Small FREQUENCY_LIMIT changes
This commit is contained in:
parent
bce67ec2c9
commit
b98fb17fe9
2 changed files with 42 additions and 167 deletions
|
@ -1,127 +0,0 @@
|
|||
#!/usr/bin/python
|
||||
#
|
||||
# Creates a C code lookup table for doing ADC to temperature conversion
|
||||
# on a microcontroller
|
||||
# based on: http://hydraraptor.blogspot.com/2007/10/measuring-temperature-easy-way.html
|
||||
"""Thermistor Value Lookup Table Generator
|
||||
|
||||
Generates lookup to temperature values for use in a microcontroller in C format based on:
|
||||
http://hydraraptor.blogspot.com/2007/10/measuring-temperature-easy-way.html
|
||||
|
||||
The main use is for Arduino programs that read data from the circuit board described here:
|
||||
http://make.rrrf.org/ts-1.0
|
||||
|
||||
Usage: python createTemperatureLookup.py [options]
|
||||
|
||||
Options:
|
||||
-h, --help show this help
|
||||
--r0=... thermistor rating where # is the ohm rating of the thermistor at t0 (eg: 10K = 10000)
|
||||
--t0=... thermistor temp rating where # is the temperature in Celsuis to get r0 (from your datasheet)
|
||||
--beta=... thermistor beta rating. see http://reprap.org/bin/view/Main/MeasuringThermistorBeta
|
||||
--r1=... R1 rating where # is the ohm rating of R1 (eg: 10K = 10000)
|
||||
--r2=... R2 rating where # is the ohm rating of R2 (eg: 10K = 10000)
|
||||
--num-temps=... the number of temperature points to calculate (default: 20)
|
||||
--max-adc=... the max ADC reading to use. if you use R1, it limits the top value for the thermistor circuit, and thus the possible range of ADC values
|
||||
"""
|
||||
|
||||
from math import *
|
||||
import sys
|
||||
import getopt
|
||||
|
||||
class Thermistor:
|
||||
"Class to do the thermistor maths"
|
||||
def __init__(self, r0, t0, beta, r1, r2):
|
||||
self.r0 = r0 # stated resistance, e.g. 10K
|
||||
self.t0 = t0 + 273.15 # temperature at stated resistance, e.g. 25C
|
||||
self.beta = beta # stated beta, e.g. 3500
|
||||
self.vadc = 5.0 # ADC reference
|
||||
self.vcc = 5.0 # supply voltage to potential divider
|
||||
self.k = r0 * exp(-beta / self.t0) # constant part of calculation
|
||||
|
||||
if r1 > 0:
|
||||
self.vs = r1 * self.vcc / (r1 + r2) # effective bias voltage
|
||||
self.rs = r1 * r2 / (r1 + r2) # effective bias impedance
|
||||
else:
|
||||
self.vs = self.vcc # effective bias voltage
|
||||
self.rs = r2 # effective bias impedance
|
||||
|
||||
def temp(self,adc):
|
||||
"Convert ADC reading into a temperature in Celcius"
|
||||
v = adc * self.vadc / 1024 # convert the 10 bit ADC value to a voltage
|
||||
r = self.rs * v / (self.vs - v) # resistance of thermistor
|
||||
return (self.beta / log(r / self.k)) - 273.15 # temperature
|
||||
|
||||
def setting(self, t):
|
||||
"Convert a temperature into a ADC value"
|
||||
r = self.r0 * exp(self.beta * (1 / (t + 273.15) - 1 / self.t0)) # resistance of the thermistor
|
||||
v = self.vs * r / (self.rs + r) # the voltage at the potential divider
|
||||
return round(v / self.vadc * 1024) # the ADC reading
|
||||
|
||||
def main(argv):
|
||||
|
||||
r0 = 10000;
|
||||
t0 = 25;
|
||||
beta = 3947;
|
||||
r1 = 680;
|
||||
r2 = 1600;
|
||||
num_temps = int(20);
|
||||
|
||||
try:
|
||||
opts, args = getopt.getopt(argv, "h", ["help", "r0=", "t0=", "beta=", "r1=", "r2="])
|
||||
except getopt.GetoptError:
|
||||
usage()
|
||||
sys.exit(2)
|
||||
|
||||
for opt, arg in opts:
|
||||
if opt in ("-h", "--help"):
|
||||
usage()
|
||||
sys.exit()
|
||||
elif opt == "--r0":
|
||||
r0 = int(arg)
|
||||
elif opt == "--t0":
|
||||
t0 = int(arg)
|
||||
elif opt == "--beta":
|
||||
beta = int(arg)
|
||||
elif opt == "--r1":
|
||||
r1 = int(arg)
|
||||
elif opt == "--r2":
|
||||
r2 = int(arg)
|
||||
|
||||
if r1:
|
||||
max_adc = int(1023 * r1 / (r1 + r2));
|
||||
else:
|
||||
max_adc = 1023
|
||||
increment = int(max_adc/(num_temps-1));
|
||||
|
||||
t = Thermistor(r0, t0, beta, r1, r2)
|
||||
|
||||
adcs = range(1, max_adc, increment);
|
||||
# adcs = [1, 20, 25, 30, 35, 40, 45, 50, 60, 70, 80, 90, 100, 110, 130, 150, 190, 220, 250, 300]
|
||||
first = 1
|
||||
|
||||
print "// Thermistor lookup table for RepRap Temperature Sensor Boards (http://make.rrrf.org/ts)"
|
||||
print "// Made with createTemperatureLookup.py (http://svn.reprap.org/trunk/reprap/firmware/Arduino/utilities/createTemperatureLookup.py)"
|
||||
print "// ./createTemperatureLookup.py --r0=%s --t0=%s --r1=%s --r2=%s --beta=%s --max-adc=%s" % (r0, t0, r1, r2, beta, max_adc)
|
||||
print "// r0: %s" % (r0)
|
||||
print "// t0: %s" % (t0)
|
||||
print "// r1: %s" % (r1)
|
||||
print "// r2: %s" % (r2)
|
||||
print "// beta: %s" % (beta)
|
||||
print "// max adc: %s" % (max_adc)
|
||||
print "#define NUMTEMPS %s" % (len(adcs))
|
||||
print "short temptable[NUMTEMPS][2] = {"
|
||||
|
||||
counter = 0
|
||||
for adc in adcs:
|
||||
counter = counter +1
|
||||
if counter == len(adcs):
|
||||
print " {%s, %s}" % (adc, int(t.temp(adc)))
|
||||
else:
|
||||
print " {%s, %s}," % (adc, int(t.temp(adc)))
|
||||
print "};"
|
||||
|
||||
def usage():
|
||||
print __doc__
|
||||
|
||||
if __name__ == "__main__":
|
||||
main(sys.argv[1:])
|
|
@ -103,12 +103,11 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
|
|||
bool allow_cold_extrude=false;
|
||||
#endif
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||
// Used for the frequency limit
|
||||
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
||||
static long x_segment_time[3]={
|
||||
0,0,0}; // Segment times (in us). Used for speed calculations
|
||||
static long y_segment_time[3]={
|
||||
0,0,0};
|
||||
static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
|
||||
static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
|
||||
#endif
|
||||
|
||||
// Returns the index of the next block in the ring buffer
|
||||
|
@ -435,7 +434,7 @@ void getHighESpeed()
|
|||
}
|
||||
#endif
|
||||
|
||||
void check_axes_activity()
|
||||
void check_axes_activity()
|
||||
{
|
||||
unsigned char x_active = 0;
|
||||
unsigned char y_active = 0;
|
||||
|
@ -445,11 +444,11 @@ void check_axes_activity()
|
|||
unsigned char tail_fan_speed = 0;
|
||||
block_t *block;
|
||||
|
||||
if(block_buffer_tail != block_buffer_head)
|
||||
if(block_buffer_tail != block_buffer_head)
|
||||
{
|
||||
uint8_t block_index = block_buffer_tail;
|
||||
tail_fan_speed = block_buffer[block_index].fan_speed;
|
||||
while(block_index != block_buffer_head)
|
||||
while(block_index != block_buffer_head)
|
||||
{
|
||||
block = &block_buffer[block_index];
|
||||
if(block->steps_x != 0) x_active++;
|
||||
|
@ -460,7 +459,7 @@ void check_axes_activity()
|
|||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
#if FAN_PIN > -1
|
||||
if (FanSpeed != 0){
|
||||
|
@ -471,19 +470,19 @@ void check_axes_activity()
|
|||
if((DISABLE_X) && (x_active == 0)) disable_x();
|
||||
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
||||
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
||||
if((DISABLE_E) && (e_active == 0))
|
||||
if((DISABLE_E) && (e_active == 0))
|
||||
{
|
||||
disable_e0();
|
||||
disable_e1();
|
||||
disable_e2();
|
||||
}
|
||||
#if FAN_PIN > -1
|
||||
if((FanSpeed == 0) && (fan_speed ==0))
|
||||
if((FanSpeed == 0) && (fan_speed ==0))
|
||||
{
|
||||
analogWrite(FAN_PIN, 0);
|
||||
}
|
||||
|
||||
if (FanSpeed != 0 && tail_fan_speed !=0)
|
||||
if (FanSpeed != 0 && tail_fan_speed !=0)
|
||||
{
|
||||
analogWrite(FAN_PIN,tail_fan_speed);
|
||||
}
|
||||
|
@ -505,7 +504,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Rest here until there is room in the buffer.
|
||||
while(block_buffer_tail == next_buffer_head)
|
||||
while(block_buffer_tail == next_buffer_head)
|
||||
{
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
|
@ -522,7 +521,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||
|
||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||
if(target[E_AXIS]!=position[E_AXIS])
|
||||
if(target[E_AXIS]!=position[E_AXIS])
|
||||
{
|
||||
if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
|
||||
{
|
||||
|
@ -530,7 +529,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
||||
}
|
||||
|
||||
|
||||
#ifdef PREVENT_LENGTHY_EXTRUDE
|
||||
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
||||
{
|
||||
|
@ -538,7 +537,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -558,7 +557,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count <= dropsegments)
|
||||
if (block->step_event_count <= dropsegments)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
@ -567,19 +566,19 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS])
|
||||
if (target[Y_AXIS] < position[Y_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
}
|
||||
if (target[Z_AXIS] < position[Z_AXIS])
|
||||
if (target[Z_AXIS] < position[Z_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
}
|
||||
if (target[E_AXIS] < position[E_AXIS])
|
||||
if (target[E_AXIS] < position[E_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<E_AXIS);
|
||||
}
|
||||
|
@ -594,18 +593,18 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
#endif
|
||||
|
||||
// Enable all
|
||||
if(block->steps_e != 0)
|
||||
if(block->steps_e != 0)
|
||||
{
|
||||
enable_e0();
|
||||
enable_e1();
|
||||
enable_e2();
|
||||
}
|
||||
|
||||
if (block->steps_e == 0)
|
||||
if (block->steps_e == 0)
|
||||
{
|
||||
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
||||
}
|
||||
|
@ -615,11 +614,11 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
|
||||
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
||||
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
||||
{
|
||||
block->millimeters = fabs(delta_mm[E_AXIS]);
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
||||
}
|
||||
|
@ -632,18 +631,21 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
|
||||
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
||||
#ifdef OLD_SLOWDOWN
|
||||
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
|
||||
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
|
||||
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
||||
#endif
|
||||
|
||||
#ifdef SLOWDOWN
|
||||
// segment time im micro seconds
|
||||
unsigned long segment_time = lround(1000000.0/inverse_second);
|
||||
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
|
||||
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
|
||||
{
|
||||
if (segment_time < minsegmenttime)
|
||||
if (segment_time < minsegmenttime)
|
||||
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
||||
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
segment_time = lround(1000000.0/inverse_second);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
@ -656,7 +658,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
// Calculate and limit speed in mm/sec for each axis
|
||||
float current_speed[4];
|
||||
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||
for(int i=0; i < 4; i++)
|
||||
for(int i=0; i < 4; i++)
|
||||
{
|
||||
current_speed[i] = delta_mm[i] * inverse_second;
|
||||
if(fabs(current_speed[i]) > max_feedrate[i])
|
||||
|
@ -666,26 +668,26 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
// Max segement time in us.
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||
|
||||
// Check and limit the xy direction change frequency
|
||||
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
||||
old_direction_bits = block->direction_bits;
|
||||
|
||||
if((direction_change & (1<<X_AXIS)) == 0)
|
||||
segment_time = lround((float)segment_time / speed_factor);
|
||||
|
||||
if((direction_change & (1<<X_AXIS)) == 0)
|
||||
{
|
||||
x_segment_time[0] += segment_time;
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
x_segment_time[2] = x_segment_time[1];
|
||||
x_segment_time[1] = x_segment_time[0];
|
||||
x_segment_time[0] = segment_time;
|
||||
}
|
||||
if((direction_change & (1<<Y_AXIS)) == 0)
|
||||
if((direction_change & (1<<Y_AXIS)) == 0)
|
||||
{
|
||||
y_segment_time[0] += segment_time;
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
y_segment_time[2] = y_segment_time[1];
|
||||
y_segment_time[1] = y_segment_time[0];
|
||||
|
@ -694,14 +696,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
||||
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
||||
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
||||
if(min_xy_segment_time < MAX_FREQ_TIME)
|
||||
if(min_xy_segment_time < MAX_FREQ_TIME)
|
||||
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
||||
#endif
|
||||
|
||||
// Correct the speed
|
||||
if( speed_factor < 1.0)
|
||||
if( speed_factor < 1.0)
|
||||
{
|
||||
for(unsigned char i=0; i < 4; i++)
|
||||
for(unsigned char i=0; i < 4; i++)
|
||||
{
|
||||
current_speed[i] *= speed_factor;
|
||||
}
|
||||
|
@ -711,11 +713,11 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
|
||||
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||
float steps_per_mm = block->step_event_count/block->millimeters;
|
||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
|
||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
|
||||
{
|
||||
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
else
|
||||
else
|
||||
{
|
||||
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
// Limit acceleration per axis
|
||||
|
|
Loading…
Reference in a new issue