diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h
index 1e65d1b4eb..54fbd49011 100644
--- a/Marlin/Marlin.h
+++ b/Marlin/Marlin.h
@@ -302,9 +302,9 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];
                delta_diagonal_rod,
                delta_calibration_radius,
                delta_segments_per_second,
-               delta_tower_angle_trim[2],
+               delta_tower_angle_trim[ABC],
                delta_clip_start_height;
-  void recalc_delta_settings(float radius, float diagonal_rod);
+  void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]);
 #elif IS_SCARA
   void forward_kinematics_SCARA(const float &a, const float &b);
 #endif
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 973d4e1e2f..a5484a3b15 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -596,7 +596,7 @@ static uint8_t target_extruder;
 
   // Initialized by settings.load()
   float delta_radius,
-        delta_tower_angle_trim[2],
+        delta_tower_angle_trim[ABC],
         delta_tower[ABC][2],
         delta_diagonal_rod,
         delta_calibration_radius,
@@ -3093,7 +3093,7 @@ static void homeaxis(const AxisEnum axis) {
       #if ENABLED(DEBUG_LEVELING_FEATURE)
         if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
       #endif
-      do_homing_move(axis, endstop_adj[axis] - 0.1);
+      do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
     }
 
   #else
@@ -5333,6 +5333,7 @@ void home_all_axes() { gcode_G28(true); }
      *
      *   Pn  Number of probe points:
      *
+     *      P0     No probe. Normalize only.
      *      P1     Probe center and set height only.
      *      P2     Probe center and towers. Set height, endstops, and delta radius.
      *      P3     Probe all positions: center, towers and opposite towers. Set all.
@@ -5361,7 +5362,7 @@ void home_all_axes() { gcode_G28(true); }
       SERIAL_PROTOCOL_F(f, 2);
     }
 
-    inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
+    inline void print_G33_settings(const bool end_stops, const bool tower_angles){
       SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
       if (end_stops) {
         print_signed_float(PSTR("  Ex"), endstop_adj[A_AXIS]);
@@ -5374,7 +5375,8 @@ void home_all_axes() { gcode_G28(true); }
         SERIAL_PROTOCOLPGM(".Tower angle :  ");
         print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
         print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
-        SERIAL_PROTOCOLLNPGM("  Tz:+0.00");
+        print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
+        SERIAL_EOL();
       }
     }
 
@@ -5396,8 +5398,8 @@ void home_all_axes() { gcode_G28(true); }
     inline void gcode_G33() {
 
       const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
-      if (!WITHIN(probe_points, 1, 7)) {
-        SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
+      if (!WITHIN(probe_points, 0, 7)) {
+        SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
         return;
       }
 
@@ -5421,11 +5423,12 @@ void home_all_axes() { gcode_G28(true); }
 
       const bool towers_set           = parser.boolval('T', true),
                  stow_after_each      = parser.boolval('E'),
+                 _0p_calibration      = probe_points == 0,
                  _1p_calibration      = probe_points == 1,
                  _4p_calibration      = probe_points == 2,
                  _4p_towers_points    = _4p_calibration && towers_set,
                  _4p_opposite_points  = _4p_calibration && !towers_set,
-                 _7p_calibration      = probe_points >= 3,
+                 _7p_calibration      = probe_points >= 3 || _0p_calibration,
                  _7p_half_circle      = probe_points == 3,
                  _7p_double_circle    = probe_points == 5,
                  _7p_triple_circle    = probe_points == 6,
@@ -5440,17 +5443,20 @@ void home_all_axes() { gcode_G28(true); }
             zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
             zero_std_dev_old = zero_std_dev,
             zero_std_dev_min = zero_std_dev,
-            e_old[XYZ] = {
+            e_old[ABC] = {
               endstop_adj[A_AXIS],
               endstop_adj[B_AXIS],
               endstop_adj[C_AXIS]
             },
             dr_old = delta_radius,
             zh_old = home_offset[Z_AXIS],
-            alpha_old = delta_tower_angle_trim[A_AXIS],
-            beta_old = delta_tower_angle_trim[B_AXIS];
+            ta_old[ABC] = {
+              delta_tower_angle_trim[A_AXIS],
+              delta_tower_angle_trim[B_AXIS],
+              delta_tower_angle_trim[C_AXIS]
+            };
 
-      if (!_1p_calibration) {  // test if the outer radius is reachable
+      if (!_1p_calibration && !_0p_calibration) {  // test if the outer radius is reachable
         const float circles = (_7p_quadruple_circle ? 1.5 :
                                _7p_triple_circle    ? 1.0 :
                                _7p_double_circle    ? 0.5 : 0),
@@ -5480,9 +5486,11 @@ void home_all_axes() { gcode_G28(true); }
 
       setup_for_endstop_or_probe_move();
       endstops.enable(true);
-      if (!home_delta())
-        return;
-      endstops.not_homing();
+      if (!_0p_calibration) {
+        if (!home_delta())
+          return;
+        endstops.not_homing();
+      }
 
       // print settings
 
@@ -5495,9 +5503,11 @@ void home_all_axes() { gcode_G28(true); }
       print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
 
       #if DISABLED(PROBE_MANUALLY)
-        const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
-        if (isnan(measured_z)) return G33_CLEANUP();
-        home_offset[Z_AXIS] -= measured_z;
+        if (!_0p_calibration) {
+          const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
+          if (isnan(measured_z)) return G33_CLEANUP();
+          home_offset[Z_AXIS] -= measured_z;
+        }
       #endif
 
       do {
@@ -5505,58 +5515,60 @@ void home_all_axes() { gcode_G28(true); }
         float z_at_pt[13] = { 0.0 };
 
         test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
-
+        if (_0p_calibration) test_precision = 0.00;
         iterations++;
 
         // Probe the points
 
-        if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
-          #if ENABLED(PROBE_MANUALLY)
-            z_at_pt[0] += lcd_probe_pt(0, 0);
-          #else
-            z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
-            if (isnan(z_at_pt[0])) return G33_CLEANUP();
-          #endif
-        }
-        if (_7p_calibration) { // probe extra center points
-          for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
-            const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
+        if (!_0p_calibration){
+          if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
             #if ENABLED(PROBE_MANUALLY)
-              z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
+              z_at_pt[0] += lcd_probe_pt(0, 0);
             #else
-              z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
+              z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
               if (isnan(z_at_pt[0])) return G33_CLEANUP();
             #endif
           }
-          z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
-        }
-        if (!_1p_calibration) {  // probe the radius
-          bool zig_zag = true;
-          const uint8_t start = _4p_opposite_points ? 3 : 1,
-                         step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
-          for (uint8_t axis = start; axis < 13; axis += step) {
-            const float zigadd = (zig_zag ? 0.5 : 0.0),
-                        offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
-                                         _7p_triple_circle    ? zigadd + 0.5 :
-                                         _7p_double_circle    ? zigadd : 0;
-            for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
-              const float a = RADIANS(180 + 30 * axis),
-                          r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
+          if (_7p_calibration) { // probe extra center points
+            for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
+              const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
               #if ENABLED(PROBE_MANUALLY)
-                z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
+                z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
               #else
-                z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
-                if (isnan(z_at_pt[axis])) return G33_CLEANUP();
+                z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
+                if (isnan(z_at_pt[0])) return G33_CLEANUP();
               #endif
             }
-            zig_zag = !zig_zag;
-            z_at_pt[axis] /= (2 * offset_circles + 1);
+            z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
           }
-        }
-        if (_7p_intermed_points) // average intermediates to tower and opposites
-          for (uint8_t axis = 1; axis < 13; axis += 2)
-            z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
+          if (!_1p_calibration) {  // probe the radius
+            bool zig_zag = true;
+            const uint8_t start = _4p_opposite_points ? 3 : 1,
+                           step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
+            for (uint8_t axis = start; axis < 13; axis += step) {
+              const float zigadd = (zig_zag ? 0.5 : 0.0),
+                          offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
+                                           _7p_triple_circle    ? zigadd + 0.5 :
+                                           _7p_double_circle    ? zigadd : 0;
+              for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
+                const float a = RADIANS(180 + 30 * axis),
+                            r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
+                #if ENABLED(PROBE_MANUALLY)
+                  z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
+                #else
+                  z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
+                  if (isnan(z_at_pt[axis])) return G33_CLEANUP();
+                #endif
+              }
+              zig_zag = !zig_zag;
+              z_at_pt[axis] /= (2 * offset_circles + 1);
+            }
+          }
+          if (_7p_intermed_points) // average intermediates to tower and opposites
+            for (uint8_t axis = 1; axis < 13; axis += 2)
+              z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
 
+        }
         float S1 = z_at_pt[0],
               S2 = sq(z_at_pt[0]);
         int16_t N = 1;
@@ -5576,27 +5588,22 @@ void home_all_axes() { gcode_G28(true); }
             COPY(e_old, endstop_adj);
             dr_old = delta_radius;
             zh_old = home_offset[Z_AXIS];
-            alpha_old = delta_tower_angle_trim[A_AXIS];
-            beta_old = delta_tower_angle_trim[B_AXIS];
+            COPY(ta_old, delta_tower_angle_trim);
           }
 
-          float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
-          const float r_diff = delta_radius - delta_calibration_radius,
-                      h_factor = 1.00 + r_diff * 0.001,                          //1.02 for r_diff = 20mm
-                      r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),  //2.25 for r_diff = 20mm
-                      a_factor = 100.0 / delta_calibration_radius;               //1.25 for cal_rd = 80mm
+          float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
+          float r_diff = delta_radius - delta_calibration_radius,
+                h_factor = 1.00 + r_diff * 0.001,                            //1.02 for r_diff = 20mm
+                r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)),    //2.25 for r_diff = 20mm
+                a_factor = 66.66 / delta_calibration_radius;                 //0.83 for cal_rd = 80mm
 
           #define ZP(N,I) ((N) * z_at_pt[I])
-          #define Z1000(I) ZP(1.00, I)
-          #define Z1050(I) ZP(h_factor, I)
-          #define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
-          #define Z0350(I) ZP(h_factor / 3.00, I)
-          #define Z0175(I) ZP(h_factor / 6.00, I)
-          #define Z2250(I) ZP(r_factor, I)
-          #define Z0750(I) ZP(r_factor / 3.00, I)
-          #define Z0375(I) ZP(r_factor / 6.00, I)
-          #define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
-          #define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
+          #define Z6(I) ZP(6, I)
+          #define Z4(I) ZP(4, I)
+          #define Z2(I) ZP(2, I)
+          #define Z1(I) ZP(1, I)
+          h_factor /= 6.00;
+          r_factor /= 6.00;
 
           #if ENABLED(PROBE_MANUALLY)
             test_precision = 0.00; // forced end
@@ -5605,58 +5612,61 @@ void home_all_axes() { gcode_G28(true); }
           switch (probe_points) {
             case 1:
               test_precision = 0.00; // forced end
-              LOOP_XYZ(i) e_delta[i] = Z1000(0);
+              LOOP_XYZ(axis) e_delta[axis] = Z1(0);
               break;
 
             case 2:
               if (towers_set) {
-                e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
-                e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
-                e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
-                r_delta         = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
+                e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
+                e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
+                e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
+                r_delta         = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
               }
               else {
-                e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
-                e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
-                e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
-                r_delta         = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
+                e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
+                e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
+                e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
+                r_delta         = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
               }
               break;
 
             default:
-              e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
-              e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
-              e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
-              r_delta         = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
+              e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
+              e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
+              e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
+              r_delta         = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
 
               if (towers_set) {
-                t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
-                t_beta  = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
+                t_delta[A_AXIS] = (       - Z2(5) + Z1(9)         - Z2(11) + Z1(3)) * a_factor;
+                t_delta[B_AXIS] = ( Z2(1)         - Z1(9) + Z2(7)          - Z1(3)) * a_factor;
+                t_delta[C_AXIS] = (-Z2(1) + Z1(5)         - Z2(7) + Z1(11)        ) * a_factor;
               }
               break;
           }
 
           LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
           delta_radius += r_delta;
-          delta_tower_angle_trim[A_AXIS] += t_alpha;
-          delta_tower_angle_trim[B_AXIS] += t_beta;
-
-          // adjust delta_height and endstops by the max amount
-          const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
-          home_offset[Z_AXIS] -= z_temp;
-          LOOP_XYZ(i) endstop_adj[i] -= z_temp;
-
-          recalc_delta_settings(delta_radius, delta_diagonal_rod);
+          LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
         }
         else if (zero_std_dev >= test_precision) {   // step one back
           COPY(endstop_adj, e_old);
           delta_radius = dr_old;
           home_offset[Z_AXIS] = zh_old;
-          delta_tower_angle_trim[A_AXIS] = alpha_old;
-          delta_tower_angle_trim[B_AXIS] = beta_old;
-
-          recalc_delta_settings(delta_radius, delta_diagonal_rod);
+          COPY(delta_tower_angle_trim, ta_old);
         }
+
+        if (verbose_level != 0) {                                    // !dry run
+          // normalise angles to least squares
+          float a_sum = 0.0;
+          LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
+          LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
+          
+          // adjust delta_height and endstops by the max amount
+          const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
+          home_offset[Z_AXIS] -= z_temp;
+          LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
+        }
+        recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
         NOMORE(zero_std_dev_min, zero_std_dev);
 
         // print report
@@ -8538,11 +8548,8 @@ inline void gcode_M205() {
     if (parser.seen('B')) delta_calibration_radius       = parser.value_float();
     if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
     if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
-    if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
-      delta_tower_angle_trim[A_AXIS] -= parser.value_float();
-      delta_tower_angle_trim[B_AXIS] -= parser.value_float();
-    }
-    recalc_delta_settings(delta_radius, delta_diagonal_rod);
+    if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
+    recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
   }
   /**
    * M666: Set delta endstop adjustment
@@ -8555,7 +8562,8 @@ inline void gcode_M205() {
     #endif
     LOOP_XYZ(i) {
       if (parser.seen(axis_codes[i])) {
-        endstop_adj[i] = parser.value_linear_units();
+        if (parser.value_linear_units() * Z_HOME_DIR <= 0)         
+          endstop_adj[i] = parser.value_linear_units();
         #if ENABLED(DEBUG_LEVELING_FEATURE)
           if (DEBUGGING(LEVELING)) {
             SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
@@ -8569,10 +8577,6 @@ inline void gcode_M205() {
         SERIAL_ECHOLNPGM("<<< gcode_M666");
       }
     #endif
-    // normalize endstops so all are <=0; set the residue to delta height
-    const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
-    home_offset[Z_AXIS] -= z_temp;
-    LOOP_XYZ(i) endstop_adj[i] -= z_temp;
   }
 
 #elif IS_SCARA
@@ -11830,15 +11834,15 @@ void ok_to_send() {
    * Recalculate factors used for delta kinematics whenever
    * settings have been changed (e.g., by M665).
    */
-  void recalc_delta_settings(float radius, float diagonal_rod) {
+  void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
     const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
                 drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
-    delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
-    delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
-    delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
-    delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
-    delta_tower[C_AXIS][X_AXIS] = 0.0; // back middle tower
-    delta_tower[C_AXIS][Y_AXIS] = (radius + trt[C_AXIS]);
+    delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
+    delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
+    delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
+    delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
+    delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
+    delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
     delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
     delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
     delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp
index 5ebbe85fb5..4fa9db910d 100644
--- a/Marlin/configuration_store.cpp
+++ b/Marlin/configuration_store.cpp
@@ -36,13 +36,13 @@
  *
  */
 
-#define EEPROM_VERSION "V40"
+#define EEPROM_VERSION "V41"
 
 // Change EEPROM version if these are changed:
 #define EEPROM_OFFSET 100
 
 /**
- * V39 EEPROM Layout:
+ * V41 EEPROM Layout:
  *
  *  100  Version                                    (char x4)
  *  104  EEPROM CRC16                               (uint16_t)
@@ -100,7 +100,7 @@
  *  372  M665 B    delta_calibration_radius         (float)
  *  376  M665 X    delta_tower_angle_trim[A]        (float)
  *  380  M665 Y    delta_tower_angle_trim[B]        (float)
- *  ---  M665 Z    delta_tower_angle_trim[C]        (float) is always 0.0
+ *  384  M665 Z    delta_tower_angle_trim[C]        (float)
  *
  * Z_DUAL_ENDSTOPS:                                 48 bytes
  *  348  M666 Z    z_endstop_adj                    (float)
@@ -215,7 +215,7 @@ void MarlinSettings::postprocess() {
   // Make sure delta kinematics are updated before refreshing the
   // planner position so the stepper counts will be set correctly.
   #if ENABLED(DELTA)
-    recalc_delta_settings(delta_radius, delta_diagonal_rod);
+    recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
   #endif
 
   // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
@@ -448,16 +448,16 @@ void MarlinSettings::postprocess() {
       EEPROM_WRITE(storage_slot);
     #endif // AUTO_BED_LEVELING_UBL
 
-    // 9 floats for DELTA / Z_DUAL_ENDSTOPS
+    // 10 floats for DELTA / Z_DUAL_ENDSTOPS
     #if ENABLED(DELTA)
       EEPROM_WRITE(endstop_adj);               // 3 floats
       EEPROM_WRITE(delta_radius);              // 1 float
       EEPROM_WRITE(delta_diagonal_rod);        // 1 float
       EEPROM_WRITE(delta_segments_per_second); // 1 float
       EEPROM_WRITE(delta_calibration_radius);  // 1 float
-      EEPROM_WRITE(delta_tower_angle_trim);    // 2 floats
+      EEPROM_WRITE(delta_tower_angle_trim);    // 3 floats
       dummy = 0.0f;
-      for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
+      for (uint8_t q = 2; q--;) EEPROM_WRITE(dummy);
     #elif ENABLED(Z_DUAL_ENDSTOPS)
       EEPROM_WRITE(z_endstop_adj);             // 1 float
       dummy = 0.0f;
@@ -844,9 +844,9 @@ void MarlinSettings::postprocess() {
         EEPROM_READ(delta_diagonal_rod);        // 1 float
         EEPROM_READ(delta_segments_per_second); // 1 float
         EEPROM_READ(delta_calibration_radius);  // 1 float
-        EEPROM_READ(delta_tower_angle_trim);    // 2 floats
+        EEPROM_READ(delta_tower_angle_trim);    // 3 floats
         dummy = 0.0f;
-        for (uint8_t q=3; q--;) EEPROM_READ(dummy);
+        for (uint8_t q=2; q--;) EEPROM_READ(dummy);
       #elif ENABLED(Z_DUAL_ENDSTOPS)
         EEPROM_READ(z_endstop_adj);
         dummy = 0.0f;
@@ -1233,8 +1233,7 @@ void MarlinSettings::reset() {
     delta_diagonal_rod = DELTA_DIAGONAL_ROD;
     delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
     delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
-    delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
-    delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
+    COPY(delta_tower_angle_trim, dta);
     home_offset[Z_AXIS] = 0;
 
   #elif ENABLED(Z_DUAL_ENDSTOPS)
@@ -1657,7 +1656,7 @@ void MarlinSettings::reset() {
       SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
       SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
       SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
-      SERIAL_ECHOPAIR(" Z", 0.00);
+      SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
       SERIAL_EOL();
     #elif ENABLED(Z_DUAL_ENDSTOPS)
       if (!forReplay) {
diff --git a/Marlin/ubl_motion.cpp b/Marlin/ubl_motion.cpp
index be5fe3c200..b9f85301ef 100644
--- a/Marlin/ubl_motion.cpp
+++ b/Marlin/ubl_motion.cpp
@@ -44,7 +44,7 @@
                endstop_adj[ABC];
 
   extern float delta_radius,
-               delta_tower_angle_trim[2],
+               delta_tower_angle_trim[ABC],
                delta_tower[ABC][2],
                delta_diagonal_rod,
                delta_calibration_radius,
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index b9206bf53a..d6de271e5a 100644
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -2703,7 +2703,7 @@ void kill_screen(const char* lcd_msg) {
       MENU_ITEM_EDIT(float52, MSG_DELTA_RADIUS, &delta_radius, DELTA_RADIUS - 5.0, DELTA_RADIUS + 5.0);
       MENU_ITEM_EDIT(float43, "Tx", &delta_tower_angle_trim[A_AXIS], -5.0, 5.0);
       MENU_ITEM_EDIT(float43, "Ty", &delta_tower_angle_trim[B_AXIS], -5.0, 5.0);
-      MENU_ITEM_EDIT(float43, "Tz", &Tz, -5.0, 5.0);
+      MENU_ITEM_EDIT(float43, "Tz", &delta_tower_angle_trim[C_AXIS], -5.0, 5.0);
       END_MENU();
     }