Add Bézier Jerk Control option

This commit is contained in:
Scott Lahteine 2018-05-08 03:42:45 -05:00
parent bb352f9836
commit 7ee1ab4fd3
7 changed files with 1486 additions and 113 deletions

View file

@ -118,7 +118,7 @@ script:
# Add a Sled Z Probe, use UBL Cartesian moves, use Japanese language
#
- opt_set LANGUAGE kana_utf8
- opt_enable Z_PROBE_SLED SKEW_CORRECTION SKEW_CORRECTION_FOR_Z SKEW_CORRECTION_GCODE
- opt_enable Z_PROBE_SLED SKEW_CORRECTION SKEW_CORRECTION_FOR_Z SKEW_CORRECTION_GCODE BEZIER_JERK_CONTROL
- opt_disable SEGMENT_LEVELED_MOVES
- opt_enable_adv BABYSTEP_ZPROBE_OFFSET DOUBLECLICK_FOR_Z_BABYSTEPPING
- build_marlin

View file

@ -594,6 +594,17 @@
#define DEFAULT_ZJERK 0.3
#define DEFAULT_EJERK 5.0
/**
* Realtime Jerk Control
*
* This option eliminates vibration during printing by fitting a Bézier
* curve to move acceleration, producing much smoother direction changes.
* Because this is computationally-intensive, a 32-bit MCU is required.
*
* See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained
*/
//#define BEZIER_JERK_CONTROL
//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================

View file

@ -117,6 +117,9 @@
#define STRINGIFY_(M) #M
#define STRINGIFY(M) STRINGIFY_(M)
#define A(CODE) " " CODE "\n\t"
#define L(CODE) CODE ":\n\t"
// Macros for bit masks
#undef _BV
#define _BV(b) (1<<(b))

View file

@ -204,6 +204,514 @@ void Planner::init() {
clear_block_buffer();
}
#if ENABLED(BEZIER_JERK_CONTROL)
// This routine, for AVR, returns 0x1000000 / d, but trying to get the inverse as
// fast as possible. A fast converging iterative Newton-Raphson method is able to
// reach full precision in just 1 iteration, and takes 211 cycles (worst case, mean
// case is less, up to 30 cycles for small divisors), instead of the 500 cycles a
// normal division would take.
//
// Inspired by the following page,
// https://stackoverflow.com/questions/27801397/newton-raphson-division-with-big-integers
//
// Suppose we want to calculate
// floor(2 ^ k / B) where B is a positive integer
// Then
// B must be <= 2^k, otherwise, the quotient is 0.
//
// The Newton - Raphson iteration for x = B / 2 ^ k yields:
// q[n + 1] = q[n] * (2 - q[n] * B / 2 ^ k)
//
// We can rearrange it as:
// q[n + 1] = q[n] * (2 ^ (k + 1) - q[n] * B) >> k
//
// Each iteration of this kind requires only integer multiplications
// and bit shifts.
// Does it converge to floor(2 ^ k / B) ?: Not necessarily, but, in
// the worst case, it eventually alternates between floor(2 ^ k / B)
// and ceiling(2 ^ k / B)).
// So we can use some not-so-clever test to see if we are in this
// case, and extract floor(2 ^ k / B).
// Lastly, a simple but important optimization for this approach is to
// truncate multiplications (i.e.calculate only the higher bits of the
// product) in the early iterations of the Newton - Raphson method.The
// reason to do so, is that the results of the early iterations are far
// from the quotient, and it doesn't matter to perform them inaccurately.
// Finally, we should pick a good starting value for x. Knowing how many
// digits the divisor has, we can estimate it:
//
// 2^k / x = 2 ^ log2(2^k / x)
// 2^k / x = 2 ^(log2(2^k)-log2(x))
// 2^k / x = 2 ^(k*log2(2)-log2(x))
// 2^k / x = 2 ^ (k-log2(x))
// 2^k / x >= 2 ^ (k-floor(log2(x)))
// floor(log2(x)) simply is the index of the most significant bit set.
//
// If we could improve this estimation even further, then the number of
// iterations can be dropped quite a bit, thus saving valuable execution time.
// The paper "Software Integer Division" by Thomas L.Rodeheffer, Microsoft
// Research, Silicon Valley,August 26, 2008, that is available at
// https://www.microsoft.com/en-us/research/wp-content/uploads/2008/08/tr-2008-141.pdf
// suggests , for its integer division algorithm, that using a table to supply the
// first 8 bits of precision, and due to the quadratic convergence nature of the
// Newton-Raphon iteration, then just 2 iterations should be enough to get
// maximum precision of the division.
// If we precompute values of inverses for small denominator values, then
// just one Newton-Raphson iteration is enough to reach full precision
// We will use the top 9 bits of the denominator as index.
//
// The AVR assembly function is implementing the following C code, included
// here as reference:
//
// uint32_t get_period_inverse(uint32_t d) {
// static const uint8_t inv_tab[256] = {
// 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
// 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
// 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
// 175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
// 153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
// 134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
// 116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
// 100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
// 85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
// 71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
// 59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
// 47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
// 36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
// 26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
// 17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
// 8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
// };
//
// // For small denominators, it is cheaper to directly store the result,
// // because those denominators would require 2 Newton-Raphson iterations
// // to converge to the required result precision. For bigger ones, just
// // ONE Newton-Raphson iteration is enough to get maximum precision!
// static const uint32_t small_inv_tab[111] PROGMEM = {
// 16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
// 1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
// 524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
// 349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
// 262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
// 209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
// 174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
// };
//
// // For small divisors, it is best to directly retrieve the results
// if (d <= 110)
// return pgm_read_dword(&small_inv_tab[d]);
//
// // Compute initial estimation of 0x1000000/x -
// // Get most significant bit set on divider
// uint8_t idx = 0;
// uint32_t nr = d;
// if (!(nr & 0xFF0000)) {
// nr <<= 8;
// idx += 8;
// if (!(nr & 0xFF0000)) {
// nr <<= 8;
// idx += 8;
// }
// }
// if (!(nr & 0xF00000)) {
// nr <<= 4;
// idx += 4;
// }
// if (!(nr & 0xC00000)) {
// nr <<= 2;
// idx += 2;
// }
// if (!(nr & 0x800000)) {
// nr <<= 1;
// idx += 1;
// }
//
// // Isolate top 9 bits of the denominator, to be used as index into the initial estimation table
// uint32_t tidx = nr >> 15; // top 9 bits. bit8 is always set
// uint32_t ie = inv_tab[tidx & 0xFF] + 256; // Get the table value. bit9 is always set
// uint32_t x = idx <= 8 ? (ie >> (8 - idx)) : (ie << (idx - 8)); // Position the estimation at the proper place
//
// // Now, refine estimation by newton-raphson. 1 iteration is enough
// x = uint32_t((x * uint64_t((1 << 25) - x * d)) >> 24);
//
// // Estimate remainder
// uint32_t r = (1 << 24) - x * d;
//
// // Check if we must adjust result
// if (r >= d) x++;
//
// // x holds the proper estimation
// return uint32_t(x);
// }
//
static uint32_t get_period_inverse(uint32_t d) {
static const uint8_t inv_tab[256] PROGMEM = {
255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227,
225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200,
199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176,
175,173,172,170,169,168,166,165,164,162,161,160,158,157,156,154,
153,152,151,149,148,147,146,144,143,142,141,139,138,137,136,135,
134,132,131,130,129,128,127,126,125,123,122,121,120,119,118,117,
116,115,114,113,112,111,110,109,108,107,106,105,104,103,102,101,
100,99,98,97,96,95,94,93,92,91,90,89,88,88,87,86,
85,84,83,82,81,80,80,79,78,77,76,75,74,74,73,72,
71,70,70,69,68,67,66,66,65,64,63,62,62,61,60,59,
59,58,57,56,56,55,54,53,53,52,51,50,50,49,48,48,
47,46,46,45,44,43,43,42,41,41,40,39,39,38,37,37,
36,35,35,34,33,33,32,32,31,30,30,29,28,28,27,27,
26,25,25,24,24,23,22,22,21,21,20,19,19,18,18,17,
17,16,15,15,14,14,13,13,12,12,11,10,10,9,9,8,
8,7,7,6,6,5,5,4,4,3,3,2,2,1,0,0
};
// For small denominators, it is cheaper to directly store the result.
// For bigger ones, just ONE Newton-Raphson iteration is enough to get
// maximum precision we need
static const uint32_t small_inv_tab[111] PROGMEM = {
16777216,16777216,8388608,5592405,4194304,3355443,2796202,2396745,2097152,1864135,1677721,1525201,1398101,1290555,1198372,1118481,
1048576,986895,932067,883011,838860,798915,762600,729444,699050,671088,645277,621378,599186,578524,559240,541200,
524288,508400,493447,479349,466033,453438,441505,430185,419430,409200,399457,390167,381300,372827,364722,356962,
349525,342392,335544,328965,322638,316551,310689,305040,299593,294337,289262,284359,279620,275036,270600,266305,
262144,258111,254200,250406,246723,243148,239674,236298,233016,229824,226719,223696,220752,217885,215092,212369,
209715,207126,204600,202135,199728,197379,195083,192841,190650,188508,186413,184365,182361,180400,178481,176602,
174762,172960,171196,169466,167772,166111,164482,162885,161319,159783,158275,156796,155344,153919,152520
};
// For small divisors, it is best to directly retrieve the results
if (d <= 110)
return pgm_read_dword(&small_inv_tab[d]);
register uint8_t r8 = d & 0xFF;
register uint8_t r9 = (d >> 8) & 0xFF;
register uint8_t r10 = (d >> 16) & 0xFF;
register uint8_t r2,r3,r4,r5,r6,r7,r11,r12,r13,r14,r15,r16,r17,r18;
register const uint8_t* ptab = inv_tab;
__asm__ __volatile__(
// %8:%7:%6 = interval
// r31:r30: MUST be those registers, and they must point to the inv_tab
A("clr %13") // %13 = 0
// Now we must compute
// result = 0xFFFFFF / d
// %8:%7:%6 = interval
// %16:%15:%14 = nr
// %13 = 0
// A plain division of 24x24 bits should take 388 cycles to complete. We will
// use Newton-Raphson for the calculation, and will strive to get way less cycles
// for the same result - Using C division, it takes 500cycles to complete .
A("clr %3") // idx = 0
A("mov %14,%6")
A("mov %15,%7")
A("mov %16,%8") // nr = interval
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15")
A("mov %15,%14") // nr <<= 8, %14 not needed
A("subi %3,-8") // idx += 8
A("tst %16") // nr & 0xFF0000 == 0 ?
A("brne 2f") // No, skip this
A("mov %16,%15") // nr <<= 8, %14 not needed
A("clr %15") // We clear %14
A("subi %3,-8") // idx += 8
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
L("2")
A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
A("brcc 3f") // No, skip this
A("swap %15") // Swap nibbles
A("swap %16") // Swap nibbles. Low nibble is 0
A("mov %14, %15")
A("andi %14,0x0F") // Isolate low nibble
A("andi %15,0xF0") // Keep proper nibble in %15
A("or %16, %14") // %16:%15 <<= 4
A("subi %3,-4") // idx += 4
L("3")
A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
A("brcc 4f") // No, skip this
A("add %15,%15")
A("adc %16,%16")
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 2
A("subi %3,-2") // idx += 2
L("4")
A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
A("brcc 5f") // No, skip this
A("add %15,%15")
A("adc %16,%16") // %16:%15 <<= 1
A("inc %3") // idx += 1
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
// we have at least 9 MSBits available to enter the initial estimation table
L("5")
A("add %15,%15")
A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
A("add r30,%16") // Only use top 8 bits
A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
A("lpm %14, Z") // %14 = inv_tab[tidx]
A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
// We must scale the approximation to the proper place
A("clr %16") // %16 will always be 0 here
A("subi %3,8") // idx == 8 ?
A("breq 6f") // yes, no need to scale
A("brcs 7f") // If C=1, means idx < 8, result was negative!
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
A("sbrs %3,0") // shift by 1bit position?
A("rjmp 8f") // No
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("8")
A("sbrs %3,1") // shift by 2bit position?
A("rjmp 9f") // No
A("add %14,%14")
A("adc %15,%15")
A("add %14,%14")
A("adc %15,%15") // %15:16 <<= 1
L("9")
A("sbrs %3,2") // shift by 4bits position?
A("rjmp 16f") // No
A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
A("swap %14") // Swap nibbles
A("mov %12,%14")
A("andi %12,0x0F") // isolate low nibble
A("andi %14,0xF0") // and clear it
A("or %15,%12") // %15:%16 <<= 4
L("16")
A("sbrs %3,3") // shift by 8bits position?
A("rjmp 6f") // No, we are done
A("mov %16,%15")
A("mov %15,%14")
A("clr %14")
A("jmp 6f")
// idx < 8, now %3 = idx - 8. Get the count of bits
L("7")
A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
A("sbrs %3,0") // shift by 1 bit position ?
A("rjmp 10f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
L("10")
A("sbrs %3,1") // shift by 2 bit position ?
A("rjmp 11f") // No, skip it
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
A("asr %15") // (bit7 is always 0 here)
A("ror %14")
L("11")
A("sbrs %3,2") // shift by 4 bit position ?
A("rjmp 12f") // No, skip it
A("swap %15") // Swap nibbles
A("andi %14, 0xF0") // Lose the lowest nibble
A("swap %14") // Swap nibbles. Upper nibble is 0
A("or %14,%15") // Pass nibble from upper byte
A("andi %15, 0x0F") // And get rid of that nibble
L("12")
A("sbrs %3,3") // shift by 8 bit position ?
A("rjmp 6f") // No, skip it
A("mov %14,%15")
A("clr %15")
L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d)
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
// to get more than 18bits of precision (the initial table lookup gives 9 bits of
// precision to start from). 18bits of precision is all what is needed here for result
// %8:%7:%6 = d = interval
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %13 = 0
// %3:%2:%1:%0 = working accumulator
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
A("clr %0")
A("clr %1")
A("clr %2")
A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = (1<<25) - x*d [169]
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
// %16:%15:%14 = x = initial estimation of 0x1000000 / d
// %3:%2:%1:%0 = (1<<25) - x*d = acc
// %13 = 0
// result = %11:%10:%9:%5:%4
A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
A("mov %4,r1")
A("clr %5")
A("clr %9")
A("clr %10")
A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
A("add %4,r0")
A("adc %5,r1")
A("adc %9,%13")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
A("add %5,r0")
A("adc %9,r1")
A("adc %10,%13")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
A("add %9,r0")
A("adc %10,r1")
A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
A("add %10,r0")
A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
// At this point, %11:%10:%9 contains the new estimation of x.
// Finally, we must correct the result. Estimate remainder as
// (1<<24) - x*d
// %11:%10:%9 = x
// %8:%7:%6 = d = interval" "\n\t"
A("ldi %3,1")
A("clr %2")
A("clr %1")
A("clr %0") // %3:%2:%1:%0 = 0x1000000
A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
A("sub %0,r0")
A("sbc %1,r1")
A("sbc %2,%13")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
A("sub %1,r0")
A("sbc %2,r1")
A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
A("sub %2,r0")
A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = r = (1<<24) - x*d
// %8:%7:%6 = d = interval
// Perform the final correction
A("sub %0,%6")
A("sbc %1,%7")
A("sbc %2,%8") // r -= d
A("brcs 14f") // if ( r >= d)
// %11:%10:%9 = x
A("ldi %3,1")
A("add %9,%3")
A("adc %10,%13")
A("adc %11,%13") // x++
L("14")
// Estimation is done. %11:%10:%9 = x
A("clr __zero_reg__") // Make C runtime happy
// [211 cycles total]
: "=r" (r2),
"=r" (r3),
"=r" (r4),
"=d" (r5),
"=r" (r6),
"=r" (r7),
"+r" (r8),
"+r" (r9),
"+r" (r10),
"=d" (r11),
"=r" (r12),
"=r" (r13),
"=d" (r14),
"=d" (r15),
"=d" (r16),
"=d" (r17),
"=d" (r18),
"+z" (ptab)
:
: "r0", "r1", "cc"
);
// Return the result
return r11 | (uint16_t(r12) << 8) | (uint32_t(r13) << 16);
}
#endif // BEZIER_JERK_CONTROL
#define MINIMAL_STEP_RATE 120
/**
@ -218,6 +726,10 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
NOLESS(initial_rate, MINIMAL_STEP_RATE);
NOLESS(final_rate, MINIMAL_STEP_RATE);
#if ENABLED(BEZIER_JERK_CONTROL)
uint32_t cruise_rate = initial_rate;
#endif
const int32_t accel = block->acceleration_steps_per_s2;
// Steps required for acceleration, deceleration to/from nominal rate
@ -235,16 +747,43 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0;
#if ENABLED(BEZIER_JERK_CONTROL)
// We won't reach the cruising rate. Let's calculate the speed we will reach
cruise_rate = final_speed(initial_rate, accel, accelerate_steps);
#endif
}
#if ENABLED(BEZIER_JERK_CONTROL)
else // We have some plateau time, so the cruise rate will be the nominal rate
cruise_rate = block->nominal_rate;
#endif
// block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps;
#if ENABLED(BEZIER_JERK_CONTROL)
// Jerk controlled speed requires to express speed versus time, NOT steps
uint32_t acceleration_time = ((float)(cruise_rate - initial_rate) / accel) * (HAL_STEPPER_TIMER_RATE),
deceleration_time = ((float)(cruise_rate - final_rate) / accel) * (HAL_STEPPER_TIMER_RATE);
// And to offload calculations from the ISR, we also calculate the inverse of those times here
uint32_t acceleration_time_inverse = get_period_inverse(acceleration_time);
uint32_t deceleration_time_inverse = get_period_inverse(deceleration_time);
#endif
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps + plateau_steps;
block->initial_rate = initial_rate;
#if ENABLED(BEZIER_JERK_CONTROL)
block->acceleration_time = acceleration_time;
block->deceleration_time = deceleration_time;
block->acceleration_time_inverse = acceleration_time_inverse;
block->deceleration_time_inverse = deceleration_time_inverse;
block->cruise_rate = cruise_rate;
#endif
block->final_rate = final_rate;
}
CRITICAL_SECTION_END;
@ -1286,10 +1825,12 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE]
}
block->acceleration_steps_per_s2 = accel;
block->acceleration = accel / steps_per_mm;
block->acceleration_rate = (long)(accel * 16777216.0 / ((F_CPU) * 0.125)); // * 8.388608
#if DISABLED(BEZIER_JERK_CONTROL)
block->acceleration_rate = (long)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); // * 8.388608
#endif
#if ENABLED(LIN_ADVANCE)
if (block->use_advance_lead) {
block->advance_speed = ((F_CPU) * 0.125) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS]);
block->advance_speed = (HAL_STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS]);
#if ENABLED(LA_DEBUG)
if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio)
SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed.");

View file

@ -90,9 +90,24 @@ typedef struct {
uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
#endif
// Settings for the trapezoid generator
int32_t accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after, // The index of the step event on which to start decelerating
acceleration_rate; // The acceleration rate used for acceleration calculation
decelerate_after; // The index of the step event on which to start decelerating
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
#if ENABLED(BEZIER_JERK_CONTROL)
uint32_t cruise_rate; // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase
uint32_t acceleration_time, // Acceleration time and deceleration time in STEP timer counts
deceleration_time;
uint32_t acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used
deceleration_time_inverse;
#else
int32_t acceleration_rate; // The acceleration rate used for acceleration calculation
#endif
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
@ -112,12 +127,6 @@ typedef struct {
millimeters, // The total travel of this block in mm
acceleration; // acceleration mm/sec^2
// Settings for the trapezoid generator
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0
uint16_t fan_speed[FAN_COUNT];
#endif
@ -661,6 +670,15 @@ class Planner {
return SQRT(sq(target_velocity) - 2 * accel * distance);
}
#if ENABLED(BEZIER_JERK_CONTROL)
/**
* Calculate the speed reached given initial speed, acceleration and distance
*/
static float final_speed(const float &initial_velocity, const float &accel, const float &distance) {
return SQRT(sq(initial_velocity) + 2 * accel * distance);
}
#endif
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
static void reverse_pass_kernel(block_t* const current, const block_t * const next);

View file

@ -41,8 +41,16 @@
* along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
/* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
and Philipp Tiefenbacher. */
/**
* Timer calculations informed by the 'RepRap cartesian firmware' by Zack Smith
* and Philipp Tiefenbacher.
*/
/**
* Jerk controlled movements planner added Apr 2018 by Eduardo José Tagle.
* Equations based on Synthethos TinyG2 sources, but the fixed-point
* implementation is new, as we are running the ISR with a variable period.
*/
#include "Marlin.h"
#include "stepper.h"
@ -98,6 +106,16 @@ int32_t Stepper::counter_X = 0,
volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(BEZIER_JERK_CONTROL)
int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler
int32_t __attribute__((used)) Stepper::bezier_B __asm__("bezier_B"); // B coefficient in Bézier speed curve with alias for assembler
int32_t __attribute__((used)) Stepper::bezier_C __asm__("bezier_C"); // C coefficient in Bézier speed curve with alias for assembler
uint32_t __attribute__((used)) Stepper::bezier_F __asm__("bezier_F"); // F coefficient in Bézier speed curve with alias for assembler
uint32_t __attribute__((used)) Stepper::bezier_AV __asm__("bezier_AV"); // AV coefficient in Bézier speed curve with alias for assembler
bool __attribute__((used)) Stepper::A_negative __asm__("A_negative"); // If A coefficient was negative
bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not
#endif
#if ENABLED(LIN_ADVANCE)
uint32_t Stepper::LA_decelerate_after;
@ -134,8 +152,10 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
uint16_t Stepper::OCR1A_nominal,
Stepper::acc_step_rate; // needed for deceleration start point
uint16_t Stepper::OCR1A_nominal;
#if DISABLED(BEZIER_JERK_CONTROL)
uint16_t Stepper::acc_step_rate; // needed for deceleration start point
#endif
volatile int32_t Stepper::endstops_trigsteps[XYZ];
@ -232,41 +252,41 @@ volatile int32_t Stepper::endstops_trigsteps[XYZ];
//
#define MultiU24X32toH16(intRes, longIn1, longIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"mov r27, r1 \n\t" \
"mul %B1, %C2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %C1, %C2 \n\t" \
"add %B0, r0 \n\t" \
"mul %C1, %B2 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %A1, %C2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %B2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %C1, %A2 \n\t" \
"add r27, r0 \n\t" \
"adc %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"mul %B1, %A2 \n\t" \
"add r27, r1 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r27 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"mul %D2, %A1 \n\t" \
"add %A0, r0 \n\t" \
"adc %B0, r1 \n\t" \
"mul %D2, %B1 \n\t" \
"add %B0, r0 \n\t" \
"clr r1 \n\t" \
A("clr r26") \
A("mul %A1, %B2") \
A("mov r27, r1") \
A("mul %B1, %C2") \
A("movw %A0, r0") \
A("mul %C1, %C2") \
A("add %B0, r0") \
A("mul %C1, %B2") \
A("add %A0, r0") \
A("adc %B0, r1") \
A("mul %A1, %C2") \
A("add r27, r0") \
A("adc %A0, r1") \
A("adc %B0, r26") \
A("mul %B1, %B2") \
A("add r27, r0") \
A("adc %A0, r1") \
A("adc %B0, r26") \
A("mul %C1, %A2") \
A("add r27, r0") \
A("adc %A0, r1") \
A("adc %B0, r26") \
A("mul %B1, %A2") \
A("add r27, r1") \
A("adc %A0, r26") \
A("adc %B0, r26") \
A("lsr r27") \
A("adc %A0, r26") \
A("adc %B0, r26") \
A("mul %D2, %A1") \
A("add %A0, r0") \
A("adc %B0, r1") \
A("mul %D2, %B1") \
A("add %B0, r0") \
A("clr r1") \
: \
"=&r" (intRes) \
: \
@ -345,6 +365,732 @@ void Stepper::set_directions() {
extern volatile uint8_t e_hit;
#endif
#if ENABLED(BEZIER_JERK_CONTROL)
/**
* We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve.
* This gives us a "linear pop" velocity curve; with pop being the sixth derivative of position:
* velocity - 1st, acceleration - 2nd, jerk - 3rd, snap - 4th, crackle - 5th, pop - 6th
*
* The Bézier curve takes the form:
*
* V(t) = P_0 * B_0(t) + P_1 * B_1(t) + P_2 * B_2(t) + P_3 * B_3(t) + P_4 * B_4(t) + P_5 * B_5(t)
*
* Where 0 <= t <= 1, and V(t) is the velocity. P_0 through P_5 are the control points, and B_0(t)
* through B_5(t) are the Bernstein basis as follows:
*
* B_0(t) = (1-t)^5 = -t^5 + 5t^4 - 10t^3 + 10t^2 - 5t + 1
* B_1(t) = 5(1-t)^4 * t = 5t^5 - 20t^4 + 30t^3 - 20t^2 + 5t
* B_2(t) = 10(1-t)^3 * t^2 = -10t^5 + 30t^4 - 30t^3 + 10t^2
* B_3(t) = 10(1-t)^2 * t^3 = 10t^5 - 20t^4 + 10t^3
* B_4(t) = 5(1-t) * t^4 = -5t^5 + 5t^4
* B_5(t) = t^5 = t^5
* ^ ^ ^ ^ ^ ^
* | | | | | |
* A B C D E F
*
* Unfortunately, we cannot use forward-differencing to calculate each position through
* the curve, as Marlin uses variable timer periods. So, we require a formula of the form:
*
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + D*t^2 + E*t + F
*
* Looking at the above B_0(t) through B_5(t) expanded forms, if we take the coefficients of t^5
* through t of the Bézier form of V(t), we can determine that:
*
* A = -P_0 + 5*P_1 - 10*P_2 + 10*P_3 - 5*P_4 + P_5
* B = 5*P_0 - 20*P_1 + 30*P_2 - 20*P_3 + 5*P_4
* C = -10*P_0 + 30*P_1 - 30*P_2 + 10*P_3
* D = 10*P_0 - 20*P_1 + 10*P_2
* E = - 5*P_0 + 5*P_1
* F = P_0
*
* Now, since we will (currently) *always* want the initial acceleration and jerk values to be 0,
* We set P_i = P_0 = P_1 = P_2 (initial velocity), and P_t = P_3 = P_4 = P_5 (target velocity),
* which, after simplification, resolves to:
*
* A = - 6*P_i + 6*P_t = 6*(P_t - P_i)
* B = 15*P_i - 15*P_t = 15*(P_i - P_t)
* C = -10*P_i + 10*P_t = 10*(P_t - P_i)
* D = 0
* E = 0
* F = P_i
*
* As the t is evaluated in non uniform steps here, there is no other way rather than evaluating
* the Bézier curve at each point:
*
* V_f(t) = A*t^5 + B*t^4 + C*t^3 + F [0 <= t <= 1]
*
* Floating point arithmetic execution time cost is prohibitive, so we will transform the math to
* use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps
* per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid
* overflows on the evaluation of the Bézier curve, means we can use
*
* t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned
* A: signed Q24.7 , |range = +/- 250000 * 6 * 128 = +/- 192000000 = 0x0B71B000 | 28 bits + sign
* B: signed Q24.7 , |range = +/- 250000 *15 * 128 = +/- 480000000 = 0x1C9C3800 | 29 bits + sign
* C: signed Q24.7 , |range = +/- 250000 *10 * 128 = +/- 320000000 = 0x1312D000 | 29 bits + sign
* F: signed Q24.7 , |range = +/- 250000 * 128 = 32000000 = 0x01E84800 | 25 bits + sign
*
* The trapezoid generator state contains the following information, that we will use to create and evaluate
* the Bézier curve:
*
* blk->step_event_count [TS] = The total count of steps for this movement. (=distance)
* blk->initial_rate [VI] = The initial steps per second (=velocity)
* blk->final_rate [VF] = The ending steps per second (=velocity)
* and the count of events completed (step_events_completed) [CS] (=distance until now)
*
* Note the abbreviations we use in the following formulae are between []s
*
* For Any 32bit CPU:
*
* At the start of each trapezoid, we calculate the coefficients A,B,C,F and Advance [AV], as follows:
*
* A = 6*128*(VF - VI) = 768*(VF - VI)
* B = 15*128*(VI - VF) = 1920*(VI - VF)
* C = 10*128*(VF - VI) = 1280*(VF - VI)
* F = 128*VI = 128*VI
* AV = (1<<32)/TS ~= 0xFFFFFFFF / TS (To use ARM UDIV, that is 32 bits) (this is computed at the planner, to offload expensive calculations from the ISR)
*
* And for each point, we will evaluate the curve with the following sequence:
*
* void lsrs(uint32_t& d, uint32_t s, int cnt) {
* d = s >> cnt;
* }
* void lsls(uint32_t& d, uint32_t s, int cnt) {
* d = s << cnt;
* }
* void lsrs(int32_t& d, uint32_t s, int cnt) {
* d = uint32_t(s) >> cnt;
* }
* void lsls(int32_t& d, uint32_t s, int cnt) {
* d = uint32_t(s) << cnt;
* }
* void umull(uint32_t& rlo, uint32_t& rhi, uint32_t op1, uint32_t op2) {
* uint64_t res = uint64_t(op1) * op2;
* rlo = uint32_t(res & 0xFFFFFFFF);
* rhi = uint32_t((res >> 32) & 0xFFFFFFFF);
* }
* void smlal(int32_t& rlo, int32_t& rhi, int32_t op1, int32_t op2) {
* int64_t mul = int64_t(op1) * op2;
* int64_t s = int64_t(uint32_t(rlo) | ((uint64_t(uint32_t(rhi)) << 32U)));
* mul += s;
* rlo = int32_t(mul & 0xFFFFFFFF);
* rhi = int32_t((mul >> 32) & 0xFFFFFFFF);
* }
* int32_t _eval_bezier_curve_arm(uint32_t curr_step) {
* register uint32_t flo = 0;
* register uint32_t fhi = bezier_AV * curr_step;
* register uint32_t t = fhi;
* register int32_t alo = bezier_F;
* register int32_t ahi = 0;
* register int32_t A = bezier_A;
* register int32_t B = bezier_B;
* register int32_t C = bezier_C;
*
* lsrs(ahi, alo, 1); // a = F << 31
* lsls(alo, alo, 31); //
* umull(flo, fhi, fhi, t); // f *= t
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); //
* smlal(alo, ahi, flo, C); // a+=(f>>33)*C
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); //
* smlal(alo, ahi, flo, B); // a+=(f>>33)*B
* umull(flo, fhi, fhi, t); // f>>=32; f*=t
* lsrs(flo, fhi, 1); // f>>=33;
* smlal(alo, ahi, flo, A); // a+=(f>>33)*A;
* lsrs(alo, ahi, 6); // a>>=38
*
* return alo;
* }
*
* This will be rewritten in ARM assembly to get peak performance and will take 43 cycles to execute
*
* For AVR, we scale precision of coefficients to make it possible to evaluate the Bézier curve in
* realtime: Let's reduce precision as much as possible. After some experimentation we found that:
*
* Assume t and AV with 24 bits is enough
* A = 6*(VF - VI)
* B = 15*(VI - VF)
* C = 10*(VF - VI)
* F = VI
* AV = (1<<24)/TS (this is computed at the planner, to offload expensive calculations from the ISR)
*
* Instead of storing sign for each coefficient, we will store its absolute value,
* and flag the sign of the A coefficient, so we can save to store the sign bit.
* It always holds that sign(A) = - sign(B) = sign(C)
*
* So, the resulting range of the coefficients are:
*
* t: unsigned (0 <= t < 1) |range 0 to 0xFFFFFF unsigned
* A: signed Q24 , range = 250000 * 6 = 1500000 = 0x16E360 | 21 bits
* B: signed Q24 , range = 250000 *15 = 3750000 = 0x393870 | 22 bits
* C: signed Q24 , range = 250000 *10 = 2500000 = 0x1312D0 | 21 bits
* F: signed Q24 , range = 250000 = 250000 = 0x0ED090 | 20 bits
*
* And for each curve, we estimate its coefficients with:
*
* void _calc_bezier_curve_coeffs(int32_t v0, int32_t v1, uint32_t av) {
* // Calculate the Bézier coefficients
* if (v1 < v0) {
* A_negative = true;
* bezier_A = 6 * (v0 - v1);
* bezier_B = 15 * (v0 - v1);
* bezier_C = 10 * (v0 - v1);
* }
* else {
* A_negative = false;
* bezier_A = 6 * (v1 - v0);
* bezier_B = 15 * (v1 - v0);
* bezier_C = 10 * (v1 - v0);
* }
* bezier_F = v0;
* }
*
* And for each point, we will evaluate the curve with the following sequence:
*
* // unsigned multiplication of 24 bits x 24bits, return upper 16 bits
* void umul24x24to16hi(uint16_t& r, uint24_t op1, uint24_t op2) {
* r = (uint64_t(op1) * op2) >> 8;
* }
* // unsigned multiplication of 16 bits x 16bits, return upper 16 bits
* void umul16x16to16hi(uint16_t& r, uint16_t op1, uint16_t op2) {
* r = (uint32_t(op1) * op2) >> 16;
* }
* // unsigned multiplication of 16 bits x 24bits, return upper 24 bits
* void umul16x24to24hi(uint24_t& r, uint16_t op1, uint24_t op2) {
* r = uint24_t((uint64_t(op1) * op2) >> 16);
* }
*
* int32_t _eval_bezier_curve(uint32_t curr_step) {
* // To save computing, the first step is always the initial speed
* if (!curr_step)
* return bezier_F;
*
* uint16_t t;
* umul24x24to16hi(t, bezier_AV, curr_step); // t: Range 0 - 1^16 = 16 bits
* uint16_t f = t;
* umul16x16to16hi(f, f, t); // Range 16 bits (unsigned)
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^3 (unsigned)
* uint24_t acc = bezier_F; // Range 20 bits (unsigned)
* if (A_negative) {
* uint24_t v;
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
* acc -= v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
* acc += v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
* acc -= v;
* }
* else {
* uint24_t v;
* umul16x24to24hi(v, f, bezier_C); // Range 21bits
* acc += v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^4 (unsigned)
* umul16x24to24hi(v, f, bezier_B); // Range 22bits
* acc -= v;
* umul16x16to16hi(f, f, t); // Range 16 bits : f = t^5 (unsigned)
* umul16x24to24hi(v, f, bezier_A); // Range 21bits + 15 = 36bits (plus sign)
* acc += v;
* }
* return acc;
* }
* Those functions will be translated into assembler to get peak performance. coefficient calculations takes 70 cycles,
* Bezier point evaluation takes 150 cycles
*
*/
// For AVR we use assembly to maximize speed
void Stepper::_calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av) {
// Store advance
bezier_AV = av;
// Calculate the rest of the coefficients
register uint8_t r2 = v0 & 0xFF;
register uint8_t r3 = (v0 >> 8) & 0xFF;
register uint8_t r12 = (v0 >> 16) & 0xFF;
register uint8_t r5 = v1 & 0xFF;
register uint8_t r6 = (v1 >> 8) & 0xFF;
register uint8_t r7 = (v1 >> 16) & 0xFF;
register uint8_t r4,r8,r9,r10,r11;
__asm__ __volatile__(
/* Calculate the Bézier coefficients */
/* %10:%1:%0 = v0*/
/* %5:%4:%3 = v1*/
/* %7:%6:%10 = temporary*/
/* %9 = val (must be high register!)*/
/* %10 (must be high register!)*/
/* Store initial velocity*/
A("sts bezier_F, %0")
A("sts bezier_F+1, %1")
A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
/* Get delta speed */
A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
A("clr %8") /* %8 = 0 */
A("sub %0,%3")
A("sbc %1,%4")
A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
/* Result was negative, get the absolute value*/
A("com %10")
A("com %1")
A("neg %0")
A("sbc %1,%2")
A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
A("clr %2") /* %2 = 0, means A_negative = false */
/* Store negative flag*/
L("1")
A("sts A_negative, %2") /* Store negative flag */
/* Compute coefficients A,B and C [20 cycles worst case]*/
A("ldi %9,6") /* %9 = 6 */
A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
A("sts bezier_A, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
A("sts bezier_A+1, %6")
A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
A("ldi %9,15") /* %9 = 15 */
A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
A("sts bezier_B, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
A("sts bezier_B+1, %6")
A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
A("ldi %9,10") /* %9 = 10 */
A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
A("sts bezier_C, r0")
A("mov %6,r1")
A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
A("add %6,r0")
A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
A("sts bezier_C+1, %6")
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
: "+r" (r2),
"+d" (r3),
"=r" (r4),
"+r" (r5),
"+r" (r6),
"+r" (r7),
"=r" (r8),
"=r" (r9),
"=r" (r10),
"=d" (r11),
"+r" (r12)
:
: "r0", "r1", "cc", "memory"
);
}
FORCE_INLINE int32_t Stepper::_eval_bezier_curve(const uint32_t curr_step) {
// If dealing with the first step, save expensive computing and return the initial speed
if (!curr_step)
return bezier_F;
register uint8_t r0 = 0; /* Zero register */
register uint8_t r2 = (curr_step) & 0xFF;
register uint8_t r3 = (curr_step >> 8) & 0xFF;
register uint8_t r4 = (curr_step >> 16) & 0xFF;
register uint8_t r1,r5,r6,r7,r8,r9,r10,r11; /* Temporary registers */
__asm__ __volatile(
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
A("lds %9,bezier_AV") /* %9 = LO(AV)*/
A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
A("add %7,r0")
A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
A("add %7,r0")
A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
/* %8:%7 = t*/
/* uint16_t f = t;*/
A("mov %5,%7") /* %6:%5 = f*/
A("mov %6,%8")
/* %6:%5 = f*/
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 = */
A("mov %6,%11") /* f = %10:%11*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* [15 +17*2] = [49]*/
/* %4:%3:%2 will be acc from now on*/
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
A("clr %9") /* "decimal place we get for free"*/
A("lds %2,bezier_F")
A("lds %3,bezier_F+1")
A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
/* if (A_negative) {*/
A("lds r0,A_negative")
A("or r0,%0") /* Is flag signalling negative? */
A("brne 3f") /* If yes, Skip next instruction if A was negative*/
A("rjmp 1f") /* Otherwise, jump */
/* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
/* acc -= v; */
L("3")
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc += v; */
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc -= v; */
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
A("jmp 2f") /* Done!*/
L("1")
/* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
/* acc += v; */
A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc -= v;*/
A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
A("sub %9,r1")
A("sbc %2,%0")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
A("sub %9,r0")
A("sbc %2,r1")
A("sbc %3,%0")
A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
A("sub %2,r0")
A("sbc %3,r1")
A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
A("sub %3,r0")
A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
A("clr %10") /* %10 = 0*/
A("clr %11") /* %11 = 0*/
A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
A("adc %11,%0") /* %11 += carry*/
A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
A("mov %5,%10") /* %6:%5 =*/
A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc += v; */
A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
A("add %9,r1")
A("adc %2,%0")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
A("add %9,r0")
A("adc %2,r1")
A("adc %3,%0")
A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
A("add %2,r0")
A("adc %3,r1")
A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
A("add %3,r0")
A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
L("2")
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
: "+r"(r0),
"+r"(r1),
"+r"(r2),
"+r"(r3),
"+r"(r4),
"+r"(r5),
"+r"(r6),
"+r"(r7),
"+r"(r8),
"+r"(r9),
"+r"(r10),
"+r"(r11)
:
:"cc","r0","r1"
);
return (r2 | (uint16_t(r3) << 8)) | (uint32_t(r4) << 16);
}
#endif // BEZIER_JERK_CONTROL
/**
* Stepper Driver Interrupt
*
@ -463,7 +1209,54 @@ void Stepper::isr() {
if (!(current_block = planner.get_current_block())) return;
}
trapezoid_generator_reset();
// Initialize the trapezoid generator from the current block.
static int8_t last_extruder = -1;
#if ENABLED(LIN_ADVANCE)
#if E_STEPPERS > 1
if (current_block->active_extruder != last_extruder) {
current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
LA_active_extruder = current_block->active_extruder;
}
#endif
if ((use_advance_lead = current_block->use_advance_lead)) {
LA_decelerate_after = current_block->decelerate_after;
final_adv_steps = current_block->final_adv_steps;
max_adv_steps = current_block->max_adv_steps;
}
#endif
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
last_direction_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_directions();
}
// No acceleration / deceleration time elapsed so far
acceleration_time = deceleration_time = 0;
// No step events completed so far
step_events_completed = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
#if DISABLED(BEZIER_JERK_CONTROL)
// Set as deceleration point the initial rate of the block
acc_step_rate = current_block->initial_rate;
#endif
#if ENABLED(BEZIER_JERK_CONTROL)
// Initialize the Bézier speed curve
_calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse);
// We have not started the 2nd half of the trapezoid
bezier_2nd_half = false;
#endif
// Initialize Bresenham counters to 1/2 the ceiling
counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
@ -705,11 +1498,19 @@ void Stepper::isr() {
// Calculate new timer value
if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
#if ENABLED(BEZIER_JERK_CONTROL)
// Get the next speed to use (Jerk limited!)
uint16_t acc_step_rate =
acceleration_time < current_block->acceleration_time
? _eval_bezier_curve(acceleration_time)
: current_block->cruise_rate;
#else
MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate;
// upper limit
NOMORE(acc_step_rate, current_block->nominal_rate);
// upper limit
NOMORE(acc_step_rate, current_block->nominal_rate);
#endif
// step_rate to timer interval
const uint16_t interval = calc_timer_interval(acc_step_rate);
@ -734,14 +1535,32 @@ void Stepper::isr() {
}
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
uint16_t step_rate;
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if (step_rate < acc_step_rate) { // Still decelerating?
step_rate = acc_step_rate - step_rate;
NOLESS(step_rate, current_block->final_rate);
}
else
step_rate = current_block->final_rate;
#if ENABLED(BEZIER_JERK_CONTROL)
// If this is the 1st time we process the 2nd half of the trapezoid...
if (!bezier_2nd_half) {
// Initialize the Bézier speed curve
_calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse);
bezier_2nd_half = true;
}
// Calculate the next speed to use
step_rate = deceleration_time < current_block->deceleration_time
? _eval_bezier_curve(deceleration_time)
: current_block->final_rate;
#else
// Using the old trapezoidal control
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if (step_rate < acc_step_rate) { // Still decelerating?
step_rate = acc_step_rate - step_rate;
NOLESS(step_rate, current_block->final_rate);
}
else
step_rate = current_block->final_rate;
#endif
// step_rate to timer interval
const uint16_t interval = calc_timer_interval(step_rate);
@ -1104,6 +1923,7 @@ void Stepper::init() {
// Init Stepper ISR to 122 Hz for quick starting
OCR1A = 0x4000;
TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT();
endstops.enable(true); // Start with endstops active. After homing they can be disabled

View file

@ -55,6 +55,7 @@ extern Stepper stepper;
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
#define STEPPER_ISR_ENABLED() TEST(TIMSK1, OCIE1A)
#define HAL_STEPPER_TIMER_RATE ((F_CPU) * 0.125)
// intRes = intIn1 * intIn2 >> 16
// uses:
@ -62,16 +63,16 @@ extern Stepper stepper;
// r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \
"clr r26 \n\t" \
"mul %A1, %B2 \n\t" \
"movw %A0, r0 \n\t" \
"mul %A1, %A2 \n\t" \
"add %A0, r1 \n\t" \
"adc %B0, r26 \n\t" \
"lsr r0 \n\t" \
"adc %A0, r26 \n\t" \
"adc %B0, r26 \n\t" \
"clr r1 \n\t" \
A("clr r26") \
A("mul %A1, %B2") \
A("movw %A0, r0") \
A("mul %A1, %A2") \
A("add %A0, r1") \
A("adc %B0, r26") \
A("lsr r0") \
A("adc %A0, r26") \
A("adc %B0, r26") \
A("clr r1") \
: \
"=&r" (intRes) \
: \
@ -122,6 +123,16 @@ class Stepper {
static int32_t counter_X, counter_Y, counter_Z, counter_E;
static volatile uint32_t step_events_completed; // The number of step events executed in the current block
#if ENABLED(BEZIER_JERK_CONTROL)
static int32_t bezier_A, // A coefficient in Bézier speed curve
bezier_B, // B coefficient in Bézier speed curve
bezier_C; // C coefficient in Bézier speed curve
static uint32_t bezier_F, // F coefficient in Bézier speed curve
bezier_AV; // AV coefficient in Bézier speed curve
static bool A_negative, // If A coefficient was negative
bezier_2nd_half; // If Bézier curve has been initialized or not
#endif
#if ENABLED(LIN_ADVANCE)
static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early".
@ -145,8 +156,10 @@ class Stepper {
static int32_t acceleration_time, deceleration_time;
static uint8_t step_loops, step_loops_nominal;
static uint16_t OCR1A_nominal,
acc_step_rate; // needed for deceleration start point
static uint16_t OCR1A_nominal;
#if DISABLED(BEZIER_JERK_CONTROL)
static uint16_t acc_step_rate; // needed for deceleration start point
#endif
static volatile int32_t endstops_trigsteps[XYZ];
static volatile int32_t endstops_stepsTotal, endstops_stepsDone;
@ -330,8 +343,8 @@ class Stepper {
private:
FORCE_INLINE static unsigned short calc_timer_interval(unsigned short step_rate) {
unsigned short timer;
FORCE_INLINE static uint16_t calc_timer_interval(uint16_t step_rate) {
uint16_t timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY);
@ -370,43 +383,10 @@ class Stepper {
return timer;
}
// Initialize the trapezoid generator from the current block.
// Called whenever a new block begins.
FORCE_INLINE static void trapezoid_generator_reset() {
static int8_t last_extruder = -1;
#if ENABLED(LIN_ADVANCE)
#if E_STEPPERS > 1
if (current_block->active_extruder != last_extruder) {
current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone.
LA_active_extruder = current_block->active_extruder;
}
#endif
if ((use_advance_lead = current_block->use_advance_lead)) {
LA_decelerate_after = current_block->decelerate_after;
final_adv_steps = current_block->final_adv_steps;
max_adv_steps = current_block->max_adv_steps;
}
#endif
if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) {
last_direction_bits = current_block->direction_bits;
last_extruder = current_block->active_extruder;
set_directions();
}
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer_interval(acc_step_rate);
_NEXT_ISR(acceleration_time);
}
#if ENABLED(BEZIER_JERK_CONTROL)
static void _calc_bezier_curve_coeffs(const int32_t v0, const int32_t v1, const uint32_t av);
static int32_t _eval_bezier_curve(const uint32_t curr_step);
#endif
#if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digipot_init();