#ifdef __AVR_ATmega2560__
|
||||
10, 5, 6, 46
|
||||
#elif defined(__AVR_ATmega1280__)
|
||||
12, 31
|
||||
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega1284__)
|
||||
15, 6
|
||||
#elif defined(__AVR_AT90USB1286__) || defined(__AVR_mega64) || defined(__AVR_mega128)
|
||||
16, 24
|
||||
#endif
|
||||
};
|
||||
|
||||
analogWrite(pin, v);
|
||||
UNUSED(v_size);
|
||||
UNUSED(invert);
|
||||
|
||||
#endif
|
||||
LOOP_L_N(i, COUNT(pwm_pin))
|
||||
set_pwm_frequency(pwm_pin[i], 1000);
|
||||
}
|
||||
|
||||
#endif // __AVR__
|
||||
|
|
|
@ -257,7 +257,7 @@ uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb
|
|||
const float pwm_top = round(count); // Get the rounded count
|
||||
|
||||
ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP
|
||||
OCR5A = pwm_top * ABS(dca); // Update and scale DCs
|
||||
OCR5A = pwm_top * ABS(dca); // Update and scale DCs
|
||||
OCR5B = pwm_top * ABS(dcb);
|
||||
OCR5C = pwm_top * ABS(dcc);
|
||||
_SET_COM(5, A, dca ? (dca < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); // Set compare modes
|
||||
|
|
|
@ -677,11 +677,6 @@
|
|||
#define CUTTER_UNIT_IS(V) (_CUTTER_POWER(CUTTER_POWER_UNIT) == _CUTTER_POWER(V))
|
||||
#endif
|
||||
|
||||
// Add features that need hardware PWM here
|
||||
#if ANY(FAST_PWM_FAN, SPINDLE_LASER_USE_PWM)
|
||||
#define NEEDS_HARDWARE_PWM 1
|
||||
#endif
|
||||
|
||||
#if !defined(__AVR__) || !defined(USBCON)
|
||||
// Define constants and variables for buffering serial data.
|
||||
// Use only 0 or powers of 2 greater than 1
|
||||
|
|
|
@ -3257,33 +3257,33 @@ void Stepper::report_positions() {
|
|||
|
||||
#elif HAS_MOTOR_CURRENT_PWM
|
||||
|
||||
#define _WRITE_CURRENT_PWM(P) set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
|
||||
#define _WRITE_CURRENT_PWM_DUTY(P) set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
|
||||
switch (driver) {
|
||||
case 0:
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
|
||||
_WRITE_CURRENT_PWM(X);
|
||||
_WRITE_CURRENT_PWM_DUTY(X);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
|
||||
_WRITE_CURRENT_PWM(Y);
|
||||
_WRITE_CURRENT_PWM_DUTY(Y);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
||||
_WRITE_CURRENT_PWM(XY);
|
||||
_WRITE_CURRENT_PWM_DUTY(XY);
|
||||
#endif
|
||||
break;
|
||||
case 1:
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
||||
_WRITE_CURRENT_PWM(Z);
|
||||
_WRITE_CURRENT_PWM_DUTY(Z);
|
||||
#endif
|
||||
break;
|
||||
case 2:
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
||||
_WRITE_CURRENT_PWM(E);
|
||||
_WRITE_CURRENT_PWM_DUTY(E);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
|
||||
_WRITE_CURRENT_PWM(E0);
|
||||
_WRITE_CURRENT_PWM_DUTY(E0);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
|
||||
_WRITE_CURRENT_PWM(E1);
|
||||
_WRITE_CURRENT_PWM_DUTY(E1);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
@ -3302,34 +3302,37 @@ void Stepper::report_positions() {
|
|||
|
||||
#elif HAS_MOTOR_CURRENT_PWM
|
||||
|
||||
#ifdef __SAM3X8E__
|
||||
#define _RESET_CURRENT_PWM_FREQ(P) NOOP
|
||||
#else
|
||||
#define _RESET_CURRENT_PWM_FREQ(P) set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
|
||||
#endif
|
||||
#define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
|
||||
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_X_PIN);
|
||||
INIT_CURRENT_PWM(X);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_Y_PIN);
|
||||
INIT_CURRENT_PWM(Y);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_XY_PIN);
|
||||
INIT_CURRENT_PWM(XY);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_Z_PIN);
|
||||
INIT_CURRENT_PWM(Z);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_E_PIN);
|
||||
INIT_CURRENT_PWM(E);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_E0_PIN);
|
||||
INIT_CURRENT_PWM(E0);
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
|
||||
SET_PWM(MOTOR_CURRENT_PWM_E1_PIN);
|
||||
INIT_CURRENT_PWM(E1);
|
||||
#endif
|
||||
|
||||
refresh_motor_power();
|
||||
|
||||
// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
|
||||
#ifdef __AVR__
|
||||
SET_CS5(PRESCALER_1);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
|
|
|
@ -317,6 +317,10 @@ class Stepper {
|
|||
#ifndef PWM_MOTOR_CURRENT
|
||||
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
|
||||
#endif
|
||||
#ifndef MOTOR_CURRENT_PWM_FREQUENCY
|
||||
#define MOTOR_CURRENT_PWM_FREQUENCY 31400
|
||||
#endif
|
||||
|
||||
#define MOTOR_CURRENT_COUNT LINEAR_AXES
|
||||
#elif HAS_MOTOR_CURRENT_SPI
|
||||
static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;
|
||||
|
|
Loading…
Reference in a new issue