From 93ba5bddd76b9dc2b26659cf9cce5e456f540737 Mon Sep 17 00:00:00 2001
From: Scott Lahteine <sourcetree@thinkyhead.com>
Date: Fri, 15 Jul 2016 18:49:34 -0700
Subject: [PATCH 1/4] Append units to feedrate variables

---
 Marlin/Marlin.h                               |  14 +-
 Marlin/Marlin_main.cpp                        | 199 +++++++++---------
 Marlin/configuration_store.cpp                |  48 ++---
 Marlin/dogm_lcd_implementation.h              |   2 +-
 Marlin/planner.cpp                            |  22 +-
 Marlin/planner.h                              |  12 +-
 Marlin/planner_bezier.cpp                     |   6 +-
 Marlin/planner_bezier.h                       |   2 +-
 Marlin/ultralcd.cpp                           |  58 ++---
 .../ultralcd_implementation_hitachi_HD44780.h |   2 +-
 10 files changed, 189 insertions(+), 176 deletions(-)

diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h
index bc1f567fe4..f471e13f9f 100644
--- a/Marlin/Marlin.h
+++ b/Marlin/Marlin.h
@@ -296,8 +296,18 @@ inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
   #define CRITICAL_SECTION_END    SREG = _sreg;
 #endif
 
+/**
+ * Feedrate scaling and conversion
+ */
+extern int feedrate_percentage;
+
+#define MMM_TO_MMS(MM_M) ((MM_M)/60.0)
+#define MMS_TO_MMM(MM_S) ((MM_S)*60.0)
+#define MMM_SCALED(MM_M) ((MM_M)*feedrate_percentage/100.0)
+#define MMS_SCALED(MM_S) MMM_SCALED(MM_S)
+#define MMM_TO_MMS_SCALED(MM_M) (MMS_SCALED(MMM_TO_MMS(MM_M)))
+
 extern bool axis_relative_modes[];
-extern int feedrate_multiplier;
 extern bool volumetric_enabled;
 extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
 extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
@@ -385,7 +395,7 @@ float code_value_temp_diff();
   extern bool autoretract_enabled;
   extern bool retracted[EXTRUDERS]; // extruder[n].retracted
   extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift;
-  extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
+  extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate_mm_s;
 #endif
 
 // Print job timer
diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index e7355292f8..140dd5def6 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -280,7 +280,6 @@ bool Running = true;
 
 uint8_t marlin_debug_flags = DEBUG_NONE;
 
-static float feedrate = 1500.0, saved_feedrate;
 float current_position[NUM_AXIS] = { 0.0 };
 static float destination[NUM_AXIS] = { 0.0 };
 bool axis_known_position[3] = { false };
@@ -302,11 +301,15 @@ static uint8_t cmd_queue_index_r = 0,
   TempUnit input_temp_units = TEMPUNIT_C;
 #endif
 
-const float homing_feedrate[] = HOMING_FEEDRATE;
+/**
+ * Feed rates are often configured with mm/m
+ * but the planner and stepper like mm/s units.
+ */
+const float homing_feedrate_mm_m[] = HOMING_FEEDRATE;
+static float feedrate_mm_m = 1500.0, saved_feedrate_mm_m;
+int feedrate_percentage = 100, saved_feedrate_percentage;
 
 bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
-int feedrate_multiplier = 100; //100->1 200->2
-int saved_feedrate_multiplier;
 int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
 bool volumetric_enabled = false;
 float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
@@ -382,16 +385,16 @@ static uint8_t target_extruder;
   float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
 #endif
 
-#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
+#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
 
 #if ENABLED(AUTO_BED_LEVELING_FEATURE)
-  int xy_probe_speed = XY_PROBE_SPEED;
+  int xy_probe_feedrate_mm_m = XY_PROBE_SPEED;
   bool bed_leveling_in_progress = false;
-  #define XY_PROBE_FEEDRATE xy_probe_speed
+  #define XY_PROBE_FEEDRATE_MM_M xy_probe_feedrate_mm_m
 #elif defined(XY_PROBE_SPEED)
-  #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
+  #define XY_PROBE_FEEDRATE_MM_M XY_PROBE_SPEED
 #else
-  #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
+  #define XY_PROBE_FEEDRATE_MM_M MMS_TO_MMM(PLANNER_XY_FEEDRATE())
 #endif
 
 #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
@@ -430,7 +433,7 @@ static uint8_t target_extruder;
   float retract_zlift = RETRACT_ZLIFT;
   float retract_recover_length = RETRACT_RECOVER_LENGTH;
   float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
-  float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+  float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
 
 #endif // FWRETRACT
 
@@ -1598,7 +1601,7 @@ inline void set_homing_bump_feedrate(AxisEnum axis) {
     SERIAL_ECHO_START;
     SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
   }
-  feedrate = homing_feedrate[axis] / hbd;
+  feedrate_mm_m = homing_feedrate_mm_m[axis] / hbd;
 }
 //
 // line_to_current_position
@@ -1606,19 +1609,19 @@ inline void set_homing_bump_feedrate(AxisEnum axis) {
 // (or from wherever it has been told it is located).
 //
 inline void line_to_current_position() {
-  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
+  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
 }
 inline void line_to_z(float zPosition) {
-  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
+  planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], MMM_TO_MMS(feedrate_mm_m), active_extruder);
 }
 //
 // line_to_destination
 // Move the planner, not necessarily synced with current_position
 //
-inline void line_to_destination(float mm_m) {
-  planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
+inline void line_to_destination(float fr_mm_m) {
+  planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS(fr_mm_m), active_extruder);
 }
-inline void line_to_destination() { line_to_destination(feedrate); }
+inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
 
 /**
  * sync_plan_position
@@ -1646,7 +1649,7 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
     #endif
     refresh_cmd_timeout();
     calculate_delta(destination);
-    planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
+    planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
     set_current_to_destination();
   }
 #endif
@@ -1655,8 +1658,8 @@ inline void set_destination_to_current() { memcpy(destination, current_position,
  *  Plan a move to (X, Y, Z) and set the current_position
  *  The final current_position may not be the one that was requested
  */
-static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
-  float old_feedrate = feedrate;
+static void do_blocking_move_to(float x, float y, float z, float fr_mm_m = 0.0) {
+  float old_feedrate_mm_m = feedrate_mm_m;
 
   #if ENABLED(DEBUG_LEVELING_FEATURE)
     if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), NULL, x, y, z);
@@ -1664,7 +1667,7 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
 
   #if ENABLED(DELTA)
 
-    feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
+    feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
 
     destination[X_AXIS] = x;
     destination[Y_AXIS] = y;
@@ -1679,19 +1682,19 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
 
     // If Z needs to raise, do it before moving XY
     if (current_position[Z_AXIS] < z) {
-      feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
+      feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
       current_position[Z_AXIS] = z;
       line_to_current_position();
     }
 
-    feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
+    feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : XY_PROBE_FEEDRATE_MM_M;
     current_position[X_AXIS] = x;
     current_position[Y_AXIS] = y;
     line_to_current_position();
 
     // If Z needs to lower, do it after moving XY
     if (current_position[Z_AXIS] > z) {
-      feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
+      feedrate_mm_m = (fr_mm_m != 0.0) ? fr_mm_m : homing_feedrate_mm_m[Z_AXIS];
       current_position[Z_AXIS] = z;
       line_to_current_position();
     }
@@ -1700,23 +1703,23 @@ static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0
 
   stepper.synchronize();
 
-  feedrate = old_feedrate;
+  feedrate_mm_m = old_feedrate_mm_m;
 }
 
-inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
-  do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
+inline void do_blocking_move_to_x(float x, float fr_mm_m = 0.0) {
+  do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_m);
 }
 
 inline void do_blocking_move_to_y(float y) {
   do_blocking_move_to(current_position[X_AXIS], y, current_position[Z_AXIS]);
 }
 
-inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
-  do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
+inline void do_blocking_move_to_xy(float x, float y, float fr_mm_m = 0.0) {
+  do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_m);
 }
 
-inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
-  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
+inline void do_blocking_move_to_z(float z, float fr_mm_m = 0.0) {
+  do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_m);
 }
 
 //
@@ -1732,9 +1735,9 @@ static void setup_for_endstop_or_probe_move() {
   #if ENABLED(DEBUG_LEVELING_FEATURE)
     if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
   #endif
-  saved_feedrate = feedrate;
-  saved_feedrate_multiplier = feedrate_multiplier;
-  feedrate_multiplier = 100;
+  saved_feedrate_mm_m = feedrate_mm_m;
+  saved_feedrate_percentage = feedrate_percentage;
+  feedrate_percentage = 100;
   refresh_cmd_timeout();
 }
 
@@ -1742,8 +1745,8 @@ static void clean_up_after_endstop_or_probe_move() {
   #if ENABLED(DEBUG_LEVELING_FEATURE)
     if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
   #endif
-  feedrate = saved_feedrate;
-  feedrate_multiplier = saved_feedrate_multiplier;
+  feedrate_mm_m = saved_feedrate_mm_m;
+  feedrate_percentage = saved_feedrate_percentage;
   refresh_cmd_timeout();
 }
 
@@ -2061,7 +2064,7 @@ static void clean_up_after_endstop_or_probe_move() {
   // at the height where the probe triggered.
   static float run_z_probe() {
 
-    float old_feedrate = feedrate;
+    float old_feedrate_mm_m = feedrate_mm_m;
 
     // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
     refresh_cmd_timeout();
@@ -2076,7 +2079,7 @@ static void clean_up_after_endstop_or_probe_move() {
       #endif
 
       // move down slowly until you find the bed
-      feedrate = homing_feedrate[Z_AXIS] / 4;
+      feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS] / 4;
       destination[Z_AXIS] = -10;
       prepare_move_to_destination_raw(); // this will also set_current_to_destination
       stepper.synchronize();
@@ -2100,7 +2103,7 @@ static void clean_up_after_endstop_or_probe_move() {
         planner.bed_level_matrix.set_to_identity();
       #endif
 
-      feedrate = homing_feedrate[Z_AXIS];
+      feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
 
       // Move down until the Z probe (or endstop?) is triggered
       float zPosition = -(Z_MAX_LENGTH + 10);
@@ -2139,7 +2142,7 @@ static void clean_up_after_endstop_or_probe_move() {
 
     SYNC_PLAN_POSITION_KINEMATIC();
 
-    feedrate = old_feedrate;
+    feedrate_mm_m = old_feedrate_mm_m;
 
     return current_position[Z_AXIS];
   }
@@ -2164,7 +2167,7 @@ static void clean_up_after_endstop_or_probe_move() {
       }
     #endif
 
-    float old_feedrate = feedrate;
+    float old_feedrate_mm_m = feedrate_mm_m;
 
     // Ensure a minimum height before moving the probe
     do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
@@ -2177,7 +2180,7 @@ static void clean_up_after_endstop_or_probe_move() {
         SERIAL_ECHOLNPGM(")");
       }
     #endif
-    feedrate = XY_PROBE_FEEDRATE;
+    feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
     do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
 
     #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -2214,7 +2217,7 @@ static void clean_up_after_endstop_or_probe_move() {
       if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
     #endif
 
-    feedrate = old_feedrate;
+    feedrate_mm_m = old_feedrate_mm_m;
 
     return measured_z;
   }
@@ -2415,7 +2418,7 @@ static void homeaxis(AxisEnum axis) {
 
   // Move towards the endstop until an endstop is triggered
   destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
-  feedrate = homing_feedrate[axis];
+  feedrate_mm_m = homing_feedrate_mm_m[axis];
   line_to_destination();
   stepper.synchronize();
 
@@ -2455,7 +2458,7 @@ static void homeaxis(AxisEnum axis) {
       sync_plan_position();
 
       // Move to the adjusted endstop height
-      feedrate = homing_feedrate[axis];
+      feedrate_mm_m = homing_feedrate_mm_m[axis];
       destination[Z_AXIS] = adj;
       line_to_destination();
       stepper.synchronize();
@@ -2519,13 +2522,13 @@ static void homeaxis(AxisEnum axis) {
 
     if (retracting == retracted[active_extruder]) return;
 
-    float old_feedrate = feedrate;
+    float old_feedrate_mm_m = feedrate_mm_m;
 
     set_destination_to_current();
 
     if (retracting) {
 
-      feedrate = retract_feedrate_mm_s * 60;
+      feedrate_mm_m = MMS_TO_MMM(retract_feedrate_mm_s);
       current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
       sync_plan_position_e();
       prepare_move_to_destination();
@@ -2543,14 +2546,14 @@ static void homeaxis(AxisEnum axis) {
         SYNC_PLAN_POSITION_KINEMATIC();
       }
 
-      feedrate = retract_recover_feedrate * 60;
+      feedrate_mm_m = MMM_TO_MMS(retract_recover_feedrate_mm_s);
       float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
       current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
       sync_plan_position_e();
       prepare_move_to_destination();
     }
 
-    feedrate = old_feedrate;
+    feedrate_mm_m = old_feedrate_mm_m;
     retracted[active_extruder] = retracting;
 
   } // retract()
@@ -2612,10 +2615,10 @@ void gcode_get_destination() {
   }
 
   if (code_seen('F') && code_value_linear_units() > 0.0)
-    feedrate = code_value_linear_units();
+    feedrate_mm_m = code_value_linear_units();
 
   #if ENABLED(PRINTCOUNTER)
-    if(!DEBUGGING(DRYRUN))
+    if (!DEBUGGING(DRYRUN))
       print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
   #endif
 
@@ -2845,7 +2848,7 @@ inline void gcode_G4() {
 
     destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
     destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
-    feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
+    feedrate_mm_m = min(homing_feedrate_mm_m[X_AXIS], homing_feedrate_mm_m[Y_AXIS]) * sqrt(sq(mlratio) + 1);
     line_to_destination();
     stepper.synchronize();
     endstops.hit_on_purpose(); // clear endstop hit flags
@@ -2942,7 +2945,7 @@ inline void gcode_G28() {
 
     // Move all carriages up together until the first endstop is hit.
     for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
-    feedrate = 1.732 * homing_feedrate[X_AXIS];
+    feedrate_mm_m = 1.732 * homing_feedrate_mm_m[X_AXIS];
     line_to_destination();
     stepper.synchronize();
     endstops.hit_on_purpose(); // clear endstop hit flags
@@ -3163,7 +3166,7 @@ inline void gcode_G28() {
         #if ENABLED(MESH_G28_REST_ORIGIN)
           current_position[Z_AXIS] = 0.0;
           set_destination_to_current();
-          feedrate = homing_feedrate[Z_AXIS];
+          feedrate_mm_m = homing_feedrate_mm_m[Z_AXIS];
           line_to_destination();
           stepper.synchronize();
           #if ENABLED(DEBUG_LEVELING_FEATURE)
@@ -3223,8 +3226,8 @@ inline void gcode_G28() {
   enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
 
   inline void _mbl_goto_xy(float x, float y) {
-    float old_feedrate = feedrate;
-    feedrate = homing_feedrate[X_AXIS];
+    float old_feedrate_mm_m = feedrate_mm_m;
+    feedrate_mm_m = homing_feedrate_mm_m[X_AXIS];
 
     current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
       #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
@@ -3244,7 +3247,7 @@ inline void gcode_G28() {
       line_to_current_position();
     #endif
 
-    feedrate = old_feedrate;
+    feedrate_mm_m = old_feedrate_mm_m;
     stepper.synchronize();
   }
 
@@ -3491,7 +3494,7 @@ inline void gcode_G28() {
         }
       #endif
 
-      xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
+      xy_probe_feedrate_mm_m = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
 
       int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
           right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
@@ -5162,7 +5165,7 @@ inline void gcode_M92() {
         if (value < 20.0) {
           float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
           planner.max_e_jerk *= factor;
-          planner.max_feedrate[i] *= factor;
+          planner.max_feedrate_mm_s[i] *= factor;
           planner.max_acceleration_steps_per_s2[i] *= factor;
         }
         planner.axis_steps_per_mm[i] = value;
@@ -5371,7 +5374,7 @@ inline void gcode_M201() {
 inline void gcode_M203() {
   for (int8_t i = 0; i < NUM_AXIS; i++)
     if (code_seen(axis_codes[i]))
-      planner.max_feedrate[i] = code_value_axis_units(i);
+      planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
 }
 
 /**
@@ -5417,8 +5420,8 @@ inline void gcode_M204() {
  *    E = Max E Jerk (units/sec^2)
  */
 inline void gcode_M205() {
-  if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
-  if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
+  if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
+  if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
   if (code_seen('B')) planner.min_segment_time = code_value_millis();
   if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
   if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
@@ -5516,7 +5519,7 @@ inline void gcode_M206() {
    */
   inline void gcode_M207() {
     if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
-    if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
+    if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
     if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
     #if EXTRUDERS > 1
       if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
@@ -5528,11 +5531,11 @@ inline void gcode_M206() {
    *
    *   S[+units]    retract_recover_length (in addition to M207 S*)
    *   W[+units]    retract_recover_length_swap (multi-extruder)
-   *   F[units/min] retract_recover_feedrate
+   *   F[units/min] retract_recover_feedrate_mm_s
    */
   inline void gcode_M208() {
     if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
-    if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
+    if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
     #if EXTRUDERS > 1
       if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
     #endif
@@ -5603,7 +5606,7 @@ inline void gcode_M206() {
  * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  */
 inline void gcode_M220() {
-  if (code_seen('S')) feedrate_multiplier = code_value_int();
+  if (code_seen('S')) feedrate_percentage = code_value_int();
 }
 
 /**
@@ -6307,10 +6310,10 @@ inline void gcode_M503() {
 
     // Define runplan for move axes
     #if ENABLED(DELTA)
-      #define RUNPLAN(RATE) calculate_delta(destination); \
-                            planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
+      #define RUNPLAN(RATE_MM_S) calculate_delta(destination); \
+                                 planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
     #else
-      #define RUNPLAN(RATE) line_to_destination(RATE * 60);
+      #define RUNPLAN(RATE_MM_S) line_to_destination(MMS_TO_MMM(RATE_MM_S));
     #endif
 
     KEEPALIVE_STATE(IN_HANDLER);
@@ -6725,14 +6728,14 @@ inline void gcode_T(uint8_t tmp_extruder) {
         return;
       }
 
-      float old_feedrate = feedrate;
+      float old_feedrate_mm_m = feedrate_mm_m;
 
       if (code_seen('F')) {
-        float next_feedrate = code_value_axis_units(X_AXIS);
-        if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
+        float next_feedrate_mm_m = code_value_axis_units(X_AXIS);
+        if (next_feedrate_mm_m > 0.0) old_feedrate_mm_m = feedrate_mm_m = next_feedrate_mm_m;
       }
       else
-        feedrate = XY_PROBE_FEEDRATE;
+        feedrate_mm_m = XY_PROBE_FEEDRATE_MM_M;
 
       if (tmp_extruder != active_extruder) {
         bool no_move = code_seen('S') && code_value_bool();
@@ -6775,7 +6778,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
                 current_position[Y_AXIS],
                 current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
                 current_position[E_AXIS],
-                planner.max_feedrate[i == 1 ? X_AXIS : Z_AXIS],
+                planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
                 active_extruder
               );
             stepper.synchronize();
@@ -6838,7 +6841,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
               current_position[Y_AXIS],
               current_position[Z_AXIS] + z_raise,
               current_position[E_AXIS],
-              planner.max_feedrate[Z_AXIS],
+              planner.max_feedrate_mm_s[Z_AXIS],
               active_extruder
             );
             stepper.synchronize();
@@ -6853,7 +6856,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
                 current_position[Y_AXIS],
                 current_position[Z_AXIS] + z_diff,
                 current_position[E_AXIS],
-                planner.max_feedrate[Z_AXIS],
+                planner.max_feedrate_mm_s[Z_AXIS],
                 active_extruder
               );
               stepper.synchronize();
@@ -6984,7 +6987,7 @@ inline void gcode_T(uint8_t tmp_extruder) {
         enable_solenoid_on_active_extruder();
       #endif // EXT_SOLENOID
 
-      feedrate = old_feedrate;
+      feedrate_mm_m = old_feedrate_mm_m;
 
     #else // HOTENDS <= 1
 
@@ -7837,9 +7840,9 @@ void clamp_to_software_endstops(float target[3]) {
 #if ENABLED(MESH_BED_LEVELING)
 
 // This function is used to split lines on mesh borders so each segment is only part of one mesh area
-void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
+void mesh_buffer_line(float x, float y, float z, const float e, float fr_mm_s, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
   if (!mbl.active()) {
-    planner.buffer_line(x, y, z, e, feed_rate, extruder);
+    planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
     set_current_to_destination();
     return;
   }
@@ -7853,7 +7856,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
   NOMORE(cy,  MESH_NUM_Y_POINTS - 2);
   if (pcx == cx && pcy == cy) {
     // Start and end on same mesh square
-    planner.buffer_line(x, y, z, e, feed_rate, extruder);
+    planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
     set_current_to_destination();
     return;
   }
@@ -7892,7 +7895,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
   }
   else {
     // Already split on a border
-    planner.buffer_line(x, y, z, e, feed_rate, extruder);
+    planner.buffer_line(x, y, z, e, fr_mm_s, extruder);
     set_current_to_destination();
     return;
   }
@@ -7901,12 +7904,12 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
   destination[Y_AXIS] = ny;
   destination[Z_AXIS] = nz;
   destination[E_AXIS] = ne;
-  mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
+  mesh_buffer_line(nx, ny, nz, ne, fr_mm_s, extruder, x_splits, y_splits);
   destination[X_AXIS] = x;
   destination[Y_AXIS] = y;
   destination[Z_AXIS] = z;
   destination[E_AXIS] = e;
-  mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
+  mesh_buffer_line(x, y, z, e, fr_mm_s, extruder, x_splits, y_splits);
 }
 #endif  // MESH_BED_LEVELING
 
@@ -7919,8 +7922,8 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
     float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
     if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
     if (cartesian_mm < 0.000001) return false;
-    float _feedrate = feedrate * feedrate_multiplier / 6000.0;
-    float seconds = cartesian_mm / _feedrate;
+    float _feedrate_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
+    float seconds = cartesian_mm / _feedrate_mm_s;
     int steps = max(1, int(delta_segments_per_second * seconds));
     float inv_steps = 1.0/steps;
 
@@ -7944,7 +7947,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
       //DEBUG_POS("prepare_delta_move_to", target);
       //DEBUG_POS("prepare_delta_move_to", delta);
 
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
     }
     return true;
   }
@@ -7963,7 +7966,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
         // move duplicate extruder into correct duplication position.
         planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
         planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
-                         current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
+                         current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
         SYNC_PLAN_POSITION_KINEMATIC();
         stepper.synchronize();
         extruder_duplication_enabled = true;
@@ -7983,9 +7986,9 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
         }
         delayed_move_time = 0;
         // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
-        planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
+        planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
         planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
-        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
+        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
         active_extruder_parked = false;
       }
     }
@@ -7997,16 +8000,16 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
 #if DISABLED(DELTA) && DISABLED(SCARA)
 
   inline bool prepare_move_to_destination_cartesian() {
-    // Do not use feedrate_multiplier for E or Z only moves
+    // Do not use feedrate_percentage for E or Z only moves
     if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
       line_to_destination();
     }
     else {
       #if ENABLED(MESH_BED_LEVELING)
-        mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
+        mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
         return false;
       #else
-        line_to_destination(feedrate * feedrate_multiplier / 100.0);
+        line_to_destination(MMM_SCALED(feedrate_mm_m));
       #endif
     }
     return true;
@@ -8150,7 +8153,7 @@ void prepare_move_to_destination() {
     // Initialize the extruder axis
     arc_target[E_AXIS] = current_position[E_AXIS];
 
-    float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
+    float fr_mm_s = MMM_TO_MMS_SCALED(feedrate_mm_m);
 
     millis_t next_idle_ms = millis() + 200UL;
 
@@ -8194,9 +8197,9 @@ void prepare_move_to_destination() {
         #if ENABLED(AUTO_BED_LEVELING_FEATURE)
           adjust_delta(arc_target);
         #endif
-        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
+        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
       #else
-        planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
+        planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
       #endif
     }
 
@@ -8206,9 +8209,9 @@ void prepare_move_to_destination() {
       #if ENABLED(AUTO_BED_LEVELING_FEATURE)
         adjust_delta(target);
       #endif
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
     #else
-      planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
+      planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
     #endif
 
     // As far as the parser is concerned, the position is now == target. In reality the
@@ -8221,7 +8224,7 @@ void prepare_move_to_destination() {
 #if ENABLED(BEZIER_CURVE_SUPPORT)
 
   void plan_cubic_move(const float offset[4]) {
-    cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
+    cubic_b_spline(current_position, destination, offset, MMM_TO_MMS_SCALED(feedrate_mm_m), active_extruder);
 
     // As far as the parser is concerned, the position is now == target. In reality the
     // motion control system might still be processing the action and the real tool position
@@ -8547,7 +8550,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
       float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
       planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
                        destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
-                       (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
+                       MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
       current_position[E_AXIS] = oldepos;
       destination[E_AXIS] = oldedes;
       planner.set_e_position_mm(oldepos);
diff --git a/Marlin/configuration_store.cpp b/Marlin/configuration_store.cpp
index 4cf9f5d367..937e105b36 100644
--- a/Marlin/configuration_store.cpp
+++ b/Marlin/configuration_store.cpp
@@ -49,13 +49,13 @@
  *  104  EEPROM Checksum (uint16_t)
  *
  *  106  M92 XYZE  planner.axis_steps_per_mm (float x4)
- *  122  M203 XYZE planner.max_feedrate (float x4)
+ *  122  M203 XYZE planner.max_feedrate_mm_s (float x4)
  *  138  M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4)
  *  154  M204 P    planner.acceleration (float)
  *  158  M204 R    planner.retract_acceleration (float)
  *  162  M204 T    planner.travel_acceleration (float)
- *  166  M205 S    planner.min_feedrate (float)
- *  170  M205 T    planner.min_travel_feedrate (float)
+ *  166  M205 S    planner.min_feedrate_mm_s (float)
+ *  170  M205 T    planner.min_travel_feedrate_mm_s (float)
  *  174  M205 B    planner.min_segment_time (ulong)
  *  178  M205 X    planner.max_xy_jerk (float)
  *  182  M205 Z    planner.max_z_jerk (float)
@@ -116,7 +116,7 @@
  *  406  M207 Z    retract_zlift (float)
  *  410  M208 S    retract_recover_length (float)
  *  414  M208 W    retract_recover_length_swap (float)
- *  418  M208 F    retract_recover_feedrate (float)
+ *  418  M208 F    retract_recover_feedrate_mm_s (float)
  *
  * Volumetric Extrusion:
  *  422  M200 D    volumetric_enabled (bool)
@@ -201,13 +201,13 @@ void Config_StoreSettings()  {
   eeprom_checksum = 0; // clear before first "real data"
 
   EEPROM_WRITE_VAR(i, planner.axis_steps_per_mm);
-  EEPROM_WRITE_VAR(i, planner.max_feedrate);
+  EEPROM_WRITE_VAR(i, planner.max_feedrate_mm_s);
   EEPROM_WRITE_VAR(i, planner.max_acceleration_mm_per_s2);
   EEPROM_WRITE_VAR(i, planner.acceleration);
   EEPROM_WRITE_VAR(i, planner.retract_acceleration);
   EEPROM_WRITE_VAR(i, planner.travel_acceleration);
-  EEPROM_WRITE_VAR(i, planner.min_feedrate);
-  EEPROM_WRITE_VAR(i, planner.min_travel_feedrate);
+  EEPROM_WRITE_VAR(i, planner.min_feedrate_mm_s);
+  EEPROM_WRITE_VAR(i, planner.min_travel_feedrate_mm_s);
   EEPROM_WRITE_VAR(i, planner.min_segment_time);
   EEPROM_WRITE_VAR(i, planner.max_xy_jerk);
   EEPROM_WRITE_VAR(i, planner.max_z_jerk);
@@ -342,7 +342,7 @@ void Config_StoreSettings()  {
       dummy = 0.0f;
       EEPROM_WRITE_VAR(i, dummy);
     #endif
-    EEPROM_WRITE_VAR(i, retract_recover_feedrate);
+    EEPROM_WRITE_VAR(i, retract_recover_feedrate_mm_s);
   #endif // FWRETRACT
 
   EEPROM_WRITE_VAR(i, volumetric_enabled);
@@ -388,14 +388,14 @@ void Config_RetrieveSettings() {
 
     // version number match
     EEPROM_READ_VAR(i, planner.axis_steps_per_mm);
-    EEPROM_READ_VAR(i, planner.max_feedrate);
+    EEPROM_READ_VAR(i, planner.max_feedrate_mm_s);
     EEPROM_READ_VAR(i, planner.max_acceleration_mm_per_s2);
 
     EEPROM_READ_VAR(i, planner.acceleration);
     EEPROM_READ_VAR(i, planner.retract_acceleration);
     EEPROM_READ_VAR(i, planner.travel_acceleration);
-    EEPROM_READ_VAR(i, planner.min_feedrate);
-    EEPROM_READ_VAR(i, planner.min_travel_feedrate);
+    EEPROM_READ_VAR(i, planner.min_feedrate_mm_s);
+    EEPROM_READ_VAR(i, planner.min_travel_feedrate_mm_s);
     EEPROM_READ_VAR(i, planner.min_segment_time);
     EEPROM_READ_VAR(i, planner.max_xy_jerk);
     EEPROM_READ_VAR(i, planner.max_z_jerk);
@@ -524,7 +524,7 @@ void Config_RetrieveSettings() {
       #else
         EEPROM_READ_VAR(i, dummy);
       #endif
-      EEPROM_READ_VAR(i, retract_recover_feedrate);
+      EEPROM_READ_VAR(i, retract_recover_feedrate_mm_s);
     #endif // FWRETRACT
 
     EEPROM_READ_VAR(i, volumetric_enabled);
@@ -564,7 +564,7 @@ void Config_ResetDefault() {
   long tmp3[] = DEFAULT_MAX_ACCELERATION;
   for (uint8_t i = 0; i < NUM_AXIS; i++) {
     planner.axis_steps_per_mm[i] = tmp1[i];
-    planner.max_feedrate[i] = tmp2[i];
+    planner.max_feedrate_mm_s[i] = tmp2[i];
     planner.max_acceleration_mm_per_s2[i] = tmp3[i];
     #if ENABLED(SCARA)
       if (i < COUNT(axis_scaling))
@@ -575,9 +575,9 @@ void Config_ResetDefault() {
   planner.acceleration = DEFAULT_ACCELERATION;
   planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
   planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
-  planner.min_feedrate = DEFAULT_MINIMUMFEEDRATE;
+  planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
   planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
-  planner.min_travel_feedrate = DEFAULT_MINTRAVELFEEDRATE;
+  planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
   planner.max_xy_jerk = DEFAULT_XYJERK;
   planner.max_z_jerk = DEFAULT_ZJERK;
   planner.max_e_jerk = DEFAULT_EJERK;
@@ -653,7 +653,7 @@ void Config_ResetDefault() {
     #if EXTRUDERS > 1
       retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
     #endif
-    retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
+    retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
   #endif
 
   volumetric_enabled = false;
@@ -706,10 +706,10 @@ void Config_PrintSettings(bool forReplay) {
     SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
     CONFIG_ECHO_START;
   }
-  SERIAL_ECHOPAIR("  M203 X", planner.max_feedrate[X_AXIS]);
-  SERIAL_ECHOPAIR(" Y", planner.max_feedrate[Y_AXIS]);
-  SERIAL_ECHOPAIR(" Z", planner.max_feedrate[Z_AXIS]);
-  SERIAL_ECHOPAIR(" E", planner.max_feedrate[E_AXIS]);
+  SERIAL_ECHOPAIR("  M203 X", planner.max_feedrate_mm_s[X_AXIS]);
+  SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
+  SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
+  SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
   SERIAL_EOL;
 
   CONFIG_ECHO_START;
@@ -737,8 +737,8 @@ void Config_PrintSettings(bool forReplay) {
     SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s),  Z=maximum Z jerk (mm/s),  E=maximum E jerk (mm/s)");
     CONFIG_ECHO_START;
   }
-  SERIAL_ECHOPAIR("  M205 S", planner.min_feedrate);
-  SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate);
+  SERIAL_ECHOPAIR("  M205 S", planner.min_feedrate_mm_s);
+  SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
   SERIAL_ECHOPAIR(" B", planner.min_segment_time);
   SERIAL_ECHOPAIR(" X", planner.max_xy_jerk);
   SERIAL_ECHOPAIR(" Z", planner.max_z_jerk);
@@ -894,7 +894,7 @@ void Config_PrintSettings(bool forReplay) {
     #if EXTRUDERS > 1
       SERIAL_ECHOPAIR(" W", retract_length_swap);
     #endif
-    SERIAL_ECHOPAIR(" F", retract_feedrate_mm_s * 60);
+    SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
     SERIAL_ECHOPAIR(" Z", retract_zlift);
     SERIAL_EOL;
     CONFIG_ECHO_START;
@@ -906,7 +906,7 @@ void Config_PrintSettings(bool forReplay) {
     #if EXTRUDERS > 1
       SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
     #endif
-    SERIAL_ECHOPAIR(" F", retract_recover_feedrate * 60);
+    SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
     SERIAL_EOL;
     CONFIG_ECHO_START;
     if (!forReplay) {
diff --git a/Marlin/dogm_lcd_implementation.h b/Marlin/dogm_lcd_implementation.h
index b1dd403117..8edb204bd5 100644
--- a/Marlin/dogm_lcd_implementation.h
+++ b/Marlin/dogm_lcd_implementation.h
@@ -450,7 +450,7 @@ static void lcd_implementation_status_screen() {
 
   lcd_setFont(FONT_STATUSMENU);
   u8g.setPrintPos(12, 49);
-  lcd_print(itostr3(feedrate_multiplier));
+  lcd_print(itostr3(feedrate_percentage));
   lcd_print('%');
 
   // Status line
diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index 900866e63a..deda9f3dfa 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -80,20 +80,20 @@ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
 volatile uint8_t Planner::block_buffer_head = 0;           // Index of the next block to be pushed
 volatile uint8_t Planner::block_buffer_tail = 0;
 
-float Planner::max_feedrate[NUM_AXIS]; // Max speeds in mm per second
+float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
 float Planner::axis_steps_per_mm[NUM_AXIS];
 unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS];
 unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
 
 millis_t Planner::min_segment_time;
-float Planner::min_feedrate;
+float Planner::min_feedrate_mm_s;
 float Planner::acceleration;         // Normal acceleration mm/s^2  DEFAULT ACCELERATION for all printing moves. M204 SXXXX
 float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
 float Planner::travel_acceleration;  // Travel acceleration mm/s^2  DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
 float Planner::max_xy_jerk;          // The largest speed change requiring no acceleration
 float Planner::max_z_jerk;
 float Planner::max_e_jerk;
-float Planner::min_travel_feedrate;
+float Planner::min_travel_feedrate_mm_s;
 
 #if ENABLED(AUTO_BED_LEVELING_FEATURE)
   matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
@@ -527,14 +527,14 @@ void Planner::check_axes_activity() {
  * Add a new linear movement to the buffer.
  *
  *  x,y,z,e   - target position in mm
- *  feed_rate - (target) speed of the move
+ *  fr_mm_s   - (target) speed of the move
  *  extruder  - target extruder
  */
 
 #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
-  void Planner::buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder)
+  void Planner::buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder)
 #else
-  void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder)
+  void Planner::buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder)
 #endif  // AUTO_BED_LEVELING_FEATURE
 {
   // Calculate the buffer head after we push this byte
@@ -768,9 +768,9 @@ void Planner::check_axes_activity() {
   }
 
   if (block->steps[E_AXIS])
-    NOLESS(feed_rate, min_feedrate);
+    NOLESS(fr_mm_s, min_feedrate_mm_s);
   else
-    NOLESS(feed_rate, min_travel_feedrate);
+    NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
 
   /**
    * This part of the code calculates the total length of the movement.
@@ -828,7 +828,7 @@ void Planner::check_axes_activity() {
   float inverse_millimeters = 1.0 / block->millimeters;  // Inverse millimeters to remove multiple divides
 
   // Calculate moves/second for this move. No divide by zero due to previous checks.
-  float inverse_second = feed_rate * inverse_millimeters;
+  float inverse_second = fr_mm_s * inverse_millimeters;
 
   int moves_queued = movesplanned();
 
@@ -836,7 +836,7 @@ void Planner::check_axes_activity() {
   #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN)
     bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2;
     #if ENABLED(OLD_SLOWDOWN)
-      if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
+      if (mq) fr_mm_s *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE);
     #endif
     #if ENABLED(SLOWDOWN)
       //  segment time im micro seconds
@@ -895,7 +895,7 @@ void Planner::check_axes_activity() {
   float speed_factor = 1.0; //factor <=1 do decrease speed
   for (int i = 0; i < NUM_AXIS; i++) {
     current_speed[i] = delta_mm[i] * inverse_second;
-    float cs = fabs(current_speed[i]), mf = max_feedrate[i];
+    float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
     if (cs > mf) speed_factor = min(speed_factor, mf / cs);
   }
 
diff --git a/Marlin/planner.h b/Marlin/planner.h
index d963fba4c4..74fa3592e5 100644
--- a/Marlin/planner.h
+++ b/Marlin/planner.h
@@ -119,20 +119,20 @@ class Planner {
     static volatile uint8_t block_buffer_head;           // Index of the next block to be pushed
     static volatile uint8_t block_buffer_tail;
 
-    static float max_feedrate[NUM_AXIS]; // Max speeds in mm per second
+    static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
     static float axis_steps_per_mm[NUM_AXIS];
     static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
     static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
 
     static millis_t min_segment_time;
-    static float min_feedrate;
+    static float min_feedrate_mm_s;
     static float acceleration;         // Normal acceleration mm/s^2  DEFAULT ACCELERATION for all printing moves. M204 SXXXX
     static float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
     static float travel_acceleration;  // Travel acceleration mm/s^2  DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
     static float max_xy_jerk;          // The largest speed change requiring no acceleration
     static float max_z_jerk;
     static float max_e_jerk;
-    static float min_travel_feedrate;
+    static float min_travel_feedrate_mm_s;
 
     #if ENABLED(AUTO_BED_LEVELING_FEATURE)
       static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
@@ -211,10 +211,10 @@ class Planner {
        * Add a new linear movement to the buffer.
        *
        *  x,y,z,e   - target position in mm
-       *  feed_rate - (target) speed of the move
+       *  fr_mm_s   - (target) speed of the move (mm/s)
        *  extruder  - target extruder
        */
-      static void buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder);
+      static void buffer_line(float x, float y, float z, const float& e, float fr_mm_s, const uint8_t extruder);
 
       /**
        * Set the planner.position and individual stepper positions.
@@ -229,7 +229,7 @@ class Planner {
 
     #else
 
-      static void buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder);
+      static void buffer_line(const float& x, const float& y, const float& z, const float& e, float fr_mm_s, const uint8_t extruder);
       static void set_position_mm(const float& x, const float& y, const float& z, const float& e);
 
     #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING
diff --git a/Marlin/planner_bezier.cpp b/Marlin/planner_bezier.cpp
index b789b3db53..ad3319a498 100644
--- a/Marlin/planner_bezier.cpp
+++ b/Marlin/planner_bezier.cpp
@@ -105,7 +105,7 @@ inline static float dist1(float x1, float y1, float x2, float y2) { return fabs(
  * the mitigation offered by MIN_STEP and the small computational
  * power available on Arduino, I think it is not wise to implement it.
  */
-void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float feed_rate, uint8_t extruder) {
+void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS], const float offset[4], float fr_mm_s, uint8_t extruder) {
   // Absolute first and second control points are recovered.
   float first0 = position[X_AXIS] + offset[0];
   float first1 = position[Y_AXIS] + offset[1];
@@ -193,9 +193,9 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
       #if ENABLED(AUTO_BED_LEVELING_FEATURE)
         adjust_delta(bez_target);
       #endif
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder);
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
     #else
-      planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder);
+      planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], fr_mm_s, extruder);
     #endif
   }
 }
diff --git a/Marlin/planner_bezier.h b/Marlin/planner_bezier.h
index 61026b8f67..d17e7c80a0 100644
--- a/Marlin/planner_bezier.h
+++ b/Marlin/planner_bezier.h
@@ -36,7 +36,7 @@ void cubic_b_spline(
               const float position[NUM_AXIS], // current position
               const float target[NUM_AXIS],   // target position
               const float offset[4],          // a pair of offsets
-              float feed_rate,
+              float fr_mm_s,
               uint8_t extruder
             );
 
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index bd8d6c3936..4fd6d5eb82 100755
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -104,7 +104,7 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
   #if HAS_POWER_SWITCH
     extern bool powersupply;
   #endif
-  const float manual_feedrate[] = MANUAL_FEEDRATE;
+  const float manual_feedrate_mm_m[] = MANUAL_FEEDRATE;
   static void lcd_main_menu();
   static void lcd_tune_menu();
   static void lcd_prepare_menu();
@@ -254,10 +254,10 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
    *     lcd_implementation_drawmenu_function(sel, row, PSTR(MSG_PAUSE_PRINT), lcd_sdcard_pause)
    *     menu_action_function(lcd_sdcard_pause)
    *
-   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
-   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
-   *     lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
-   *     menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
+   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
+   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
+   *     lcd_implementation_drawmenu_setting_edit_int3(sel, row, PSTR(MSG_SPEED), PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
+   *     menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
    *
    */
   #define _MENU_ITEM_PART_1(TYPE, LABEL, ARGS...) \
@@ -523,29 +523,29 @@ static void lcd_status_screen() {
     }
 
     #if ENABLED(ULTIPANEL_FEEDMULTIPLY)
-      int new_frm = feedrate_multiplier + (int32_t)encoderPosition;
+      int new_frm = feedrate_percentage + (int32_t)encoderPosition;
       // Dead zone at 100% feedrate
-      if ((feedrate_multiplier < 100 && new_frm > 100) || (feedrate_multiplier > 100 && new_frm < 100)) {
-        feedrate_multiplier = 100;
+      if ((feedrate_percentage < 100 && new_frm > 100) || (feedrate_percentage > 100 && new_frm < 100)) {
+        feedrate_percentage = 100;
         encoderPosition = 0;
       }
-      else if (feedrate_multiplier == 100) {
+      else if (feedrate_percentage == 100) {
         if ((int32_t)encoderPosition > ENCODER_FEEDRATE_DEADZONE) {
-          feedrate_multiplier += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
+          feedrate_percentage += (int32_t)encoderPosition - (ENCODER_FEEDRATE_DEADZONE);
           encoderPosition = 0;
         }
         else if ((int32_t)encoderPosition < -(ENCODER_FEEDRATE_DEADZONE)) {
-          feedrate_multiplier += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
+          feedrate_percentage += (int32_t)encoderPosition + ENCODER_FEEDRATE_DEADZONE;
           encoderPosition = 0;
         }
       }
       else {
-        feedrate_multiplier = new_frm;
+        feedrate_percentage = new_frm;
         encoderPosition = 0;
       }
     #endif // ULTIPANEL_FEEDMULTIPLY
 
-    feedrate_multiplier = constrain(feedrate_multiplier, 10, 999);
+    feedrate_percentage = constrain(feedrate_percentage, 10, 999);
 
   #endif //ULTIPANEL
 }
@@ -573,9 +573,9 @@ void kill_screen(const char* lcd_msg) {
   inline void line_to_current(AxisEnum axis) {
     #if ENABLED(DELTA)
       calculate_delta(current_position);
-      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
+      planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
     #else // !DELTA
-      planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[axis]/60, active_extruder);
+      planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[axis]), active_extruder);
     #endif // !DELTA
   }
 
@@ -757,7 +757,7 @@ void kill_screen(const char* lcd_msg) {
     //
     // Speed:
     //
-    MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999);
+    MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999);
 
     // Manual bed leveling, Bed Z:
     #if ENABLED(MANUAL_BED_LEVELING)
@@ -1020,7 +1020,7 @@ void kill_screen(const char* lcd_msg) {
       line_to_current(Z_AXIS);
       current_position[X_AXIS] = x + home_offset[X_AXIS];
       current_position[Y_AXIS] = y + home_offset[Y_AXIS];
-      line_to_current(manual_feedrate[X_AXIS] <= manual_feedrate[Y_AXIS] ? X_AXIS : Y_AXIS);
+      line_to_current(manual_feedrate_mm_m[X_AXIS] <= manual_feedrate_mm_m[Y_AXIS] ? X_AXIS : Y_AXIS);
       #if MIN_Z_HEIGHT_FOR_HOMING > 0
         current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; // How do condition and action match?
         line_to_current(Z_AXIS);
@@ -1310,9 +1310,9 @@ void kill_screen(const char* lcd_msg) {
     if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) {
       #if ENABLED(DELTA)
         calculate_delta(current_position);
-        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index);
+        planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
       #else
-        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[manual_move_axis]/60, manual_move_e_index);
+        planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index);
       #endif
       manual_move_axis = (int8_t)NO_AXIS;
     }
@@ -1800,12 +1800,12 @@ void kill_screen(const char* lcd_msg) {
       MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &planner.max_z_jerk, 0.1, 990);
     #endif
     MENU_ITEM_EDIT(float3, MSG_VE_JERK, &planner.max_e_jerk, 1, 990);
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate[X_AXIS], 1, 999);
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate[Y_AXIS], 1, 999);
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate[Z_AXIS], 1, 999);
-    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate[E_AXIS], 1, 999);
-    MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate, 0, 999);
-    MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate, 0, 999);
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &planner.max_feedrate_mm_s[X_AXIS], 1, 999);
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &planner.max_feedrate_mm_s[Y_AXIS], 1, 999);
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &planner.max_feedrate_mm_s[Z_AXIS], 1, 999);
+    MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &planner.max_feedrate_mm_s[E_AXIS], 1, 999);
+    MENU_ITEM_EDIT(float3, MSG_VMIN, &planner.min_feedrate_mm_s, 0, 999);
+    MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &planner.min_travel_feedrate_mm_s, 0, 999);
     MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &planner.max_acceleration_mm_per_s2[X_AXIS], 100, 99000, _reset_acceleration_rates);
     MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &planner.max_acceleration_mm_per_s2[Y_AXIS], 100, 99000, _reset_acceleration_rates);
     MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &planner.max_acceleration_mm_per_s2[Z_AXIS], 10, 99000, _reset_acceleration_rates);
@@ -1905,7 +1905,7 @@ void kill_screen(const char* lcd_msg) {
       #if EXTRUDERS > 1
         MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100);
       #endif
-      MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999);
+      MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate_mm_s, 1, 999);
       END_MENU();
     }
   #endif // FWRETRACT
@@ -2257,15 +2257,15 @@ void kill_screen(const char* lcd_msg) {
    *   static void menu_action_setting_edit_callback_int3(const char* pstr, int* ptr, int minValue, int maxValue, screenFunc_t callback); // edit int with callback
    *
    * You can then use one of the menu macros to present the edit interface:
-   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_multiplier, 10, 999)
+   *   MENU_ITEM_EDIT(int3, MSG_SPEED, &feedrate_percentage, 10, 999)
    *
    * This expands into a more primitive menu item:
-   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
+   *   MENU_ITEM(setting_edit_int3, MSG_SPEED, PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
    *
    *
    * Also: MENU_MULTIPLIER_ITEM_EDIT, MENU_ITEM_EDIT_CALLBACK, and MENU_MULTIPLIER_ITEM_EDIT_CALLBACK
    *
-   *       menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_multiplier, 10, 999)
+   *       menu_action_setting_edit_int3(PSTR(MSG_SPEED), &feedrate_percentage, 10, 999)
    */
   #define menu_edit_type(_type, _name, _strFunc, scale) \
     bool _menu_edit_ ## _name () { \
diff --git a/Marlin/ultralcd_implementation_hitachi_HD44780.h b/Marlin/ultralcd_implementation_hitachi_HD44780.h
index b5342bd3bb..d1d047fca2 100644
--- a/Marlin/ultralcd_implementation_hitachi_HD44780.h
+++ b/Marlin/ultralcd_implementation_hitachi_HD44780.h
@@ -742,7 +742,7 @@ static void lcd_implementation_status_screen() {
 
     lcd.setCursor(0, 2);
     lcd.print(LCD_STR_FEEDRATE[0]);
-    lcd.print(itostr3(feedrate_multiplier));
+    lcd.print(itostr3(feedrate_percentage));
     lcd.print('%');
 
     #if LCD_WIDTH > 19 && ENABLED(SDSUPPORT)

From 9f9fe043ba46361a4ff6a04c695cf1f3cb159c7f Mon Sep 17 00:00:00 2001
From: Scott Lahteine <sourcetree@thinkyhead.com>
Date: Fri, 15 Jul 2016 18:50:25 -0700
Subject: [PATCH 2/4] Apply sq macro throughout

---
 Marlin/Marlin_main.cpp | 17 ++++++++---------
 Marlin/macros.h        |  1 +
 Marlin/planner.cpp     | 16 ++++++++--------
 Marlin/planner.h       |  6 +++---
 Marlin/ultralcd.cpp    |  2 +-
 5 files changed, 21 insertions(+), 21 deletions(-)

diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 140dd5def6..93854b629a 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -3596,7 +3596,7 @@ inline void gcode_G28() {
          * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
          */
 
-        int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
+        int abl2 = sq(auto_bed_leveling_grid_points);
 
         double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
                eqnBVector[abl2],     // "B" vector of Z points
@@ -3629,7 +3629,7 @@ inline void gcode_G28() {
 
           #if ENABLED(DELTA)
             // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
-            float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
+            float distance_from_center = HYPOT(xProbe, yProbe);
             if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
           #endif //DELTA
 
@@ -4252,7 +4252,7 @@ inline void gcode_M42() {
         return;
       }
     #else
-      if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
+      if (HYPOT(X_probe_location, Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
         SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
         return;
       }
@@ -4342,7 +4342,7 @@ inline void gcode_M42() {
           #else
             // If we have gone out too far, we can do a simple fix and scale the numbers
             // back in closer to the origin.
-            while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
+            while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
               X_current /= 1.25;
               Y_current /= 1.25;
               if (verbose_level > 3) {
@@ -4378,10 +4378,9 @@ inline void gcode_M42() {
        * data points we have so far
        */
       sum = 0.0;
-      for (uint8_t j = 0; j <= n; j++) {
-        float ss = sample_set[j] - mean;
-        sum += ss * ss;
-      }
+      for (uint8_t j = 0; j <= n; j++)
+        sum += sq(sample_set[j] - mean);
+
       sigma = sqrt(sum / (n + 1));
       if (verbose_level > 0) {
         if (verbose_level > 1) {
@@ -8139,7 +8138,7 @@ void prepare_move_to_destination() {
      * This is important when there are successive arc motions.
      */
     // Vector rotation matrix values
-    float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
+    float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
     float sin_T = theta_per_segment;
 
     float arc_target[NUM_AXIS];
diff --git a/Marlin/macros.h b/Marlin/macros.h
index 7dbadee089..bf2d07180b 100644
--- a/Marlin/macros.h
+++ b/Marlin/macros.h
@@ -36,6 +36,7 @@
 // Macros for maths shortcuts
 #define RADIANS(d) ((d)*M_PI/180.0)
 #define DEGREES(r) ((r)*180.0/M_PI)
+#define HYPOT(x,y) sqrt(sq(x)+sq(y))
 
 // Macros to contrain values
 #define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp
index deda9f3dfa..03796100ec 100644
--- a/Marlin/planner.cpp
+++ b/Marlin/planner.cpp
@@ -171,8 +171,8 @@ void Planner::calculate_trapezoid_for_block(block_t* block, float entry_factor,
   }
 
   #if ENABLED(ADVANCE)
-    volatile long initial_advance = block->advance * entry_factor * entry_factor;
-    volatile long final_advance = block->advance * exit_factor * exit_factor;
+    volatile long initial_advance = block->advance * sq(entry_factor);
+    volatile long final_advance = block->advance * sq(exit_factor);
   #endif // ADVANCE
 
   // block->accelerate_until = accelerate_steps;
@@ -815,13 +815,13 @@ void Planner::check_axes_activity() {
   else {
     block->millimeters = sqrt(
       #if ENABLED(COREXY)
-        square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
+        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_AXIS])
       #elif ENABLED(COREXZ)
-        square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
+        sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
       #elif ENABLED(COREYZ)
-        square(delta_mm[X_AXIS]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_HEAD])
+        sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
       #else
-        square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
+        sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
       #endif
     );
   }
@@ -1030,7 +1030,7 @@ void Planner::check_axes_activity() {
           dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
           dsz = fabs(csz - previous_speed[Z_AXIS]),
           dse = fabs(cse - previous_speed[E_AXIS]),
-          jerk = sqrt(dsx * dsx + dsy * dsy);
+          jerk = HYPOT(dsx, dsy);
 
     //    if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
     vmax_junction = block->nominal_speed;
@@ -1086,7 +1086,7 @@ void Planner::check_axes_activity() {
     }
     else {
       long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
-      float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256;
+      float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(cse, EXTRUSION_AREA) * 256;
       block->advance = advance;
       block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
     }
diff --git a/Marlin/planner.h b/Marlin/planner.h
index 74fa3592e5..74abd1cb2d 100644
--- a/Marlin/planner.h
+++ b/Marlin/planner.h
@@ -290,7 +290,7 @@ class Planner {
      */
     static float estimate_acceleration_distance(float initial_rate, float target_rate, float accel) {
       if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
-      return (target_rate * target_rate - initial_rate * initial_rate) / (accel * 2);
+      return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
     }
 
     /**
@@ -303,7 +303,7 @@ class Planner {
      */
     static float intersection_distance(float initial_rate, float final_rate, float accel, float distance) {
       if (accel == 0) return 0; // accel was 0, set intersection distance to 0
-      return (accel * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (accel * 4);
+      return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
     }
 
     /**
@@ -312,7 +312,7 @@ class Planner {
      * 'distance'.
      */
     static float max_allowable_speed(float accel, float target_velocity, float distance) {
-      return sqrt(target_velocity * target_velocity - 2 * accel * distance);
+      return sqrt(sq(target_velocity) - 2 * accel * distance);
     }
 
     static void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor);
diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp
index 4fd6d5eb82..3e933ee89a 100755
--- a/Marlin/ultralcd.cpp
+++ b/Marlin/ultralcd.cpp
@@ -1356,7 +1356,7 @@ void kill_screen(const char* lcd_msg) {
   }
   #if ENABLED(DELTA)
     static float delta_clip_radius_2 =  (DELTA_PRINTABLE_RADIUS) * (DELTA_PRINTABLE_RADIUS);
-    static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - a*a); }
+    static int delta_clip( float a ) { return sqrt(delta_clip_radius_2 - sq(a)); }
     static void lcd_move_x() { int clip = delta_clip(current_position[Y_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS, max(sw_endstop_min[X_AXIS], -clip), min(sw_endstop_max[X_AXIS], clip)); }
     static void lcd_move_y() { int clip = delta_clip(current_position[X_AXIS]); _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS, max(sw_endstop_min[Y_AXIS], -clip), min(sw_endstop_max[Y_AXIS], clip)); }
   #else

From 3d78b8f92982b6a3ccec426936e6ddd11b28805f Mon Sep 17 00:00:00 2001
From: Scott Lahteine <sourcetree@thinkyhead.com>
Date: Fri, 15 Jul 2016 18:55:09 -0700
Subject: [PATCH 3/4] Use HYPOT macro instead of hypot function

---
 Marlin/Marlin_main.cpp | 4 ++--
 1 file changed, 2 insertions(+), 2 deletions(-)

diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 93854b629a..015c7d200b 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -8083,7 +8083,7 @@ void prepare_move_to_destination() {
     uint8_t clockwise       // Clockwise?
   ) {
 
-    float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
+    float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
           center_X = current_position[X_AXIS] + offset[X_AXIS],
           center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
           linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
@@ -8102,7 +8102,7 @@ void prepare_move_to_destination() {
     if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
       angular_travel += RADIANS(360);
 
-    float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
+    float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
     if (mm_of_travel < 0.001) return;
     uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
     if (segments == 0) segments = 1;

From f38553b48215e7e5fa3b2351dd928a9cc3c9e3bd Mon Sep 17 00:00:00 2001
From: Scott Lahteine <sourcetree@thinkyhead.com>
Date: Fri, 15 Jul 2016 19:26:23 -0700
Subject: [PATCH 4/4] fix a debug message

---
 Marlin/Marlin_main.cpp | 1 +
 1 file changed, 1 insertion(+)

diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp
index 015c7d200b..387777ae58 100644
--- a/Marlin/Marlin_main.cpp
+++ b/Marlin/Marlin_main.cpp
@@ -2005,6 +2005,7 @@ static void clean_up_after_endstop_or_probe_move() {
       if (DEBUGGING(LEVELING)) {
         DEBUG_POS("set_probe_deployed", current_position);
         SERIAL_ECHOPAIR("deploy: ", deploy);
+        SERIAL_EOL;
       }
     #endif