diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
index 98d979e6ea..4bc106976d 100644
--- a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
+++ b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp
@@ -23,23 +23,23 @@
 
 #if ENABLED(AUTO_BED_LEVELING_UBL)
 
-  #include "../bedlevel.h"
-  #include "../../../module/planner.h"
-  #include "../../../module/stepper.h"
-  #include "../../../module/motion.h"
+#include "../bedlevel.h"
+#include "../../../module/planner.h"
+#include "../../../module/stepper.h"
+#include "../../../module/motion.h"
 
-  #if ENABLED(DELTA)
-    #include "../../../module/delta.h"
-  #endif
+#if ENABLED(DELTA)
+  #include "../../../module/delta.h"
+#endif
 
-  #include "../../../Marlin.h"
-  #include <math.h>
+#include "../../../Marlin.h"
+#include <math.h>
 
-  #if AVR_AT90USB1286_FAMILY  // Teensyduino & Printrboard IDE extensions have compile errors without this
-    inline void set_current_from_destination() { COPY(current_position, destination); }
-  #else
-    extern void set_current_from_destination();
-  #endif
+#if AVR_AT90USB1286_FAMILY  // Teensyduino & Printrboard IDE extensions have compile errors without this
+  inline void set_current_from_destination() { COPY(current_position, destination); }
+#else
+  extern void set_current_from_destination();
+#endif
 
 #if !UBL_SEGMENTED
 
@@ -409,220 +409,220 @@
 
 #else // UBL_SEGMENTED
 
-    #if IS_SCARA // scale the feed rate from mm/s to degrees/s
-      static float scara_feed_factor, scara_oldA, scara_oldB;
+  #if IS_SCARA // scale the feed rate from mm/s to degrees/s
+    static float scara_feed_factor, scara_oldA, scara_oldB;
+  #endif
+
+  // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
+  // so we call buffer_segment directly here.  Per-segmented leveling and kinematics performed first.
+
+  inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
+
+    #if ENABLED(SKEW_CORRECTION)
+      float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
+      planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
+    #else
+      const float (&raw)[XYZE] = in_raw;
     #endif
 
-    // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
-    // so we call buffer_segment directly here.  Per-segmented leveling and kinematics performed first.
+    #if ENABLED(DELTA)  // apply delta inverse_kinematics
 
-    inline void _O2 ubl_buffer_segment_raw(const float (&in_raw)[XYZE], const float &fr) {
+      DELTA_RAW_IK();
+      planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
 
-      #if ENABLED(SKEW_CORRECTION)
-        float raw[XYZE] = { in_raw[X_AXIS], in_raw[Y_AXIS], in_raw[Z_AXIS] };
-        planner.skew(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]);
-      #else
-        const float (&raw)[XYZE] = in_raw;
-      #endif
+    #elif IS_SCARA  // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
 
-      #if ENABLED(DELTA)  // apply delta inverse_kinematics
+      inverse_kinematics(raw);  // this writes delta[ABC] from raw[XYZE]
+                                // should move the feedrate scaling to scara inverse_kinematics
 
-        DELTA_RAW_IK();
-        planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], fr, active_extruder);
+      const float adiff = FABS(delta[A_AXIS] - scara_oldA),
+                  bdiff = FABS(delta[B_AXIS] - scara_oldB);
+      scara_oldA = delta[A_AXIS];
+      scara_oldB = delta[B_AXIS];
+      float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
 
-      #elif IS_SCARA  // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
+      planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
 
-        inverse_kinematics(raw);  // this writes delta[ABC] from raw[XYZE]
-                                  // should move the feedrate scaling to scara inverse_kinematics
-
-        const float adiff = FABS(delta[A_AXIS] - scara_oldA),
-                    bdiff = FABS(delta[B_AXIS] - scara_oldB);
-        scara_oldA = delta[A_AXIS];
-        scara_oldB = delta[B_AXIS];
-        float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
-
-        planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], in_raw[E_AXIS], s_feedrate, active_extruder);
-
-      #else // CARTESIAN
-
-        planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
-
-      #endif
-    }
-
-    #if IS_SCARA
-      #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
-    #elif ENABLED(DELTA)
-      #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
     #else // CARTESIAN
-      #ifdef LEVELED_SEGMENT_LENGTH
-        #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
-      #else
-        #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
-      #endif
+
+      planner.buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], in_raw[E_AXIS], fr, active_extruder);
+
+    #endif
+  }
+
+  #if IS_SCARA
+    #define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
+  #elif ENABLED(DELTA)
+    #define DELTA_SEGMENT_MIN_LENGTH 0.10 // mm (still subject to DELTA_SEGMENTS_PER_SECOND)
+  #else // CARTESIAN
+    #ifdef LEVELED_SEGMENT_LENGTH
+      #define DELTA_SEGMENT_MIN_LENGTH LEVELED_SEGMENT_LENGTH
+    #else
+      #define DELTA_SEGMENT_MIN_LENGTH 1.00 // mm (similar to G2/G3 arc segmentation)
+    #endif
+  #endif
+
+  /**
+   * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
+   * This calls planner.buffer_segment multiple times for small incremental moves.
+   * Returns true if did NOT move, false if moved (requires current_position update).
+   */
+
+  bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
+
+    if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS]))  // fail if moving outside reachable boundary
+      return true; // did not move, so current_position still accurate
+
+    const float total[XYZE] = {
+      rtarget[X_AXIS] - current_position[X_AXIS],
+      rtarget[Y_AXIS] - current_position[Y_AXIS],
+      rtarget[Z_AXIS] - current_position[Z_AXIS],
+      rtarget[E_AXIS] - current_position[E_AXIS]
+    };
+
+    const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]);  // total horizontal xy distance
+
+    #if IS_KINEMATIC
+      const float seconds = cartesian_xy_mm / feedrate;                                  // seconds to move xy distance at requested rate
+      uint16_t segments = lroundf(delta_segments_per_second * seconds),                  // preferred number of segments for distance @ feedrate
+               seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
+      NOMORE(segments, seglimit);                                                        // limit to minimum segment length (fewer segments)
+    #else
+      uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
     #endif
 
-    /**
-     * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
-     * This calls planner.buffer_segment multiple times for small incremental moves.
-     * Returns true if did NOT move, false if moved (requires current_position update).
-     */
+    NOLESS(segments, 1);                        // must have at least one segment
+    const float inv_segments = 1.0 / segments;  // divide once, multiply thereafter
 
-    bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float (&rtarget)[XYZE], const float &feedrate) {
+    #if IS_SCARA // scale the feed rate from mm/s to degrees/s
+      scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
+      scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
+      scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
+    #endif
 
-      if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS]))  // fail if moving outside reachable boundary
-        return true; // did not move, so current_position still accurate
+    const float diff[XYZE] = {
+      total[X_AXIS] * inv_segments,
+      total[Y_AXIS] * inv_segments,
+      total[Z_AXIS] * inv_segments,
+      total[E_AXIS] * inv_segments
+    };
 
-      const float total[XYZE] = {
-        rtarget[X_AXIS] - current_position[X_AXIS],
-        rtarget[Y_AXIS] - current_position[Y_AXIS],
-        rtarget[Z_AXIS] - current_position[Z_AXIS],
-        rtarget[E_AXIS] - current_position[E_AXIS]
-      };
+    // Note that E segment distance could vary slightly as z mesh height
+    // changes for each segment, but small enough to ignore.
 
-      const float cartesian_xy_mm = HYPOT(total[X_AXIS], total[Y_AXIS]);  // total horizontal xy distance
+    float raw[XYZE] = {
+      current_position[X_AXIS],
+      current_position[Y_AXIS],
+      current_position[Z_AXIS],
+      current_position[E_AXIS]
+    };
 
-      #if IS_KINEMATIC
-        const float seconds = cartesian_xy_mm / feedrate;                                  // seconds to move xy distance at requested rate
-        uint16_t segments = lroundf(delta_segments_per_second * seconds),                  // preferred number of segments for distance @ feedrate
-                 seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
-        NOMORE(segments, seglimit);                                                        // limit to minimum segment length (fewer segments)
-      #else
-        uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
-      #endif
-
-      NOLESS(segments, 1);                        // must have at least one segment
-      const float inv_segments = 1.0 / segments;  // divide once, multiply thereafter
-
-      #if IS_SCARA // scale the feed rate from mm/s to degrees/s
-        scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
-        scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
-        scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
-      #endif
-
-      const float diff[XYZE] = {
-        total[X_AXIS] * inv_segments,
-        total[Y_AXIS] * inv_segments,
-        total[Z_AXIS] * inv_segments,
-        total[E_AXIS] * inv_segments
-      };
-
-      // Note that E segment distance could vary slightly as z mesh height
-      // changes for each segment, but small enough to ignore.
-
-      float raw[XYZE] = {
-        current_position[X_AXIS],
-        current_position[Y_AXIS],
-        current_position[Z_AXIS],
-        current_position[E_AXIS]
-      };
-
-      // Only compute leveling per segment if ubl active and target below z_fade_height.
-      if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) {   // no mesh leveling
-        while (--segments) {
-          LOOP_XYZE(i) raw[i] += diff[i];
-          ubl_buffer_segment_raw(raw, feedrate);
-        }
-        ubl_buffer_segment_raw(rtarget, feedrate);
-        return false; // moved but did not set_current_from_destination();
+    // Only compute leveling per segment if ubl active and target below z_fade_height.
+    if (!planner.leveling_active || !planner.leveling_active_at_z(rtarget[Z_AXIS])) {   // no mesh leveling
+      while (--segments) {
+        LOOP_XYZE(i) raw[i] += diff[i];
+        ubl_buffer_segment_raw(raw, feedrate);
       }
-
-      // Otherwise perform per-segment leveling
-
-      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
-        const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
-      #endif
-
-      // increment to first segment destination
-      LOOP_XYZE(i) raw[i] += diff[i];
-
-      for(;;) {  // for each mesh cell encountered during the move
-
-        // Compute mesh cell invariants that remain constant for all segments within cell.
-        // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
-        // the bilinear interpolation from the adjacent cell within the mesh will still work.
-        // Inner loop will exit each time (because out of cell bounds) but will come back
-        // in top of loop and again re-find same adjacent cell and use it, just less efficient
-        // for mesh inset area.
-
-        int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
-               cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
-
-        cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
-        cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
-
-        const float x0 = mesh_index_to_xpos(cell_xi),   // 64 byte table lookup avoids mul+add
-                    y0 = mesh_index_to_ypos(cell_yi);
-
-        float z_x0y0 = z_values[cell_xi  ][cell_yi  ],  // z at lower left corner
-              z_x1y0 = z_values[cell_xi+1][cell_yi  ],  // z at upper left corner
-              z_x0y1 = z_values[cell_xi  ][cell_yi+1],  // z at lower right corner
-              z_x1y1 = z_values[cell_xi+1][cell_yi+1];  // z at upper right corner
-
-        if (isnan(z_x0y0)) z_x0y0 = 0;              // ideally activating planner.leveling_active (G29 A)
-        if (isnan(z_x1y0)) z_x1y0 = 0;              //   should refuse if any invalid mesh points
-        if (isnan(z_x0y1)) z_x0y1 = 0;              //   in order to avoid isnan tests per cell,
-        if (isnan(z_x1y1)) z_x1y1 = 0;              //   thus guessing zero for undefined points
-
-        float cx = raw[X_AXIS] - x0,   // cell-relative x and y
-              cy = raw[Y_AXIS] - y0;
-
-        const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)),   // z slope per x along y0 (lower left to lower right)
-                    z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST));   // z slope per x along y1 (upper left to upper right)
-
-              float z_cxy0 = z_x0y0 + z_xmy0 * cx;            // z height along y0 at cx (changes for each cx in cell)
-
-        const float z_cxy1 = z_x0y1 + z_xmy1 * cx,            // z height along y1 at cx
-                    z_cxyd = z_cxy1 - z_cxy0;                 // z height difference along cx from y0 to y1
-
-              float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST));  // z slope per y along cx from y0 to y1 (changes for each cx in cell)
-
-        //    float z_cxcy = z_cxy0 + z_cxym * cy;            // interpolated mesh z height along cx at cy (do inside the segment loop)
-
-        // As subsequent segments step through this cell, the z_cxy0 intercept will change
-        // and the z_cxym slope will change, both as a function of cx within the cell, and
-        // each change by a constant for fixed segment lengths.
-
-        const float z_sxy0 = z_xmy0 * diff[X_AXIS],                                     // per-segment adjustment to z_cxy0
-                    z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS];  // per-segment adjustment to z_cxym
-
-        for(;;) {  // for all segments within this mesh cell
-
-          if (--segments == 0)                      // if this is last segment, use rtarget for exact
-            COPY(raw, rtarget);
-
-          const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
-            #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
-              * fade_scaling_factor                   // apply fade factor to interpolated mesh height
-            #endif
-          ;
-
-          const float z = raw[Z_AXIS];
-          raw[Z_AXIS] += z_cxcy;
-          ubl_buffer_segment_raw(raw, feedrate);
-          raw[Z_AXIS] = z;
-
-          if (segments == 0)                        // done with last segment
-            return false;                           // did not set_current_from_destination()
-
-          LOOP_XYZE(i) raw[i] += diff[i];
-
-          cx += diff[X_AXIS];
-          cy += diff[Y_AXIS];
-
-          if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST))    // done within this cell, break to next
-            break;
-
-          // Next segment still within same mesh cell, adjust the per-segment
-          // slope and intercept to compute next z height.
-
-          z_cxy0 += z_sxy0;   // adjust z_cxy0 by per-segment z_sxy0
-          z_cxym += z_sxym;   // adjust z_cxym by per-segment z_sxym
-
-        } // segment loop
-      } // cell loop
+      ubl_buffer_segment_raw(rtarget, feedrate);
+      return false; // moved but did not set_current_from_destination();
     }
 
+    // Otherwise perform per-segment leveling
+
+    #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+      const float fade_scaling_factor = planner.fade_scaling_factor_for_z(rtarget[Z_AXIS]);
+    #endif
+
+    // increment to first segment destination
+    LOOP_XYZE(i) raw[i] += diff[i];
+
+    for(;;) {  // for each mesh cell encountered during the move
+
+      // Compute mesh cell invariants that remain constant for all segments within cell.
+      // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
+      // the bilinear interpolation from the adjacent cell within the mesh will still work.
+      // Inner loop will exit each time (because out of cell bounds) but will come back
+      // in top of loop and again re-find same adjacent cell and use it, just less efficient
+      // for mesh inset area.
+
+      int8_t cell_xi = (raw[X_AXIS] - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
+             cell_yi = (raw[Y_AXIS] - (MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
+
+      cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
+      cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
+
+      const float x0 = mesh_index_to_xpos(cell_xi),   // 64 byte table lookup avoids mul+add
+                  y0 = mesh_index_to_ypos(cell_yi);
+
+      float z_x0y0 = z_values[cell_xi  ][cell_yi  ],  // z at lower left corner
+            z_x1y0 = z_values[cell_xi+1][cell_yi  ],  // z at upper left corner
+            z_x0y1 = z_values[cell_xi  ][cell_yi+1],  // z at lower right corner
+            z_x1y1 = z_values[cell_xi+1][cell_yi+1];  // z at upper right corner
+
+      if (isnan(z_x0y0)) z_x0y0 = 0;              // ideally activating planner.leveling_active (G29 A)
+      if (isnan(z_x1y0)) z_x1y0 = 0;              //   should refuse if any invalid mesh points
+      if (isnan(z_x0y1)) z_x0y1 = 0;              //   in order to avoid isnan tests per cell,
+      if (isnan(z_x1y1)) z_x1y1 = 0;              //   thus guessing zero for undefined points
+
+      float cx = raw[X_AXIS] - x0,   // cell-relative x and y
+            cy = raw[Y_AXIS] - y0;
+
+      const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)),   // z slope per x along y0 (lower left to lower right)
+                  z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST));   // z slope per x along y1 (upper left to upper right)
+
+            float z_cxy0 = z_x0y0 + z_xmy0 * cx;            // z height along y0 at cx (changes for each cx in cell)
+
+      const float z_cxy1 = z_x0y1 + z_xmy1 * cx,            // z height along y1 at cx
+                  z_cxyd = z_cxy1 - z_cxy0;                 // z height difference along cx from y0 to y1
+
+            float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST));  // z slope per y along cx from y0 to y1 (changes for each cx in cell)
+
+      //    float z_cxcy = z_cxy0 + z_cxym * cy;            // interpolated mesh z height along cx at cy (do inside the segment loop)
+
+      // As subsequent segments step through this cell, the z_cxy0 intercept will change
+      // and the z_cxym slope will change, both as a function of cx within the cell, and
+      // each change by a constant for fixed segment lengths.
+
+      const float z_sxy0 = z_xmy0 * diff[X_AXIS],                                     // per-segment adjustment to z_cxy0
+                  z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * diff[X_AXIS];  // per-segment adjustment to z_cxym
+
+      for(;;) {  // for all segments within this mesh cell
+
+        if (--segments == 0)                      // if this is last segment, use rtarget for exact
+          COPY(raw, rtarget);
+
+        const float z_cxcy = (z_cxy0 + z_cxym * cy) // interpolated mesh z height along cx at cy
+          #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
+            * fade_scaling_factor                   // apply fade factor to interpolated mesh height
+          #endif
+        ;
+
+        const float z = raw[Z_AXIS];
+        raw[Z_AXIS] += z_cxcy;
+        ubl_buffer_segment_raw(raw, feedrate);
+        raw[Z_AXIS] = z;
+
+        if (segments == 0)                        // done with last segment
+          return false;                           // did not set_current_from_destination()
+
+        LOOP_XYZE(i) raw[i] += diff[i];
+
+        cx += diff[X_AXIS];
+        cy += diff[Y_AXIS];
+
+        if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST))    // done within this cell, break to next
+          break;
+
+        // Next segment still within same mesh cell, adjust the per-segment
+        // slope and intercept to compute next z height.
+
+        z_cxy0 += z_sxy0;   // adjust z_cxy0 by per-segment z_sxy0
+        z_cxym += z_sxym;   // adjust z_cxym by per-segment z_sxym
+
+      } // segment loop
+    } // cell loop
+  }
+
 #endif // UBL_SEGMENTED
 
 #endif // AUTO_BED_LEVELING_UBL