/*
  temperature.h - temperature controller
  Part of Marlin

  Copyright (c) 2011 Erik van der Zalm

  Grbl is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Grbl is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
*/

#ifndef TEMPERATURE_H
#define TEMPERATURE_H

#include "Marlin.h"
#include "planner.h"
#if ENABLED(PID_ADD_EXTRUSION_RATE)
  #include "stepper.h"
#endif

// public functions
void tp_init();  //initialize the heating
void manage_heater(); //it is critical that this is called periodically.

#if ENABLED(FILAMENT_SENSOR)
  // For converting raw Filament Width to milimeters
  float analog2widthFil();

  // For converting raw Filament Width to an extrusion ratio
  int widthFil_to_size_ratio();
#endif

// low level conversion routines
// do not use these routines and variables outside of temperature.cpp
extern int target_temperature[4];
extern float current_temperature[4];
#if ENABLED(SHOW_TEMP_ADC_VALUES)
  extern int current_temperature_raw[4];
  extern int current_temperature_bed_raw;
#endif
extern int target_temperature_bed;
extern float current_temperature_bed;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  extern float redundant_temperature;
#endif

#if HAS_CONTROLLERFAN
  extern unsigned char soft_pwm_bed;
#endif

#if ENABLED(PIDTEMP)

  #if ENABLED(PID_PARAMS_PER_EXTRUDER)
    extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
    #define PID_PARAM(param,e) param[e] // use macro to point to array value
  #else
    extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
    #define PID_PARAM(param, e) param // use macro to point directly to value
  #endif // PID_PARAMS_PER_EXTRUDER
  float scalePID_i(float i);
  float scalePID_d(float d);
  float unscalePID_i(float i);
  float unscalePID_d(float d);

#endif

#if ENABLED(PIDTEMPBED)
  extern float bedKp, bedKi, bedKd;
#endif

#if ENABLED(BABYSTEPPING)
  extern volatile int babystepsTodo[3];
#endif

//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius

FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
FORCE_INLINE float degBed() { return current_temperature_bed; }

#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif

FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }

#if ENABLED(THERMAL_PROTECTION_HOTENDS)
  void start_watching_heater(int e = 0);
#endif

FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
  target_temperature[extruder] = celsius;
  #if ENABLED(THERMAL_PROTECTION_HOTENDS)
    start_watching_heater(extruder);
  #endif
}
FORCE_INLINE void setTargetBed(const float& celsius) { target_temperature_bed = celsius; }

FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }

FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }

#define HOTEND_ROUTINES(NR) \
  FORCE_INLINE float degHotend##NR() { return degHotend(NR); } \
  FORCE_INLINE float degTargetHotend##NR() { return degTargetHotend(NR); } \
  FORCE_INLINE void setTargetHotend##NR(const float c) { setTargetHotend(c, NR); } \
  FORCE_INLINE bool isHeatingHotend##NR() { return isHeatingHotend(NR); } \
  FORCE_INLINE bool isCoolingHotend##NR() { return isCoolingHotend(NR); }
HOTEND_ROUTINES(0);
#if EXTRUDERS > 1
  HOTEND_ROUTINES(1);
#else
  #define setTargetHotend1(c) do{}while(0)
#endif
#if EXTRUDERS > 2
  HOTEND_ROUTINES(2);
#else
  #define setTargetHotend2(c) do{}while(0)
#endif
#if EXTRUDERS > 3
  HOTEND_ROUTINES(3);
#else
  #define setTargetHotend3(c) do{}while(0)
#endif

int getHeaterPower(int heater);
void disable_all_heaters();
void updatePID();

void PID_autotune(float temp, int extruder, int ncycles);

void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans();

FORCE_INLINE void autotempShutdown() {
  #if ENABLED(AUTOTEMP)
    if (autotemp_enabled) {
      autotemp_enabled = false;
      if (degTargetHotend(active_extruder) > autotemp_min)
        setTargetHotend(0, active_extruder);
    }
  #endif
}

#endif // TEMPERATURE_H