40a4a716e1
Expected behaviour: while (auto)extruding the new filament, the nozzle should not move. It should move (from filament replacement position to printing position) only after the user has confirmed the successful filament replacement and extrusion. Actual behaviour: while (auto)extruding the new filament, the nozzle moves from filament replacement position back to printing position. So the extrusion step is mixed with the movement required to go back to the printing position. The provided code seems to be working but probably a better fix is required.
13629 lines
436 KiB
C++
13629 lines
436 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* About Marlin
|
|
*
|
|
* This firmware is a mashup between Sprinter and grbl.
|
|
* - https://github.com/kliment/Sprinter
|
|
* - https://github.com/simen/grbl/tree
|
|
*/
|
|
|
|
/**
|
|
* -----------------
|
|
* G-Codes in Marlin
|
|
* -----------------
|
|
*
|
|
* Helpful G-code references:
|
|
* - http://linuxcnc.org/handbook/gcode/g-code.html
|
|
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
*
|
|
* Help to document Marlin's G-codes online:
|
|
* - http://reprap.org/wiki/G-code
|
|
* - https://github.com/MarlinFirmware/MarlinDocumentation
|
|
*
|
|
* -----------------
|
|
*
|
|
* "G" Codes
|
|
*
|
|
* G0 -> G1
|
|
* G1 - Coordinated Movement X Y Z E
|
|
* G2 - CW ARC
|
|
* G3 - CCW ARC
|
|
* G4 - Dwell S<seconds> or P<milliseconds>
|
|
* G5 - Cubic B-spline with XYZE destination and IJPQ offsets
|
|
* G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
|
|
* G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
|
|
* G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
|
|
* G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
|
|
* G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
|
|
* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
|
|
* G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
|
|
* G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
|
|
* G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
|
|
* G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
|
|
* G28 - Home one or more axes
|
|
* G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
|
|
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
|
|
* G31 - Dock sled (Z_PROBE_SLED only)
|
|
* G32 - Undock sled (Z_PROBE_SLED only)
|
|
* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
|
|
* G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
|
|
* G42 - Coordinated move to a mesh point (Requires AUTO_BED_LEVELING_UBL)
|
|
* G90 - Use Absolute Coordinates
|
|
* G91 - Use Relative Coordinates
|
|
* G92 - Set current position to coordinates given
|
|
*
|
|
* "M" Codes
|
|
*
|
|
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
* M1 -> M0
|
|
* M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
|
|
* M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
|
|
* M5 - Turn laser/spindle off
|
|
* M17 - Enable/Power all stepper motors
|
|
* M18 - Disable all stepper motors; same as M84
|
|
* M20 - List SD card. (Requires SDSUPPORT)
|
|
* M21 - Init SD card. (Requires SDSUPPORT)
|
|
* M22 - Release SD card. (Requires SDSUPPORT)
|
|
* M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
|
|
* M24 - Start/resume SD print. (Requires SDSUPPORT)
|
|
* M25 - Pause SD print. (Requires SDSUPPORT)
|
|
* M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
|
|
* M27 - Report SD print status. (Requires SDSUPPORT)
|
|
* M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
|
|
* M29 - Stop SD write. (Requires SDSUPPORT)
|
|
* M30 - Delete file from SD: "M30 /path/file.gco"
|
|
* M31 - Report time since last M109 or SD card start to serial.
|
|
* M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
|
|
* Use P to run other files as sub-programs: "M32 P !filename#"
|
|
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
|
|
* M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
|
|
* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
|
|
* M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
|
|
* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
* M75 - Start the print job timer.
|
|
* M76 - Pause the print job timer.
|
|
* M77 - Stop the print job timer.
|
|
* M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
|
|
* M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
|
|
* M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
|
|
* M82 - Set E codes absolute (default).
|
|
* M83 - Set E codes relative while in Absolute (G90) mode.
|
|
* M84 - Disable steppers until next move, or use S<seconds> to specify an idle
|
|
* duration after which steppers should turn off. S0 disables the timeout.
|
|
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
* M92 - Set planner.axis_steps_per_mm for one or more axes.
|
|
* M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
|
|
* M104 - Set extruder target temp.
|
|
* M105 - Report current temperatures.
|
|
* M106 - Fan on.
|
|
* M107 - Fan off.
|
|
* M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
|
|
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
* If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
* M110 - Set the current line number. (Used by host printing)
|
|
* M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
|
|
* M112 - Emergency stop.
|
|
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
|
|
* M114 - Report current position.
|
|
* M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
|
|
* M117 - Display a message on the controller screen. (Requires an LCD)
|
|
* M118 - Display a message in the host console.
|
|
* M119 - Report endstops status.
|
|
* M120 - Enable endstops detection.
|
|
* M121 - Disable endstops detection.
|
|
* M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
|
|
* M126 - Solenoid Air Valve Open. (Requires BARICUDA)
|
|
* M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
|
|
* M128 - EtoP Open. (Requires BARICUDA)
|
|
* M129 - EtoP Closed. (Requires BARICUDA)
|
|
* M140 - Set bed target temp. S<temp>
|
|
* M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
|
|
* M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
|
|
* M150 - Set Status LED Color as R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, or PCA9632)
|
|
* M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
|
|
* M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
|
|
* M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
|
|
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
|
|
* M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
|
|
* Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
|
|
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
|
|
* M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
|
|
* M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
|
|
* M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
|
|
* M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
|
|
* M205 - Set advanced settings. Current units apply:
|
|
S<print> T<travel> minimum speeds
|
|
B<minimum segment time>
|
|
X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
|
|
* M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
|
|
* M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
|
|
* M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
|
|
* M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
|
|
Every normal extrude-only move will be classified as retract depending on the direction.
|
|
* M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
|
|
* M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
|
|
* M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
|
|
* M221 - Set Flow Percentage: "M221 S<percent>"
|
|
* M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
|
|
* M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
|
|
* M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
|
|
* M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
|
|
* M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
|
|
* M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
|
|
* M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
* M301 - Set PID parameters P I and D. (Requires PIDTEMP)
|
|
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
|
|
* M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
|
|
* M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
|
|
* M350 - Set microstepping mode. (Requires digital microstepping pins.)
|
|
* M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
|
|
* M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
|
|
* M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
|
|
* M381 - Disable all solenoids. (Requires EXT_SOLENOID)
|
|
* M400 - Finish all moves.
|
|
* M401 - Lower Z probe. (Requires a probe)
|
|
* M402 - Raise Z probe. (Requires a probe)
|
|
* M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
|
|
* M410 - Quickstop. Abort all planned moves.
|
|
* M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
|
|
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
|
|
* M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
|
|
* M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
|
|
* M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
|
|
* M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
|
|
* M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
|
|
* M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
* M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
|
|
* M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
|
|
* M666 - Set delta endstop adjustment. (Requires DELTA)
|
|
* M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
|
|
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
|
|
* M860 - Report the position of position encoder modules.
|
|
* M861 - Report the status of position encoder modules.
|
|
* M862 - Perform an axis continuity test for position encoder modules.
|
|
* M863 - Perform steps-per-mm calibration for position encoder modules.
|
|
* M864 - Change position encoder module I2C address.
|
|
* M865 - Check position encoder module firmware version.
|
|
* M866 - Report or reset position encoder module error count.
|
|
* M867 - Enable/disable or toggle error correction for position encoder modules.
|
|
* M868 - Report or set position encoder module error correction threshold.
|
|
* M869 - Report position encoder module error.
|
|
* M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
|
|
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
|
|
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
|
|
* M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
|
|
* M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
|
|
* M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
|
|
* M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
|
|
* M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
|
|
* M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
|
|
* M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
|
|
*
|
|
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
*
|
|
* ************ Custom codes - This can change to suit future G-code regulations
|
|
* M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
|
|
* M999 - Restart after being stopped by error
|
|
*
|
|
* "T" Codes
|
|
*
|
|
* T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
|
|
*
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#include "ultralcd.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "endstops.h"
|
|
#include "temperature.h"
|
|
#include "cardreader.h"
|
|
#include "configuration_store.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
#include "nozzle.h"
|
|
#include "duration_t.h"
|
|
#include "types.h"
|
|
#include "gcode.h"
|
|
|
|
#if HAS_ABL
|
|
#include "vector_3.h"
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
#include "least_squares_fit.h"
|
|
#endif
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
#include "planner_bezier.h"
|
|
#endif
|
|
|
|
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
|
#include "buzzer.h"
|
|
#endif
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
#include "watchdog.h"
|
|
#endif
|
|
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
#include "Max7219_Debug_LEDs.h"
|
|
#endif
|
|
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
#include <Adafruit_NeoPixel.h>
|
|
#endif
|
|
|
|
#if ENABLED(BLINKM)
|
|
#include "blinkm.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#if ENABLED(PCA9632)
|
|
#include "pca9632.h"
|
|
#endif
|
|
|
|
#if HAS_SERVOS
|
|
#include "servo.h"
|
|
#endif
|
|
|
|
#if HAS_DIGIPOTSS
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
#include "stepper_dac.h"
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
#include "twibus.h"
|
|
#endif
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
#include "I2CPositionEncoder.h"
|
|
#endif
|
|
|
|
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
|
#include "endstop_interrupts.h"
|
|
#endif
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
void gcode_M100();
|
|
void M100_dump_routine(const char * const title, const char *start, const char *end);
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
CardReader card;
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
TWIBus i2c;
|
|
#endif
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
bool G38_move = false,
|
|
G38_endstop_hit = false;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#include "ubl.h"
|
|
extern bool defer_return_to_status;
|
|
unified_bed_leveling ubl;
|
|
#define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
|
|
&& ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
|
|
&& ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
|
|
&& ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
|
|
|| isnan(ubl.z_values[0][0]))
|
|
#endif
|
|
|
|
bool Running = true;
|
|
|
|
uint8_t marlin_debug_flags = DEBUG_NONE;
|
|
|
|
/**
|
|
* Cartesian Current Position
|
|
* Used to track the logical position as moves are queued.
|
|
* Used by 'line_to_current_position' to do a move after changing it.
|
|
* Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
|
|
*/
|
|
float current_position[XYZE] = { 0.0 };
|
|
|
|
/**
|
|
* Cartesian Destination
|
|
* A temporary position, usually applied to 'current_position'.
|
|
* Set with 'gcode_get_destination' or 'set_destination_to_current'.
|
|
* 'line_to_destination' sets 'current_position' to 'destination'.
|
|
*/
|
|
float destination[XYZE] = { 0.0 };
|
|
|
|
/**
|
|
* axis_homed
|
|
* Flags that each linear axis was homed.
|
|
* XYZ on cartesian, ABC on delta, ABZ on SCARA.
|
|
*
|
|
* axis_known_position
|
|
* Flags that the position is known in each linear axis. Set when homed.
|
|
* Cleared whenever a stepper powers off, potentially losing its position.
|
|
*/
|
|
bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
|
|
|
|
/**
|
|
* GCode line number handling. Hosts may opt to include line numbers when
|
|
* sending commands to Marlin, and lines will be checked for sequentiality.
|
|
* M110 N<int> sets the current line number.
|
|
*/
|
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
|
|
/**
|
|
* GCode Command Queue
|
|
* A simple ring buffer of BUFSIZE command strings.
|
|
*
|
|
* Commands are copied into this buffer by the command injectors
|
|
* (immediate, serial, sd card) and they are processed sequentially by
|
|
* the main loop. The process_next_command function parses the next
|
|
* command and hands off execution to individual handler functions.
|
|
*/
|
|
uint8_t commands_in_queue = 0; // Count of commands in the queue
|
|
static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
|
|
cmd_queue_index_w = 0; // Ring buffer write position
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
|
|
#else // This can be collapsed back to the way it was soon.
|
|
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
|
|
#endif
|
|
|
|
/**
|
|
* Next Injected Command pointer. NULL if no commands are being injected.
|
|
* Used by Marlin internally to ensure that commands initiated from within
|
|
* are enqueued ahead of any pending serial or sd card commands.
|
|
*/
|
|
static const char *injected_commands_P = NULL;
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
TempUnit input_temp_units = TEMPUNIT_C;
|
|
#endif
|
|
|
|
/**
|
|
* Feed rates are often configured with mm/m
|
|
* but the planner and stepper like mm/s units.
|
|
*/
|
|
static const float homing_feedrate_mm_s[] PROGMEM = {
|
|
#if ENABLED(DELTA)
|
|
MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
|
|
#else
|
|
MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
|
|
#endif
|
|
MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
|
|
};
|
|
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
|
|
|
|
float feedrate_mm_s = MMM_TO_MMS(1500.0);
|
|
static float saved_feedrate_mm_s;
|
|
int16_t feedrate_percentage = 100, saved_feedrate_percentage,
|
|
flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
|
|
|
|
// Initialized by settings.load()
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
|
|
volumetric_enabled;
|
|
float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
|
|
|
|
#if HAS_WORKSPACE_OFFSET
|
|
#if HAS_POSITION_SHIFT
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
float position_shift[XYZ] = { 0 };
|
|
#endif
|
|
#if HAS_HOME_OFFSET
|
|
// This offset is added to the configured home position.
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
float home_offset[XYZ] = { 0 };
|
|
#endif
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
// The above two are combined to save on computes
|
|
float workspace_offset[XYZ] = { 0 };
|
|
#endif
|
|
#endif
|
|
|
|
// Software Endstops are based on the configured limits.
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
bool soft_endstops_enabled = true;
|
|
#endif
|
|
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
|
|
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
|
|
|
|
#if FAN_COUNT > 0
|
|
int16_t fanSpeeds[FAN_COUNT] = { 0 };
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
bool fans_paused = false;
|
|
int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
|
|
#endif
|
|
#endif
|
|
|
|
// The active extruder (tool). Set with T<extruder> command.
|
|
uint8_t active_extruder = 0;
|
|
|
|
// Relative Mode. Enable with G91, disable with G90.
|
|
static bool relative_mode = false;
|
|
|
|
// For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
|
|
volatile bool wait_for_heatup = true;
|
|
|
|
// For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
|
|
#if HAS_RESUME_CONTINUE
|
|
volatile bool wait_for_user = false;
|
|
#endif
|
|
|
|
const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
|
|
|
|
// Number of characters read in the current line of serial input
|
|
static int serial_count = 0;
|
|
|
|
// Inactivity shutdown
|
|
millis_t previous_cmd_ms = 0;
|
|
static millis_t max_inactive_time = 0;
|
|
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
|
|
|
|
// Print Job Timer
|
|
#if ENABLED(PRINTCOUNTER)
|
|
PrintCounter print_job_timer = PrintCounter();
|
|
#else
|
|
Stopwatch print_job_timer = Stopwatch();
|
|
#endif
|
|
|
|
// Buzzer - I2C on the LCD or a BEEPER_PIN
|
|
#if ENABLED(LCD_USE_I2C_BUZZER)
|
|
#define BUZZ(d,f) lcd_buzz(d, f)
|
|
#elif PIN_EXISTS(BEEPER)
|
|
Buzzer buzzer;
|
|
#define BUZZ(d,f) buzzer.tone(d, f)
|
|
#else
|
|
#define BUZZ(d,f) NOOP
|
|
#endif
|
|
|
|
static uint8_t target_extruder;
|
|
|
|
#if HAS_BED_PROBE
|
|
float zprobe_zoffset; // Initialized by settings.load()
|
|
#endif
|
|
|
|
#if HAS_ABL
|
|
float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
|
|
#elif defined(XY_PROBE_SPEED)
|
|
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
|
|
#else
|
|
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
#if ENABLED(DELTA)
|
|
#define ADJUST_DELTA(V) \
|
|
if (planner.abl_enabled) { \
|
|
const float zadj = bilinear_z_offset(V); \
|
|
delta[A_AXIS] += zadj; \
|
|
delta[B_AXIS] += zadj; \
|
|
delta[C_AXIS] += zadj; \
|
|
}
|
|
#else
|
|
#define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
|
|
#endif
|
|
#elif IS_KINEMATIC
|
|
#define ADJUST_DELTA(V) NOOP
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
float z_endstop_adj;
|
|
#endif
|
|
|
|
// Extruder offsets
|
|
#if HOTENDS > 1
|
|
float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
|
|
#endif
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
const int z_servo_angle[2] = Z_SERVO_ANGLES;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
uint8_t baricuda_valve_pressure = 0,
|
|
baricuda_e_to_p_pressure = 0;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT) // Initialized by settings.load()...
|
|
bool autoretract_enabled, // M209 S - Autoretract switch
|
|
retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
|
|
float retract_length, // M207 S - G10 Retract length
|
|
retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
|
|
retract_zlift, // M207 Z - G10 Retract hop size
|
|
retract_recover_length, // M208 S - G11 Recover length
|
|
retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
|
|
swap_retract_length, // M207 W - G10 Swap Retract length
|
|
swap_retract_recover_length, // M208 W - G11 Swap Recover length
|
|
swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
|
|
#if EXTRUDERS > 1
|
|
bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
|
|
#else
|
|
constexpr bool retracted_swap[1] = { false };
|
|
#endif
|
|
#endif // FWRETRACT
|
|
|
|
#if HAS_POWER_SWITCH
|
|
bool powersupply_on =
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
false
|
|
#else
|
|
true
|
|
#endif
|
|
;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
float delta[ABC],
|
|
endstop_adj[ABC] = { 0 };
|
|
|
|
// Initialized by settings.load()
|
|
float delta_radius,
|
|
delta_tower_angle_trim[ABC],
|
|
delta_tower[ABC][2],
|
|
delta_diagonal_rod,
|
|
delta_calibration_radius,
|
|
delta_diagonal_rod_2_tower[ABC],
|
|
delta_segments_per_second,
|
|
delta_clip_start_height = Z_MAX_POS;
|
|
|
|
float delta_safe_distance_from_top();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
int bilinear_grid_spacing[2], bilinear_start[2];
|
|
float bilinear_grid_factor[2],
|
|
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
#endif
|
|
|
|
#if IS_SCARA
|
|
// Float constants for SCARA calculations
|
|
const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
|
|
L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
|
|
L2_2 = sq(float(L2));
|
|
|
|
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
|
|
delta[ABC];
|
|
#endif
|
|
|
|
float cartes[XYZ] = { 0 };
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
|
|
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
|
|
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
|
|
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
|
|
measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
|
int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
static bool filament_ran_out = false;
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
AdvancedPauseMenuResponse advanced_pause_menu_response;
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
|
|
#endif
|
|
#endif
|
|
|
|
static bool send_ok[BUFSIZE];
|
|
|
|
#if HAS_SERVOS
|
|
Servo servo[NUM_SERVOS];
|
|
#define MOVE_SERVO(I, P) servo[I].move(P)
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
#define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
|
|
#define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
|
|
#endif
|
|
#endif
|
|
|
|
#ifdef CHDK
|
|
millis_t chdkHigh = 0;
|
|
bool chdkActive = false;
|
|
#endif
|
|
|
|
#ifdef AUTOMATIC_CURRENT_CONTROL
|
|
bool auto_current_control = 0;
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
int lpq_len = 20;
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
MarlinBusyState busy_state = NOT_BUSY;
|
|
static millis_t next_busy_signal_ms = 0;
|
|
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
|
|
#else
|
|
#define host_keepalive() NOOP
|
|
#endif
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
I2CPositionEncodersMgr I2CPEM;
|
|
uint8_t blockBufferIndexRef = 0;
|
|
millis_t lastUpdateMillis;
|
|
#endif
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
static WorkspacePlane workspace_plane = PLANE_XY;
|
|
#endif
|
|
|
|
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
|
|
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
|
|
typedef void __void_##CONFIG##__
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
/**
|
|
* ***************************************************************************
|
|
* ******************************** FUNCTIONS ********************************
|
|
* ***************************************************************************
|
|
*/
|
|
|
|
void stop();
|
|
|
|
void get_available_commands();
|
|
void process_next_command();
|
|
void prepare_move_to_destination();
|
|
|
|
void get_cartesian_from_steppers();
|
|
void set_current_from_steppers_for_axis(const AxisEnum axis);
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
|
|
#endif
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
void plan_cubic_move(const float offset[4]);
|
|
#endif
|
|
|
|
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
|
|
void report_current_position();
|
|
void report_current_position_detail();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
|
|
serialprintPGM(prefix);
|
|
SERIAL_CHAR('(');
|
|
SERIAL_ECHO(x);
|
|
SERIAL_ECHOPAIR(", ", y);
|
|
SERIAL_ECHOPAIR(", ", z);
|
|
SERIAL_CHAR(')');
|
|
if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
|
|
}
|
|
|
|
void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
|
|
print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
|
|
}
|
|
|
|
#if HAS_ABL
|
|
void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
|
|
print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
|
|
}
|
|
#endif
|
|
|
|
#define DEBUG_POS(SUFFIX,VAR) do { \
|
|
print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
|
|
#endif
|
|
|
|
/**
|
|
* sync_plan_position
|
|
*
|
|
* Set the planner/stepper positions directly from current_position with
|
|
* no kinematic translation. Used for homing axes and cartesian/core syncing.
|
|
*/
|
|
void sync_plan_position() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
|
|
#endif
|
|
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
|
|
|
|
#if IS_KINEMATIC
|
|
|
|
inline void sync_plan_position_kinematic() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
|
|
#endif
|
|
planner.set_position_mm_kinematic(current_position);
|
|
}
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
|
|
|
|
#else
|
|
|
|
#define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern char __bss_end;
|
|
extern char __heap_start;
|
|
extern void* __brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif // !SDSUPPORT
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
extern void digipot_i2c_set_current(uint8_t channel, float current);
|
|
extern void digipot_i2c_init();
|
|
#endif
|
|
|
|
/**
|
|
* Inject the next "immediate" command, when possible, onto the front of the queue.
|
|
* Return true if any immediate commands remain to inject.
|
|
*/
|
|
static bool drain_injected_commands_P() {
|
|
if (injected_commands_P != NULL) {
|
|
size_t i = 0;
|
|
char c, cmd[30];
|
|
strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
|
|
cmd[sizeof(cmd) - 1] = '\0';
|
|
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
|
|
cmd[i] = '\0';
|
|
if (enqueue_and_echo_command(cmd)) // success?
|
|
injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
|
|
}
|
|
return (injected_commands_P != NULL); // return whether any more remain
|
|
}
|
|
|
|
/**
|
|
* Record one or many commands to run from program memory.
|
|
* Aborts the current queue, if any.
|
|
* Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
|
|
*/
|
|
void enqueue_and_echo_commands_P(const char * const pgcode) {
|
|
injected_commands_P = pgcode;
|
|
drain_injected_commands_P(); // first command executed asap (when possible)
|
|
}
|
|
|
|
/**
|
|
* Clear the Marlin command queue
|
|
*/
|
|
void clear_command_queue() {
|
|
cmd_queue_index_r = cmd_queue_index_w;
|
|
commands_in_queue = 0;
|
|
}
|
|
|
|
/**
|
|
* Once a new command is in the ring buffer, call this to commit it
|
|
*/
|
|
inline void _commit_command(bool say_ok) {
|
|
send_ok[cmd_queue_index_w] = say_ok;
|
|
if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
|
|
commands_in_queue++;
|
|
}
|
|
|
|
/**
|
|
* Copy a command from RAM into the main command buffer.
|
|
* Return true if the command was successfully added.
|
|
* Return false for a full buffer, or if the 'command' is a comment.
|
|
*/
|
|
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
|
|
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
|
|
strcpy(command_queue[cmd_queue_index_w], cmd);
|
|
_commit_command(say_ok);
|
|
return true;
|
|
}
|
|
|
|
/**
|
|
* Enqueue with Serial Echo
|
|
*/
|
|
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
|
|
if (_enqueuecommand(cmd, say_ok)) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
|
|
SERIAL_CHAR('"');
|
|
SERIAL_EOL();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setup_killpin() {
|
|
#if HAS_KILL
|
|
SET_INPUT_PULLUP(KILL_PIN);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
void setup_filrunoutpin() {
|
|
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
|
|
SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
|
|
#else
|
|
SET_INPUT(FIL_RUNOUT_PIN);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
void setup_powerhold() {
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if HAS_POWER_SWITCH
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide() {
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init() {
|
|
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
|
servo[0].attach(SERVO0_PIN);
|
|
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
|
|
#endif
|
|
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
|
servo[1].attach(SERVO1_PIN);
|
|
servo[1].detach();
|
|
#endif
|
|
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
|
servo[2].attach(SERVO2_PIN);
|
|
servo[2].detach();
|
|
#endif
|
|
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
|
servo[3].attach(SERVO3_PIN);
|
|
servo[3].detach();
|
|
#endif
|
|
|
|
#if HAS_Z_SERVO_ENDSTOP
|
|
/**
|
|
* Set position of Z Servo Endstop
|
|
*
|
|
* The servo might be deployed and positioned too low to stow
|
|
* when starting up the machine or rebooting the board.
|
|
* There's no way to know where the nozzle is positioned until
|
|
* homing has been done - no homing with z-probe without init!
|
|
*
|
|
*/
|
|
STOW_Z_SERVO();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Stepper Reset (RigidBoard, et.al.)
|
|
*/
|
|
#if HAS_STEPPER_RESET
|
|
void disableStepperDrivers() {
|
|
OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
|
|
}
|
|
void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
|
|
void i2c_on_receive(int bytes) { // just echo all bytes received to serial
|
|
i2c.receive(bytes);
|
|
}
|
|
|
|
void i2c_on_request() { // just send dummy data for now
|
|
i2c.reply("Hello World!\n");
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAS_COLOR_LEDS
|
|
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
|
|
Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEO_GRBW + NEO_KHZ800);
|
|
|
|
void set_neopixel_color(const uint32_t color) {
|
|
for (uint16_t i = 0; i < pixels.numPixels(); ++i)
|
|
pixels.setPixelColor(i, color);
|
|
pixels.show();
|
|
}
|
|
|
|
void setup_neopixel() {
|
|
pixels.setBrightness(255); // 0 - 255 range
|
|
pixels.begin();
|
|
pixels.show(); // initialize to all off
|
|
|
|
#if ENABLED(NEOPIXEL_STARTUP_TEST)
|
|
delay(2000);
|
|
set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
|
|
delay(2000);
|
|
set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
|
|
delay(2000);
|
|
set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
|
|
delay(2000);
|
|
#endif
|
|
set_neopixel_color(pixels.Color(0, 0, 0, 255)); // white
|
|
}
|
|
|
|
#endif // NEOPIXEL_RGBW_LED
|
|
|
|
void set_led_color(
|
|
const uint8_t r, const uint8_t g, const uint8_t b
|
|
#if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
|
|
, const uint8_t w = 0
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
, bool isSequence = false
|
|
#endif
|
|
#endif
|
|
) {
|
|
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
|
|
const uint32_t color = pixels.Color(r, g, b, w);
|
|
static uint16_t nextLed = 0;
|
|
|
|
if (!isSequence)
|
|
set_neopixel_color(color);
|
|
else {
|
|
pixels.setPixelColor(nextLed, color);
|
|
pixels.show();
|
|
if (++nextLed >= pixels.numPixels()) nextLed = 0;
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BLINKM)
|
|
|
|
// This variant uses i2c to send the RGB components to the device.
|
|
SendColors(r, g, b);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
|
|
|
|
// This variant uses 3 separate pins for the RGB components.
|
|
// If the pins can do PWM then their intensity will be set.
|
|
WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
|
|
WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
|
|
WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
|
|
analogWrite(RGB_LED_R_PIN, r);
|
|
analogWrite(RGB_LED_G_PIN, g);
|
|
analogWrite(RGB_LED_B_PIN, b);
|
|
|
|
#if ENABLED(RGBW_LED)
|
|
WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
|
|
analogWrite(RGB_LED_W_PIN, w);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PCA9632)
|
|
// Update I2C LED driver
|
|
PCA9632_SetColor(r, g, b);
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_COLOR_LEDS
|
|
|
|
void gcode_line_error(const char* err, bool doFlush = true) {
|
|
SERIAL_ERROR_START();
|
|
serialprintPGM(err);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
if (doFlush) FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
}
|
|
|
|
/**
|
|
* Get all commands waiting on the serial port and queue them.
|
|
* Exit when the buffer is full or when no more characters are
|
|
* left on the serial port.
|
|
*/
|
|
inline void get_serial_commands() {
|
|
static char serial_line_buffer[MAX_CMD_SIZE];
|
|
static bool serial_comment_mode = false;
|
|
|
|
// If the command buffer is empty for too long,
|
|
// send "wait" to indicate Marlin is still waiting.
|
|
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
static millis_t last_command_time = 0;
|
|
const millis_t ms = millis();
|
|
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
|
|
SERIAL_ECHOLNPGM(MSG_WAIT);
|
|
last_command_time = ms;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Loop while serial characters are incoming and the queue is not full
|
|
*/
|
|
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
|
|
|
|
char serial_char = MYSERIAL.read();
|
|
|
|
/**
|
|
* If the character ends the line
|
|
*/
|
|
if (serial_char == '\n' || serial_char == '\r') {
|
|
|
|
serial_comment_mode = false; // end of line == end of comment
|
|
|
|
if (!serial_count) continue; // skip empty lines
|
|
|
|
serial_line_buffer[serial_count] = 0; // terminate string
|
|
serial_count = 0; //reset buffer
|
|
|
|
char* command = serial_line_buffer;
|
|
|
|
while (*command == ' ') command++; // skip any leading spaces
|
|
char *npos = (*command == 'N') ? command : NULL, // Require the N parameter to start the line
|
|
*apos = strchr(command, '*');
|
|
|
|
if (npos) {
|
|
|
|
bool M110 = strstr_P(command, PSTR("M110")) != NULL;
|
|
|
|
if (M110) {
|
|
char* n2pos = strchr(command + 4, 'N');
|
|
if (n2pos) npos = n2pos;
|
|
}
|
|
|
|
gcode_N = strtol(npos + 1, NULL, 10);
|
|
|
|
if (gcode_N != gcode_LastN + 1 && !M110) {
|
|
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
|
|
return;
|
|
}
|
|
|
|
if (apos) {
|
|
byte checksum = 0, count = 0;
|
|
while (command[count] != '*') checksum ^= command[count++];
|
|
|
|
if (strtol(apos + 1, NULL, 10) != checksum) {
|
|
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
|
|
return;
|
|
}
|
|
// if no errors, continue parsing
|
|
}
|
|
else {
|
|
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
// if no errors, continue parsing
|
|
}
|
|
else if (apos) { // No '*' without 'N'
|
|
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
|
|
return;
|
|
}
|
|
|
|
// Movement commands alert when stopped
|
|
if (IsStopped()) {
|
|
char* gpos = strchr(command, 'G');
|
|
if (gpos) {
|
|
const int codenum = strtol(gpos + 1, NULL, 10);
|
|
switch (codenum) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
// If command was e-stop process now
|
|
if (strcmp(command, "M108") == 0) {
|
|
wait_for_heatup = false;
|
|
#if ENABLED(ULTIPANEL)
|
|
wait_for_user = false;
|
|
#endif
|
|
}
|
|
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
|
|
if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
|
|
#endif
|
|
|
|
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
last_command_time = ms;
|
|
#endif
|
|
|
|
// Add the command to the queue
|
|
_enqueuecommand(serial_line_buffer, true);
|
|
}
|
|
else if (serial_count >= MAX_CMD_SIZE - 1) {
|
|
// Keep fetching, but ignore normal characters beyond the max length
|
|
// The command will be injected when EOL is reached
|
|
}
|
|
else if (serial_char == '\\') { // Handle escapes
|
|
if (MYSERIAL.available() > 0) {
|
|
// if we have one more character, copy it over
|
|
serial_char = MYSERIAL.read();
|
|
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
}
|
|
// otherwise do nothing
|
|
}
|
|
else { // it's not a newline, carriage return or escape char
|
|
if (serial_char == ';') serial_comment_mode = true;
|
|
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
}
|
|
|
|
} // queue has space, serial has data
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* Get commands from the SD Card until the command buffer is full
|
|
* or until the end of the file is reached. The special character '#'
|
|
* can also interrupt buffering.
|
|
*/
|
|
inline void get_sdcard_commands() {
|
|
static bool stop_buffering = false,
|
|
sd_comment_mode = false;
|
|
|
|
if (!card.sdprinting) return;
|
|
|
|
/**
|
|
* '#' stops reading from SD to the buffer prematurely, so procedural
|
|
* macro calls are possible. If it occurs, stop_buffering is triggered
|
|
* and the buffer is run dry; this character _can_ occur in serial com
|
|
* due to checksums, however, no checksums are used in SD printing.
|
|
*/
|
|
|
|
if (commands_in_queue == 0) stop_buffering = false;
|
|
|
|
uint16_t sd_count = 0;
|
|
bool card_eof = card.eof();
|
|
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
|
|
const int16_t n = card.get();
|
|
char sd_char = (char)n;
|
|
card_eof = card.eof();
|
|
if (card_eof || n == -1
|
|
|| sd_char == '\n' || sd_char == '\r'
|
|
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
|
|
) {
|
|
if (card_eof) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
|
|
card.printingHasFinished();
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
|
|
set_led_color(0, 255, 0); // Green
|
|
#if HAS_RESUME_CONTINUE
|
|
enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
|
|
#else
|
|
safe_delay(1000);
|
|
#endif
|
|
set_led_color(0, 0, 0); // OFF
|
|
#endif
|
|
card.checkautostart(true);
|
|
}
|
|
else if (n == -1) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
|
|
}
|
|
if (sd_char == '#') stop_buffering = true;
|
|
|
|
sd_comment_mode = false; // for new command
|
|
|
|
if (!sd_count) continue; // skip empty lines (and comment lines)
|
|
|
|
command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
|
|
sd_count = 0; // clear sd line buffer
|
|
|
|
_commit_command(false);
|
|
}
|
|
else if (sd_count >= MAX_CMD_SIZE - 1) {
|
|
/**
|
|
* Keep fetching, but ignore normal characters beyond the max length
|
|
* The command will be injected when EOL is reached
|
|
*/
|
|
}
|
|
else {
|
|
if (sd_char == ';') sd_comment_mode = true;
|
|
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* Add to the circular command queue the next command from:
|
|
* - The command-injection queue (injected_commands_P)
|
|
* - The active serial input (usually USB)
|
|
* - The SD card file being actively printed
|
|
*/
|
|
void get_available_commands() {
|
|
|
|
// if any immediate commands remain, don't get other commands yet
|
|
if (drain_injected_commands_P()) return;
|
|
|
|
get_serial_commands();
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
get_sdcard_commands();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Set target_extruder from the T parameter or the active_extruder
|
|
*
|
|
* Returns TRUE if the target is invalid
|
|
*/
|
|
bool get_target_extruder_from_command(const uint16_t code) {
|
|
if (parser.seenval('T')) {
|
|
const int8_t e = parser.value_byte();
|
|
if (e >= EXTRUDERS) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_CHAR('M');
|
|
SERIAL_ECHO(code);
|
|
SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
|
|
return true;
|
|
}
|
|
target_extruder = e;
|
|
}
|
|
else
|
|
target_extruder = active_extruder;
|
|
|
|
return false;
|
|
}
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
bool extruder_duplication_enabled = false; // Used in Dual X mode 2
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
|
static float x_home_pos(const int extruder) {
|
|
if (extruder == 0)
|
|
return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
|
|
else
|
|
/**
|
|
* In dual carriage mode the extruder offset provides an override of the
|
|
* second X-carriage position when homed - otherwise X2_HOME_POS is used.
|
|
* This allows soft recalibration of the second extruder home position
|
|
* without firmware reflash (through the M218 command).
|
|
*/
|
|
return LOGICAL_X_POSITION(hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS);
|
|
}
|
|
|
|
static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
|
|
|
|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
|
static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
static float raised_parked_position[XYZE]; // used in mode 1
|
|
static millis_t delayed_move_time = 0; // used in mode 1
|
|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
|
static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
/**
|
|
* Software endstops can be used to monitor the open end of
|
|
* an axis that has a hardware endstop on the other end. Or
|
|
* they can prevent axes from moving past endstops and grinding.
|
|
*
|
|
* To keep doing their job as the coordinate system changes,
|
|
* the software endstop positions must be refreshed to remain
|
|
* at the same positions relative to the machine.
|
|
*/
|
|
void update_software_endstops(const AxisEnum axis) {
|
|
const float offs = 0.0
|
|
#if HAS_HOME_OFFSET
|
|
+ home_offset[axis]
|
|
#endif
|
|
#if HAS_POSITION_SHIFT
|
|
+ position_shift[axis]
|
|
#endif
|
|
;
|
|
|
|
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
|
|
workspace_offset[axis] = offs;
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (axis == X_AXIS) {
|
|
|
|
// In Dual X mode hotend_offset[X] is T1's home position
|
|
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
|
|
|
|
if (active_extruder != 0) {
|
|
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
|
|
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
|
|
soft_endstop_max[X_AXIS] = dual_max_x + offs;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
// In Duplication Mode, T0 can move as far left as X_MIN_POS
|
|
// but not so far to the right that T1 would move past the end
|
|
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
|
|
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
|
|
}
|
|
else {
|
|
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
|
|
soft_endstop_min[axis] = base_min_pos(axis) + offs;
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
}
|
|
}
|
|
#elif ENABLED(DELTA)
|
|
soft_endstop_min[axis] = base_min_pos(axis) + (axis == Z_AXIS ? 0 : offs);
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
#else
|
|
soft_endstop_min[axis] = base_min_pos(axis) + offs;
|
|
soft_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
|
|
#if HAS_HOME_OFFSET
|
|
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
|
|
#endif
|
|
#if HAS_POSITION_SHIFT
|
|
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
|
|
#endif
|
|
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
|
|
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
if (axis == Z_AXIS)
|
|
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
|
|
|
|
#if HAS_M206_COMMAND
|
|
/**
|
|
* Change the home offset for an axis, update the current
|
|
* position and the software endstops to retain the same
|
|
* relative distance to the new home.
|
|
*
|
|
* Since this changes the current_position, code should
|
|
* call sync_plan_position soon after this.
|
|
*/
|
|
static void set_home_offset(const AxisEnum axis, const float v) {
|
|
current_position[axis] += v - home_offset[axis];
|
|
home_offset[axis] = v;
|
|
update_software_endstops(axis);
|
|
}
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
/**
|
|
* Set an axis' current position to its home position (after homing).
|
|
*
|
|
* For Core and Cartesian robots this applies one-to-one when an
|
|
* individual axis has been homed.
|
|
*
|
|
* DELTA should wait until all homing is done before setting the XYZ
|
|
* current_position to home, because homing is a single operation.
|
|
* In the case where the axis positions are already known and previously
|
|
* homed, DELTA could home to X or Y individually by moving either one
|
|
* to the center. However, homing Z always homes XY and Z.
|
|
*
|
|
* SCARA should wait until all XY homing is done before setting the XY
|
|
* current_position to home, because neither X nor Y is at home until
|
|
* both are at home. Z can however be homed individually.
|
|
*
|
|
* Callers must sync the planner position after calling this!
|
|
*/
|
|
static void set_axis_is_at_home(const AxisEnum axis) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
axis_known_position[axis] = axis_homed[axis] = true;
|
|
|
|
#if HAS_POSITION_SHIFT
|
|
position_shift[axis] = 0;
|
|
update_software_endstops(axis);
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
/**
|
|
* Morgan SCARA homes XY at the same time
|
|
*/
|
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
|
|
|
float homeposition[XYZ];
|
|
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
|
|
|
|
// SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
|
|
// SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
|
|
|
|
/**
|
|
* Get Home position SCARA arm angles using inverse kinematics,
|
|
* and calculate homing offset using forward kinematics
|
|
*/
|
|
inverse_kinematics(homeposition);
|
|
forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
|
|
|
|
// SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
|
|
// SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
|
|
|
|
current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
|
|
|
|
/**
|
|
* SCARA home positions are based on configuration since the actual
|
|
* limits are determined by the inverse kinematic transform.
|
|
*/
|
|
soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
|
|
}
|
|
|
|
/**
|
|
* Z Probe Z Homing? Account for the probe's Z offset.
|
|
*/
|
|
#if HAS_BED_PROBE && Z_HOME_DIR < 0
|
|
if (axis == Z_AXIS) {
|
|
#if HOMING_Z_WITH_PROBE
|
|
|
|
current_position[Z_AXIS] -= zprobe_zoffset;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
|
|
SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
|
|
}
|
|
#endif
|
|
|
|
#elif ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
|
|
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
#if HAS_HOME_OFFSET
|
|
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
|
|
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
|
|
#endif
|
|
DEBUG_POS("", current_position);
|
|
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
I2CPEM.homed(axis);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Some planner shorthand inline functions
|
|
*/
|
|
inline float get_homing_bump_feedrate(const AxisEnum axis) {
|
|
static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
|
|
uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
|
|
if (hbd < 1) {
|
|
hbd = 10;
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
|
|
}
|
|
return homing_feedrate(axis) / hbd;
|
|
}
|
|
|
|
/**
|
|
* Move the planner to the current position from wherever it last moved
|
|
* (or from wherever it has been told it is located).
|
|
*/
|
|
inline void line_to_current_position() {
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
|
|
}
|
|
|
|
/**
|
|
* Move the planner to the position stored in the destination array, which is
|
|
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
|
|
*/
|
|
inline void line_to_destination(const float fr_mm_s) {
|
|
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
|
|
}
|
|
inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
|
|
|
|
inline void set_current_to_destination() { COPY(current_position, destination); }
|
|
inline void set_destination_to_current() { COPY(destination, current_position); }
|
|
|
|
#if IS_KINEMATIC
|
|
/**
|
|
* Calculate delta, start a line, and set current_position to destination
|
|
*/
|
|
void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
|
|
#endif
|
|
|
|
refresh_cmd_timeout();
|
|
|
|
#if UBL_DELTA
|
|
// ubl segmented line will do z-only moves in single segment
|
|
ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
|
|
#else
|
|
if ( current_position[X_AXIS] == destination[X_AXIS]
|
|
&& current_position[Y_AXIS] == destination[Y_AXIS]
|
|
&& current_position[Z_AXIS] == destination[Z_AXIS]
|
|
&& current_position[E_AXIS] == destination[E_AXIS]
|
|
) return;
|
|
|
|
planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
|
|
#endif
|
|
|
|
set_current_to_destination();
|
|
}
|
|
#endif // IS_KINEMATIC
|
|
|
|
/**
|
|
* Plan a move to (X, Y, Z) and set the current_position
|
|
* The final current_position may not be the one that was requested
|
|
*/
|
|
void do_blocking_move_to(const float &lx, const float &ly, const float &lz, const float &fr_mm_s/*=0.0*/) {
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, lx, ly, lz);
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
if (!position_is_reachable_xy(lx, ly)) return;
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
set_destination_to_current(); // sync destination at the start
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
|
|
#endif
|
|
|
|
// when in the danger zone
|
|
if (current_position[Z_AXIS] > delta_clip_start_height) {
|
|
if (lz > delta_clip_start_height) { // staying in the danger zone
|
|
destination[X_AXIS] = lx; // move directly (uninterpolated)
|
|
destination[Y_AXIS] = ly;
|
|
destination[Z_AXIS] = lz;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
|
|
#endif
|
|
return;
|
|
}
|
|
else {
|
|
destination[Z_AXIS] = delta_clip_start_height;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
if (lz > current_position[Z_AXIS]) { // raising?
|
|
destination[Z_AXIS] = lz;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
|
|
#endif
|
|
}
|
|
|
|
destination[X_AXIS] = lx;
|
|
destination[Y_AXIS] = ly;
|
|
prepare_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
|
|
#endif
|
|
|
|
if (lz < current_position[Z_AXIS]) { // lowering?
|
|
destination[Z_AXIS] = lz;
|
|
prepare_uninterpolated_move_to_destination(); // set_current_to_destination
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
|
|
#endif
|
|
}
|
|
|
|
#elif IS_SCARA
|
|
|
|
if (!position_is_reachable_xy(lx, ly)) return;
|
|
|
|
set_destination_to_current();
|
|
|
|
// If Z needs to raise, do it before moving XY
|
|
if (destination[Z_AXIS] < lz) {
|
|
destination[Z_AXIS] = lz;
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
|
|
}
|
|
|
|
destination[X_AXIS] = lx;
|
|
destination[Y_AXIS] = ly;
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
|
|
|
|
// If Z needs to lower, do it after moving XY
|
|
if (destination[Z_AXIS] > lz) {
|
|
destination[Z_AXIS] = lz;
|
|
prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS));
|
|
}
|
|
|
|
#else
|
|
|
|
// If Z needs to raise, do it before moving XY
|
|
if (current_position[Z_AXIS] < lz) {
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
|
|
current_position[Z_AXIS] = lz;
|
|
line_to_current_position();
|
|
}
|
|
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
current_position[X_AXIS] = lx;
|
|
current_position[Y_AXIS] = ly;
|
|
line_to_current_position();
|
|
|
|
// If Z needs to lower, do it after moving XY
|
|
if (current_position[Z_AXIS] > lz) {
|
|
feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
|
|
current_position[Z_AXIS] = lz;
|
|
line_to_current_position();
|
|
}
|
|
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
|
|
#endif
|
|
}
|
|
void do_blocking_move_to_x(const float &lx, const float &fr_mm_s/*=0.0*/) {
|
|
do_blocking_move_to(lx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
|
|
}
|
|
void do_blocking_move_to_z(const float &lz, const float &fr_mm_s/*=0.0*/) {
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], lz, fr_mm_s);
|
|
}
|
|
void do_blocking_move_to_xy(const float &lx, const float &ly, const float &fr_mm_s/*=0.0*/) {
|
|
do_blocking_move_to(lx, ly, current_position[Z_AXIS], fr_mm_s);
|
|
}
|
|
|
|
//
|
|
// Prepare to do endstop or probe moves
|
|
// with custom feedrates.
|
|
//
|
|
// - Save current feedrates
|
|
// - Reset the rate multiplier
|
|
// - Reset the command timeout
|
|
// - Enable the endstops (for endstop moves)
|
|
//
|
|
static void setup_for_endstop_or_probe_move() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
|
|
#endif
|
|
saved_feedrate_mm_s = feedrate_mm_s;
|
|
saved_feedrate_percentage = feedrate_percentage;
|
|
feedrate_percentage = 100;
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
static void clean_up_after_endstop_or_probe_move() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
|
|
#endif
|
|
feedrate_mm_s = saved_feedrate_mm_s;
|
|
feedrate_percentage = saved_feedrate_percentage;
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
#if HAS_BED_PROBE
|
|
/**
|
|
* Raise Z to a minimum height to make room for a probe to move
|
|
*/
|
|
inline void do_probe_raise(const float z_raise) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
float z_dest = z_raise;
|
|
if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
|
|
|
|
if (z_dest > current_position[Z_AXIS])
|
|
do_blocking_move_to_z(z_dest);
|
|
}
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if HAS_AXIS_UNHOMED_ERR
|
|
|
|
bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
|
|
#if ENABLED(HOME_AFTER_DEACTIVATE)
|
|
const bool xx = x && !axis_known_position[X_AXIS],
|
|
yy = y && !axis_known_position[Y_AXIS],
|
|
zz = z && !axis_known_position[Z_AXIS];
|
|
#else
|
|
const bool xx = x && !axis_homed[X_AXIS],
|
|
yy = y && !axis_homed[Y_AXIS],
|
|
zz = z && !axis_homed[Z_AXIS];
|
|
#endif
|
|
if (xx || yy || zz) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(MSG_HOME " ");
|
|
if (xx) SERIAL_ECHOPGM(MSG_X);
|
|
if (yy) SERIAL_ECHOPGM(MSG_Y);
|
|
if (zz) SERIAL_ECHOPGM(MSG_Z);
|
|
SERIAL_ECHOLNPGM(" " MSG_FIRST);
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
|
|
#endif
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
#define SLED_DOCKING_OFFSET 0
|
|
#endif
|
|
|
|
/**
|
|
* Method to dock/undock a sled designed by Charles Bell.
|
|
*
|
|
* stow[in] If false, move to MAX_X and engage the solenoid
|
|
* If true, move to MAX_X and release the solenoid
|
|
*/
|
|
static void dock_sled(bool stow) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("dock_sled(", stow);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
// Dock sled a bit closer to ensure proper capturing
|
|
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
|
|
|
|
#if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
|
|
WRITE(SOL1_PIN, !stow); // switch solenoid
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
FORCE_INLINE void do_blocking_move_to(const float logical[XYZ], const float &fr_mm_s) {
|
|
do_blocking_move_to(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS], fr_mm_s);
|
|
}
|
|
|
|
void run_deploy_moves_script() {
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
|
|
#endif
|
|
const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
|
|
do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
|
|
#endif
|
|
const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
|
|
do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
|
|
#endif
|
|
const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
|
|
do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
|
|
#endif
|
|
const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
|
|
do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
|
|
#endif
|
|
const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
|
|
do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
|
|
#endif
|
|
}
|
|
|
|
void run_stow_moves_script() {
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
|
|
#endif
|
|
const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
|
|
do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
|
|
#endif
|
|
const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
|
|
do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
|
|
#endif
|
|
const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
|
|
do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
|
|
#endif
|
|
const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
|
|
do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
|
|
#endif
|
|
#if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
|
|
#endif
|
|
#ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
|
|
#define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
|
|
#endif
|
|
const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
|
|
do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
|
|
void fans_pause(const bool p) {
|
|
if (p != fans_paused) {
|
|
fans_paused = p;
|
|
if (p)
|
|
for (uint8_t x = 0; x < FAN_COUNT; x++) {
|
|
paused_fanSpeeds[x] = fanSpeeds[x];
|
|
fanSpeeds[x] = 0;
|
|
}
|
|
else
|
|
for (uint8_t x = 0; x < FAN_COUNT; x++)
|
|
fanSpeeds[x] = paused_fanSpeeds[x];
|
|
}
|
|
}
|
|
|
|
#endif // PROBING_FANS_OFF
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
// TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
|
|
#if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
|
|
#else
|
|
#define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
|
|
#endif
|
|
#endif
|
|
|
|
#if QUIET_PROBING
|
|
void probing_pause(const bool p) {
|
|
#if ENABLED(PROBING_HEATERS_OFF)
|
|
thermalManager.pause(p);
|
|
#endif
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
fans_pause(p);
|
|
#endif
|
|
if (p) safe_delay(
|
|
#if DELAY_BEFORE_PROBING > 25
|
|
DELAY_BEFORE_PROBING
|
|
#else
|
|
25
|
|
#endif
|
|
);
|
|
}
|
|
#endif // QUIET_PROBING
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
|
|
void bltouch_command(int angle) {
|
|
MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
|
|
safe_delay(BLTOUCH_DELAY);
|
|
}
|
|
|
|
bool set_bltouch_deployed(const bool deploy) {
|
|
if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
|
|
bltouch_command(BLTOUCH_RESET); // try to reset it.
|
|
bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
|
|
bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
|
|
safe_delay(1500); // Wait for internal self-test to complete.
|
|
// (Measured completion time was 0.65 seconds
|
|
// after reset, deploy, and stow sequence)
|
|
if (TEST_BLTOUCH()) { // If it still claims to be triggered...
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
|
|
stop(); // punt!
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
#endif // BLTOUCH
|
|
|
|
// returns false for ok and true for failure
|
|
bool set_probe_deployed(bool deploy) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS("set_probe_deployed", current_position);
|
|
SERIAL_ECHOLNPAIR("deploy: ", deploy);
|
|
}
|
|
#endif
|
|
|
|
if (endstops.z_probe_enabled == deploy) return false;
|
|
|
|
// Make room for probe
|
|
do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
|
|
|
|
#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
#define _AUE_ARGS true, false, false
|
|
#else
|
|
#define _AUE_ARGS
|
|
#endif
|
|
if (axis_unhomed_error(_AUE_ARGS)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
|
|
stop();
|
|
return true;
|
|
}
|
|
#endif
|
|
|
|
const float oldXpos = current_position[X_AXIS],
|
|
oldYpos = current_position[Y_AXIS];
|
|
|
|
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
|
|
// If endstop is already false, the Z probe is deployed
|
|
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
|
|
// Would a goto be less ugly?
|
|
//while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
|
|
// for a triggered when stowed manual probe.
|
|
|
|
if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
|
|
// otherwise an Allen-Key probe can't be stowed.
|
|
#endif
|
|
|
|
#if ENABLED(SOLENOID_PROBE)
|
|
|
|
#if HAS_SOLENOID_1
|
|
WRITE(SOL1_PIN, deploy);
|
|
#endif
|
|
|
|
#elif ENABLED(Z_PROBE_SLED)
|
|
|
|
dock_sled(!deploy);
|
|
|
|
#elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
|
|
|
|
MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
deploy ? run_deploy_moves_script() : run_stow_moves_script();
|
|
|
|
#endif
|
|
|
|
#ifdef _TRIGGERED_WHEN_STOWED_TEST
|
|
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
|
if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
|
|
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("Z-Probe failed");
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
}
|
|
stop();
|
|
return true;
|
|
|
|
} // _TRIGGERED_WHEN_STOWED_TEST == deploy
|
|
|
|
#endif
|
|
|
|
do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
|
|
endstops.enable_z_probe(deploy);
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* @brief Used by run_z_probe to do a single Z probe move.
|
|
*
|
|
* @param z Z destination
|
|
* @param fr_mm_s Feedrate in mm/s
|
|
* @return true to indicate an error
|
|
*/
|
|
static bool do_probe_move(const float z, const float fr_mm_m) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
|
|
#endif
|
|
|
|
// Deploy BLTouch at the start of any probe
|
|
#if ENABLED(BLTOUCH)
|
|
if (set_bltouch_deployed(true)) return true;
|
|
#endif
|
|
|
|
#if QUIET_PROBING
|
|
probing_pause(true);
|
|
#endif
|
|
|
|
// Move down until probe triggered
|
|
do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
|
|
|
|
// Check to see if the probe was triggered
|
|
const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
|
|
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
Z_MIN
|
|
#else
|
|
Z_MIN_PROBE
|
|
#endif
|
|
);
|
|
|
|
#if QUIET_PROBING
|
|
probing_pause(false);
|
|
#endif
|
|
|
|
// Retract BLTouch immediately after a probe if it was triggered
|
|
#if ENABLED(BLTOUCH)
|
|
if (probe_triggered && set_bltouch_deployed(false)) return true;
|
|
#endif
|
|
|
|
// Clear endstop flags
|
|
endstops.hit_on_purpose();
|
|
|
|
// Get Z where the steppers were interrupted
|
|
set_current_from_steppers_for_axis(Z_AXIS);
|
|
|
|
// Tell the planner where we actually are
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
|
|
#endif
|
|
|
|
return !probe_triggered;
|
|
}
|
|
|
|
/**
|
|
* @details Used by probe_pt to do a single Z probe.
|
|
* Leaves current_position[Z_AXIS] at the height where the probe triggered.
|
|
*
|
|
* @param short_move Flag for a shorter probe move towards the bed
|
|
* @return The raw Z position where the probe was triggered
|
|
*/
|
|
static float run_z_probe(const bool short_move=true) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
|
|
#endif
|
|
|
|
// Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
|
|
|
// Do a first probe at the fast speed
|
|
if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
float first_probe_z = current_position[Z_AXIS];
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
|
|
#endif
|
|
|
|
// move up to make clearance for the probe
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
|
|
#else
|
|
|
|
// If the nozzle is above the travel height then
|
|
// move down quickly before doing the slow probe
|
|
float z = Z_CLEARANCE_DEPLOY_PROBE;
|
|
if (zprobe_zoffset < 0) z -= zprobe_zoffset;
|
|
|
|
if (z < current_position[Z_AXIS]) {
|
|
|
|
// If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
|
|
if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
}
|
|
#endif
|
|
|
|
// move down slowly to find bed
|
|
if (do_probe_move(-10 + (short_move ? 0 : -(Z_MAX_LENGTH)), Z_PROBE_SPEED_SLOW)) return NAN;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
|
|
#endif
|
|
|
|
// Debug: compare probe heights
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
|
|
}
|
|
#endif
|
|
|
|
return RAW_CURRENT_POSITION(Z) + zprobe_zoffset
|
|
#if ENABLED(DELTA)
|
|
+ home_offset[Z_AXIS] // Account for delta height adjustment
|
|
#endif
|
|
;
|
|
}
|
|
|
|
/**
|
|
* - Move to the given XY
|
|
* - Deploy the probe, if not already deployed
|
|
* - Probe the bed, get the Z position
|
|
* - Depending on the 'stow' flag
|
|
* - Stow the probe, or
|
|
* - Raise to the BETWEEN height
|
|
* - Return the probed Z position
|
|
*/
|
|
float probe_pt(const float &lx, const float &ly, const bool stow, const uint8_t verbose_level, const bool printable=true) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> probe_pt(", lx);
|
|
SERIAL_ECHOPAIR(", ", ly);
|
|
SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
|
|
SERIAL_ECHOLNPGM("stow)");
|
|
DEBUG_POS("", current_position);
|
|
}
|
|
#endif
|
|
|
|
const float nx = lx - (X_PROBE_OFFSET_FROM_EXTRUDER), ny = ly - (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
if (printable
|
|
? !position_is_reachable_xy(nx, ny)
|
|
: !position_is_reachable_by_probe_xy(lx, ly)
|
|
) return NAN;
|
|
|
|
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
|
|
#if ENABLED(DELTA)
|
|
if (current_position[Z_AXIS] > delta_clip_start_height)
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
#endif
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
// Store the status of the soft endstops and disable if we're probing a non-printable location
|
|
static bool enable_soft_endstops = soft_endstops_enabled;
|
|
if (!printable) soft_endstops_enabled = false;
|
|
#endif
|
|
|
|
feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
// Move the probe to the given XY
|
|
do_blocking_move_to_xy(nx, ny);
|
|
|
|
float measured_z = NAN;
|
|
if (!DEPLOY_PROBE()) {
|
|
measured_z = run_z_probe(printable);
|
|
|
|
if (!stow)
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
|
|
else
|
|
if (STOW_PROBE()) measured_z = NAN;
|
|
}
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
// Restore the soft endstop status
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
#endif
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
SERIAL_PROTOCOL_F(lx, 3);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL_F(ly, 3);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
|
|
#endif
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
if (isnan(measured_z)) {
|
|
LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
|
|
}
|
|
|
|
return measured_z;
|
|
}
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if HAS_LEVELING
|
|
|
|
bool leveling_is_valid() {
|
|
return
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.has_mesh()
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
!!bilinear_grid_spacing[X_AXIS]
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
true
|
|
#else // 3POINT, LINEAR
|
|
true
|
|
#endif
|
|
;
|
|
}
|
|
|
|
bool leveling_is_active() {
|
|
return
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mbl.active()
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
ubl.state.active
|
|
#else
|
|
planner.abl_enabled
|
|
#endif
|
|
;
|
|
}
|
|
|
|
/**
|
|
* Turn bed leveling on or off, fixing the current
|
|
* position as-needed.
|
|
*
|
|
* Disable: Current position = physical position
|
|
* Enable: Current position = "unleveled" physical position
|
|
*/
|
|
void set_bed_leveling_enabled(const bool enable/*=true*/) {
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
const bool can_change = (!enable || leveling_is_valid());
|
|
#else
|
|
constexpr bool can_change = true;
|
|
#endif
|
|
|
|
if (can_change && enable != leveling_is_active()) {
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (!enable)
|
|
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
|
|
const bool enabling = enable && leveling_is_valid();
|
|
mbl.set_active(enabling);
|
|
if (enabling) planner.unapply_leveling(current_position);
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#if PLANNER_LEVELING
|
|
if (ubl.state.active) { // leveling from on to off
|
|
// change unleveled current_position to physical current_position without moving steppers.
|
|
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
ubl.state.active = false; // disable only AFTER calling apply_leveling
|
|
}
|
|
else { // leveling from off to on
|
|
ubl.state.active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
|
|
// change physical current_position to unleveled current_position without moving steppers.
|
|
planner.unapply_leveling(current_position);
|
|
}
|
|
#else
|
|
ubl.state.active = enable; // just flip the bit, current_position will be wrong until next move.
|
|
#endif
|
|
|
|
#else // ABL
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
// Force bilinear_z_offset to re-calculate next time
|
|
const float reset[XYZ] = { -9999.999, -9999.999, 0 };
|
|
(void)bilinear_z_offset(reset);
|
|
#endif
|
|
|
|
// Enable or disable leveling compensation in the planner
|
|
planner.abl_enabled = enable;
|
|
|
|
if (!enable)
|
|
// When disabling just get the current position from the steppers.
|
|
// This will yield the smallest error when first converted back to steps.
|
|
set_current_from_steppers_for_axis(
|
|
#if ABL_PLANAR
|
|
ALL_AXES
|
|
#else
|
|
Z_AXIS
|
|
#endif
|
|
);
|
|
else
|
|
// When enabling, remove compensation from the current position,
|
|
// so compensation will give the right stepper counts.
|
|
planner.unapply_leveling(current_position);
|
|
|
|
#endif // ABL
|
|
}
|
|
}
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
|
|
void set_z_fade_height(const float zfh) {
|
|
|
|
const bool level_active = leveling_is_active();
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
if (level_active)
|
|
set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
|
|
planner.z_fade_height = zfh;
|
|
planner.inverse_z_fade_height = RECIPROCAL(zfh);
|
|
if (level_active)
|
|
set_bed_leveling_enabled(true); // turn back on after changing fade height
|
|
|
|
#else
|
|
|
|
planner.z_fade_height = zfh;
|
|
planner.inverse_z_fade_height = RECIPROCAL(zfh);
|
|
|
|
if (level_active) {
|
|
set_current_from_steppers_for_axis(
|
|
#if ABL_PLANAR
|
|
ALL_AXES
|
|
#else
|
|
Z_AXIS
|
|
#endif
|
|
);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // LEVELING_FADE_HEIGHT
|
|
|
|
/**
|
|
* Reset calibration results to zero.
|
|
*/
|
|
void reset_bed_level() {
|
|
set_bed_leveling_enabled(false);
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (leveling_is_valid()) {
|
|
mbl.reset();
|
|
mbl.set_has_mesh(false);
|
|
}
|
|
#else
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
|
#endif
|
|
#if ABL_PLANAR
|
|
planner.bed_level_matrix.set_to_identity();
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
|
|
bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
z_values[x][y] = NAN;
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
ubl.reset();
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_LEVELING
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* Enable to produce output in JSON format suitable
|
|
* for SCAD or JavaScript mesh visualizers.
|
|
*
|
|
* Visualize meshes in OpenSCAD using the included script.
|
|
*
|
|
* buildroot/shared/scripts/MarlinMesh.scad
|
|
*/
|
|
//#define SCAD_MESH_OUTPUT
|
|
|
|
/**
|
|
* Print calibration results for plotting or manual frame adjustment.
|
|
*/
|
|
static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
|
|
#ifndef SCAD_MESH_OUTPUT
|
|
for (uint8_t x = 0; x < sx; x++) {
|
|
for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL((int)x);
|
|
}
|
|
SERIAL_EOL();
|
|
#endif
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
|
|
#endif
|
|
for (uint8_t y = 0; y < sy; y++) {
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
SERIAL_PROTOCOLPGM(" ["); // open sub-array
|
|
#else
|
|
if (y < 10) SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL((int)y);
|
|
#endif
|
|
for (uint8_t x = 0; x < sx; x++) {
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
const float offset = fn(x, y);
|
|
if (!isnan(offset)) {
|
|
if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
|
|
SERIAL_PROTOCOL_F(offset, precision);
|
|
}
|
|
else {
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
for (uint8_t i = 3; i < precision + 3; i++)
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOLPGM("NAN");
|
|
#else
|
|
for (uint8_t i = 0; i < precision + 3; i++)
|
|
SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
|
|
#endif
|
|
}
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
|
|
#endif
|
|
}
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOLCHAR(']'); // close sub-array
|
|
if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
#ifdef SCAD_MESH_OUTPUT
|
|
SERIAL_PROTOCOLPGM("];"); // close 2D array
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
/**
|
|
* Extrapolate a single point from its neighbors
|
|
*/
|
|
static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("Extrapolate [");
|
|
if (x < 10) SERIAL_CHAR(' ');
|
|
SERIAL_ECHO((int)x);
|
|
SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
|
|
SERIAL_CHAR(' ');
|
|
if (y < 10) SERIAL_CHAR(' ');
|
|
SERIAL_ECHO((int)y);
|
|
SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
|
|
SERIAL_CHAR(']');
|
|
}
|
|
#endif
|
|
if (!isnan(z_values[x][y])) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
|
|
#endif
|
|
return; // Don't overwrite good values.
|
|
}
|
|
SERIAL_EOL();
|
|
|
|
// Get X neighbors, Y neighbors, and XY neighbors
|
|
const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
|
|
float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
|
|
b1 = z_values[x ][y1], b2 = z_values[x ][y2],
|
|
c1 = z_values[x1][y1], c2 = z_values[x2][y2];
|
|
|
|
// Treat far unprobed points as zero, near as equal to far
|
|
if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
|
|
if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
|
|
if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
|
|
|
|
const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
|
|
|
|
// Take the average instead of the median
|
|
z_values[x][y] = (a + b + c) / 3.0;
|
|
|
|
// Median is robust (ignores outliers).
|
|
// z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
|
|
// : ((c < b) ? b : (a < c) ? a : c);
|
|
}
|
|
|
|
//Enable this if your SCARA uses 180° of total area
|
|
//#define EXTRAPOLATE_FROM_EDGE
|
|
|
|
#if ENABLED(EXTRAPOLATE_FROM_EDGE)
|
|
#if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
|
|
#define HALF_IN_X
|
|
#elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
|
|
#define HALF_IN_Y
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* Fill in the unprobed points (corners of circular print surface)
|
|
* using linear extrapolation, away from the center.
|
|
*/
|
|
static void extrapolate_unprobed_bed_level() {
|
|
#ifdef HALF_IN_X
|
|
constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
|
|
#else
|
|
constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
|
|
ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
|
|
xlen = ctrx1;
|
|
#endif
|
|
|
|
#ifdef HALF_IN_Y
|
|
constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
|
|
#else
|
|
constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
|
|
ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
|
|
ylen = ctry1;
|
|
#endif
|
|
|
|
for (uint8_t xo = 0; xo <= xlen; xo++)
|
|
for (uint8_t yo = 0; yo <= ylen; yo++) {
|
|
uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
|
|
#ifndef HALF_IN_X
|
|
const uint8_t x1 = ctrx1 - xo;
|
|
#endif
|
|
#ifndef HALF_IN_Y
|
|
const uint8_t y1 = ctry1 - yo;
|
|
#ifndef HALF_IN_X
|
|
extrapolate_one_point(x1, y1, +1, +1); // left-below + +
|
|
#endif
|
|
extrapolate_one_point(x2, y1, -1, +1); // right-below - +
|
|
#endif
|
|
#ifndef HALF_IN_X
|
|
extrapolate_one_point(x1, y2, +1, -1); // left-above + -
|
|
#endif
|
|
extrapolate_one_point(x2, y2, -1, -1); // right-above - -
|
|
}
|
|
|
|
}
|
|
|
|
static void print_bilinear_leveling_grid() {
|
|
SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
|
|
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
|
|
[](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
|
|
);
|
|
}
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
|
|
#define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
|
|
#define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
|
|
#define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
|
|
#define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
|
|
float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
|
|
int bilinear_grid_spacing_virt[2] = { 0 };
|
|
float bilinear_grid_factor_virt[2] = { 0 };
|
|
|
|
static void print_bilinear_leveling_grid_virt() {
|
|
SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
|
|
print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
|
|
[](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
|
|
);
|
|
}
|
|
|
|
#define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
|
|
float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
|
|
uint8_t ep = 0, ip = 1;
|
|
if (!x || x == ABL_TEMP_POINTS_X - 1) {
|
|
if (x) {
|
|
ep = GRID_MAX_POINTS_X - 1;
|
|
ip = GRID_MAX_POINTS_X - 2;
|
|
}
|
|
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
|
|
return LINEAR_EXTRAPOLATION(
|
|
z_values[ep][y - 1],
|
|
z_values[ip][y - 1]
|
|
);
|
|
else
|
|
return LINEAR_EXTRAPOLATION(
|
|
bed_level_virt_coord(ep + 1, y),
|
|
bed_level_virt_coord(ip + 1, y)
|
|
);
|
|
}
|
|
if (!y || y == ABL_TEMP_POINTS_Y - 1) {
|
|
if (y) {
|
|
ep = GRID_MAX_POINTS_Y - 1;
|
|
ip = GRID_MAX_POINTS_Y - 2;
|
|
}
|
|
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
|
|
return LINEAR_EXTRAPOLATION(
|
|
z_values[x - 1][ep],
|
|
z_values[x - 1][ip]
|
|
);
|
|
else
|
|
return LINEAR_EXTRAPOLATION(
|
|
bed_level_virt_coord(x, ep + 1),
|
|
bed_level_virt_coord(x, ip + 1)
|
|
);
|
|
}
|
|
return z_values[x - 1][y - 1];
|
|
}
|
|
|
|
static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
|
|
return (
|
|
p[i-1] * -t * sq(1 - t)
|
|
+ p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
|
|
+ p[i+1] * t * (1 + 4 * t - 3 * sq(t))
|
|
- p[i+2] * sq(t) * (1 - t)
|
|
) * 0.5;
|
|
}
|
|
|
|
static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
|
|
float row[4], column[4];
|
|
for (uint8_t i = 0; i < 4; i++) {
|
|
for (uint8_t j = 0; j < 4; j++) {
|
|
column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
|
|
}
|
|
row[i] = bed_level_virt_cmr(column, 1, ty);
|
|
}
|
|
return bed_level_virt_cmr(row, 1, tx);
|
|
}
|
|
|
|
void bed_level_virt_interpolate() {
|
|
bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
|
|
bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
|
|
bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
|
|
bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
|
|
for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
|
|
if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
|
|
continue;
|
|
z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
|
|
bed_level_virt_2cmr(
|
|
x + 1,
|
|
y + 1,
|
|
(float)tx / (BILINEAR_SUBDIVISIONS),
|
|
(float)ty / (BILINEAR_SUBDIVISIONS)
|
|
);
|
|
}
|
|
}
|
|
#endif // ABL_BILINEAR_SUBDIVISION
|
|
|
|
// Refresh after other values have been updated
|
|
void refresh_bed_level() {
|
|
bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
|
|
bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
bed_level_virt_interpolate();
|
|
#endif
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
/**
|
|
* Home an individual linear axis
|
|
*/
|
|
static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
|
|
SERIAL_ECHOPAIR(", ", distance);
|
|
SERIAL_ECHOPAIR(", ", fr_mm_s);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
|
|
if (deploy_bltouch) set_bltouch_deployed(true);
|
|
#endif
|
|
|
|
#if QUIET_PROBING
|
|
if (axis == Z_AXIS) probing_pause(true);
|
|
#endif
|
|
|
|
// Tell the planner we're at Z=0
|
|
current_position[axis] = 0;
|
|
|
|
#if IS_SCARA
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
current_position[axis] = distance;
|
|
inverse_kinematics(current_position);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
#else
|
|
sync_plan_position();
|
|
current_position[axis] = distance;
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
|
|
#if QUIET_PROBING
|
|
if (axis == Z_AXIS) probing_pause(false);
|
|
#endif
|
|
|
|
#if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
|
|
if (deploy_bltouch) set_bltouch_deployed(false);
|
|
#endif
|
|
|
|
endstops.hit_on_purpose();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* TMC2130 specific sensorless homing using stallGuard2.
|
|
* stallGuard2 only works when in spreadCycle mode.
|
|
* spreadCycle and stealthChop are mutually exclusive.
|
|
*/
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
|
|
#if ENABLED(STEALTHCHOP)
|
|
if (enable) {
|
|
st.coolstep_min_speed(1024UL * 1024UL - 1UL);
|
|
st.stealthChop(0);
|
|
}
|
|
else {
|
|
st.coolstep_min_speed(0);
|
|
st.stealthChop(1);
|
|
}
|
|
#endif
|
|
|
|
st.diag1_stall(enable ? 1 : 0);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Home an individual "raw axis" to its endstop.
|
|
* This applies to XYZ on Cartesian and Core robots, and
|
|
* to the individual ABC steppers on DELTA and SCARA.
|
|
*
|
|
* At the end of the procedure the axis is marked as
|
|
* homed and the current position of that axis is updated.
|
|
* Kinematic robots should wait till all axes are homed
|
|
* before updating the current position.
|
|
*/
|
|
|
|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
|
|
|
static void homeaxis(const AxisEnum axis) {
|
|
|
|
#if IS_SCARA
|
|
// Only Z homing (with probe) is permitted
|
|
if (axis != Z_AXIS) { BUZZ(100, 880); return; }
|
|
#else
|
|
#define CAN_HOME(A) \
|
|
(axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
|
|
if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
|
|
const int axis_home_dir =
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
(axis == X_AXIS) ? x_home_dir(active_extruder) :
|
|
#endif
|
|
home_dir(axis);
|
|
|
|
// Homing Z towards the bed? Deploy the Z probe or endstop.
|
|
#if HOMING_Z_WITH_PROBE
|
|
if (axis == Z_AXIS && DEPLOY_PROBE()) return;
|
|
#endif
|
|
|
|
// Set a flag for Z motor locking
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
|
#endif
|
|
|
|
// Disable stealthChop if used. Enable diag1 pin on driver.
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
|
|
#endif
|
|
#endif
|
|
|
|
// Fast move towards endstop until triggered
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
|
|
#endif
|
|
do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
|
|
|
|
// When homing Z with probe respect probe clearance
|
|
const float bump = axis_home_dir * (
|
|
#if HOMING_Z_WITH_PROBE
|
|
(axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
|
|
#endif
|
|
home_bump_mm(axis)
|
|
);
|
|
|
|
// If a second homing move is configured...
|
|
if (bump) {
|
|
// Move away from the endstop by the axis HOME_BUMP_MM
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
|
|
#endif
|
|
do_homing_move(axis, -bump);
|
|
|
|
// Slow move towards endstop until triggered
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
|
|
#endif
|
|
do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
|
|
}
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (axis == Z_AXIS) {
|
|
float adj = FABS(z_endstop_adj);
|
|
bool lockZ1;
|
|
if (axis_home_dir > 0) {
|
|
adj = -adj;
|
|
lockZ1 = (z_endstop_adj > 0);
|
|
}
|
|
else
|
|
lockZ1 = (z_endstop_adj < 0);
|
|
|
|
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
|
|
|
|
// Move to the adjusted endstop height
|
|
do_homing_move(axis, adj);
|
|
|
|
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
|
|
stepper.set_homing_flag(false);
|
|
} // Z_AXIS
|
|
#endif
|
|
|
|
#if IS_SCARA
|
|
|
|
set_axis_is_at_home(axis);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#elif ENABLED(DELTA)
|
|
|
|
// Delta has already moved all three towers up in G28
|
|
// so here it re-homes each tower in turn.
|
|
// Delta homing treats the axes as normal linear axes.
|
|
|
|
// retrace by the amount specified in endstop_adj + additional 0.1mm in order to have minimum steps
|
|
if (endstop_adj[axis] * Z_HOME_DIR <= 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
|
|
#endif
|
|
do_homing_move(axis, endstop_adj[axis] - 0.1 * Z_HOME_DIR);
|
|
}
|
|
|
|
#else
|
|
|
|
// For cartesian/core machines,
|
|
// set the axis to its home position
|
|
set_axis_is_at_home(axis);
|
|
sync_plan_position();
|
|
|
|
destination[axis] = current_position[axis];
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
// Re-enable stealthChop if used. Disable diag1 pin on driver.
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
|
|
#endif
|
|
#endif
|
|
|
|
// Put away the Z probe
|
|
#if HOMING_Z_WITH_PROBE
|
|
if (axis == Z_AXIS && STOW_PROBE()) return;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
}
|
|
#endif
|
|
} // homeaxis()
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* Retract or recover according to firmware settings
|
|
*
|
|
* This function handles retract/recover moves for G10 and G11,
|
|
* plus auto-retract moves sent from G0/G1 when E-only moves are done.
|
|
*
|
|
* To simplify the logic, doubled retract/recover moves are ignored.
|
|
*
|
|
* Note: Z lift is done transparently to the planner. Aborting
|
|
* a print between G10 and G11 may corrupt the Z position.
|
|
*
|
|
* Note: Auto-retract will apply the set Z hop in addition to any Z hop
|
|
* included in the G-code. Use M207 Z0 to to prevent double hop.
|
|
*/
|
|
void retract(const bool retracting
|
|
#if EXTRUDERS > 1
|
|
, bool swapping = false
|
|
#endif
|
|
) {
|
|
|
|
static float hop_height, // Remember where the Z height started
|
|
hop_amount = 0.0; // Total amount lifted, for use in recover
|
|
|
|
// Simply never allow two retracts or recovers in a row
|
|
if (retracted[active_extruder] == retracting) return;
|
|
|
|
#if EXTRUDERS < 2
|
|
bool swapping = false;
|
|
#endif
|
|
if (!retracting) swapping = retracted_swap[active_extruder];
|
|
|
|
/* // debugging
|
|
SERIAL_ECHOLNPAIR("retracting ", retracting);
|
|
SERIAL_ECHOLNPAIR("swapping ", swapping);
|
|
SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
|
|
for (uint8_t i = 0; i < EXTRUDERS; ++i) {
|
|
SERIAL_ECHOPAIR("retracted[", i);
|
|
SERIAL_ECHOLNPAIR("] ", retracted[i]);
|
|
SERIAL_ECHOPAIR("retracted_swap[", i);
|
|
SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
|
|
}
|
|
SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
|
|
//*/
|
|
|
|
const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
|
|
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
const int16_t old_flow = flow_percentage[active_extruder];
|
|
|
|
// Don't apply flow multiplication to retract/recover
|
|
flow_percentage[active_extruder] = 100;
|
|
|
|
// The current position will be the destination for E and Z moves
|
|
set_destination_to_current();
|
|
|
|
stepper.synchronize(); // Wait for all moves to finish
|
|
|
|
if (retracting) {
|
|
// Remember the Z height since G-code may include its own Z-hop
|
|
// For best results turn off Z hop if G-code already includes it
|
|
hop_height = destination[Z_AXIS];
|
|
|
|
// Retract by moving from a faux E position back to the current E position
|
|
feedrate_mm_s = retract_feedrate_mm_s;
|
|
current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) / volumetric_multiplier[active_extruder];
|
|
sync_plan_position_e();
|
|
prepare_move_to_destination();
|
|
|
|
// Is a Z hop set, and has the hop not yet been done?
|
|
if (has_zhop) {
|
|
hop_amount += retract_zlift; // Carriage is raised for retraction hop
|
|
current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
|
|
SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
|
|
prepare_move_to_destination(); // Raise up to the old current pos
|
|
}
|
|
}
|
|
else {
|
|
// If a hop was done and Z hasn't changed, undo the Z hop
|
|
if (hop_amount && NEAR(hop_height, destination[Z_AXIS])) {
|
|
current_position[Z_AXIS] += hop_amount; // Pretend current pos is higher. Next move lowers Z.
|
|
SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
|
|
prepare_move_to_destination(); // Lower to the old current pos
|
|
hop_amount = 0.0;
|
|
}
|
|
|
|
// A retract multiplier has been added here to get faster swap recovery
|
|
feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
|
|
|
|
const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
|
|
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
|
|
sync_plan_position_e();
|
|
|
|
prepare_move_to_destination(); // Recover E
|
|
}
|
|
|
|
// Restore flow and feedrate
|
|
flow_percentage[active_extruder] = old_flow;
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
// The active extruder is now retracted or recovered
|
|
retracted[active_extruder] = retracting;
|
|
|
|
// If swap retract/recover then update the retracted_swap flag too
|
|
#if EXTRUDERS > 1
|
|
if (swapping) retracted_swap[active_extruder] = retracting;
|
|
#endif
|
|
|
|
/* // debugging
|
|
SERIAL_ECHOLNPAIR("retracting ", retracting);
|
|
SERIAL_ECHOLNPAIR("swapping ", swapping);
|
|
SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
|
|
for (uint8_t i = 0; i < EXTRUDERS; ++i) {
|
|
SERIAL_ECHOPAIR("retracted[", i);
|
|
SERIAL_ECHOLNPAIR("] ", retracted[i]);
|
|
SERIAL_ECHOPAIR("retracted_swap[", i);
|
|
SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
|
|
}
|
|
SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
|
|
SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
|
|
//*/
|
|
|
|
} // retract()
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
void normalize_mix() {
|
|
float mix_total = 0.0;
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
|
|
// Scale all values if they don't add up to ~1.0
|
|
if (!NEAR(mix_total, 1.0)) {
|
|
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
|
|
}
|
|
}
|
|
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
// Get mixing parameters from the GCode
|
|
// The total "must" be 1.0 (but it will be normalized)
|
|
// If no mix factors are given, the old mix is preserved
|
|
void gcode_get_mix() {
|
|
const char* mixing_codes = "ABCDHI";
|
|
byte mix_bits = 0;
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
|
|
if (parser.seenval(mixing_codes[i])) {
|
|
SBI(mix_bits, i);
|
|
float v = parser.value_float();
|
|
NOLESS(v, 0.0);
|
|
mixing_factor[i] = RECIPROCAL(v);
|
|
}
|
|
}
|
|
// If any mixing factors were included, clear the rest
|
|
// If none were included, preserve the last mix
|
|
if (mix_bits) {
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
|
|
normalize_mix();
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#endif
|
|
|
|
/**
|
|
* ***************************************************************************
|
|
* ***************************** G-CODE HANDLING *****************************
|
|
* ***************************************************************************
|
|
*/
|
|
|
|
/**
|
|
* Set XYZE destination and feedrate from the current GCode command
|
|
*
|
|
* - Set destination from included axis codes
|
|
* - Set to current for missing axis codes
|
|
* - Set the feedrate, if included
|
|
*/
|
|
void gcode_get_destination() {
|
|
LOOP_XYZE(i) {
|
|
if (parser.seen(axis_codes[i]))
|
|
destination[i] = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
|
else
|
|
destination[i] = current_position[i];
|
|
}
|
|
|
|
if (parser.linearval('F') > 0.0)
|
|
feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
if (!DEBUGGING(DRYRUN))
|
|
print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
|
|
#endif
|
|
|
|
// Get ABCDHI mixing factors
|
|
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
|
|
gcode_get_mix();
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
/**
|
|
* Output a "busy" message at regular intervals
|
|
* while the machine is not accepting commands.
|
|
*/
|
|
void host_keepalive() {
|
|
const millis_t ms = millis();
|
|
if (host_keepalive_interval && busy_state != NOT_BUSY) {
|
|
if (PENDING(ms, next_busy_signal_ms)) return;
|
|
switch (busy_state) {
|
|
case IN_HANDLER:
|
|
case IN_PROCESS:
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
|
|
break;
|
|
case PAUSED_FOR_USER:
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
|
|
break;
|
|
case PAUSED_FOR_INPUT:
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
|
|
}
|
|
|
|
#endif // HOST_KEEPALIVE_FEATURE
|
|
|
|
|
|
/**************************************************
|
|
***************** GCode Handlers *****************
|
|
**************************************************/
|
|
|
|
/**
|
|
* G0, G1: Coordinated movement of X Y Z E axes
|
|
*/
|
|
inline void gcode_G0_G1(
|
|
#if IS_SCARA
|
|
bool fast_move=false
|
|
#endif
|
|
) {
|
|
if (IsRunning()) {
|
|
gcode_get_destination(); // For X Y Z E F
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
|
// When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
|
|
if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
|
|
const float echange = destination[E_AXIS] - current_position[E_AXIS];
|
|
// Is this a retract or recover move?
|
|
if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
|
|
sync_plan_position_e(); // AND from the planner
|
|
return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
|
|
}
|
|
}
|
|
}
|
|
#endif // FWRETRACT
|
|
|
|
#if IS_SCARA
|
|
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
|
|
#else
|
|
prepare_move_to_destination();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G2: Clockwise Arc
|
|
* G3: Counterclockwise Arc
|
|
*
|
|
* This command has two forms: IJ-form and R-form.
|
|
*
|
|
* - I specifies an X offset. J specifies a Y offset.
|
|
* At least one of the IJ parameters is required.
|
|
* X and Y can be omitted to do a complete circle.
|
|
* The given XY is not error-checked. The arc ends
|
|
* based on the angle of the destination.
|
|
* Mixing I or J with R will throw an error.
|
|
*
|
|
* - R specifies the radius. X or Y is required.
|
|
* Omitting both X and Y will throw an error.
|
|
* X or Y must differ from the current XY.
|
|
* Mixing R with I or J will throw an error.
|
|
*
|
|
* - P specifies the number of full circles to do
|
|
* before the specified arc move.
|
|
*
|
|
* Examples:
|
|
*
|
|
* G2 I10 ; CW circle centered at X+10
|
|
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
|
|
*/
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
if (IsRunning()) {
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
const bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
|
|
gcode_get_destination();
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
relative_mode = relative_mode_backup;
|
|
#endif
|
|
|
|
float arc_offset[2] = { 0.0, 0.0 };
|
|
if (parser.seenval('R')) {
|
|
const float r = parser.value_linear_units(),
|
|
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
|
|
p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
|
|
if (r && (p2 != p1 || q2 != q1)) {
|
|
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
|
|
dx = p2 - p1, dy = q2 - q1, // X and Y differences
|
|
d = HYPOT(dx, dy), // Linear distance between the points
|
|
h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
|
|
mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
|
|
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
|
|
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
|
|
arc_offset[0] = cx - p1;
|
|
arc_offset[1] = cy - q1;
|
|
}
|
|
}
|
|
else {
|
|
if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
|
|
if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
|
|
}
|
|
|
|
if (arc_offset[0] || arc_offset[1]) {
|
|
|
|
#if ENABLED(ARC_P_CIRCLES)
|
|
// P indicates number of circles to do
|
|
int8_t circles_to_do = parser.byteval('P');
|
|
if (!WITHIN(circles_to_do, 0, 100)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
}
|
|
while (circles_to_do--)
|
|
plan_arc(current_position, arc_offset, clockwise);
|
|
#endif
|
|
|
|
// Send the arc to the planner
|
|
plan_arc(destination, arc_offset, clockwise);
|
|
refresh_cmd_timeout();
|
|
}
|
|
else {
|
|
// Bad arguments
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // ARC_SUPPORT
|
|
|
|
void dwell(millis_t time) {
|
|
refresh_cmd_timeout();
|
|
time += previous_cmd_ms;
|
|
while (PENDING(millis(), time)) idle();
|
|
}
|
|
|
|
/**
|
|
* G4: Dwell S<seconds> or P<milliseconds>
|
|
*/
|
|
inline void gcode_G4() {
|
|
millis_t dwell_ms = 0;
|
|
|
|
if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
|
|
if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
|
|
|
|
stepper.synchronize();
|
|
|
|
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
|
|
|
|
dwell(dwell_ms);
|
|
}
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
/**
|
|
* Parameters interpreted according to:
|
|
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
|
|
* However I, J omission is not supported at this point; all
|
|
* parameters can be omitted and default to zero.
|
|
*/
|
|
|
|
/**
|
|
* G5: Cubic B-spline
|
|
*/
|
|
inline void gcode_G5() {
|
|
if (IsRunning()) {
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
if (workspace_plane != PLANE_XY) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
gcode_get_destination();
|
|
|
|
const float offset[] = {
|
|
parser.linearval('I'),
|
|
parser.linearval('J'),
|
|
parser.linearval('P'),
|
|
parser.linearval('Q')
|
|
};
|
|
|
|
plan_cubic_move(offset);
|
|
}
|
|
}
|
|
|
|
#endif // BEZIER_CURVE_SUPPORT
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* G10 - Retract filament according to settings of M207
|
|
*/
|
|
inline void gcode_G10() {
|
|
#if EXTRUDERS > 1
|
|
const bool rs = parser.boolval('S');
|
|
retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
|
|
#endif
|
|
retract(true
|
|
#if EXTRUDERS > 1
|
|
, rs
|
|
#endif
|
|
);
|
|
}
|
|
|
|
/**
|
|
* G11 - Recover filament according to settings of M208
|
|
*/
|
|
inline void gcode_G11() { retract(false); }
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
/**
|
|
* G12: Clean the nozzle
|
|
*/
|
|
inline void gcode_G12() {
|
|
// Don't allow nozzle cleaning without homing first
|
|
if (axis_unhomed_error()) return;
|
|
|
|
const uint8_t pattern = parser.ushortval('P', 0),
|
|
strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
|
|
objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
|
|
const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
|
|
|
|
Nozzle::clean(pattern, strokes, radius, objects);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
|
|
void report_workspace_plane() {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM("Workspace Plane ");
|
|
serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
|
|
}
|
|
|
|
/**
|
|
* G17: Select Plane XY
|
|
* G18: Select Plane ZX
|
|
* G19: Select Plane YZ
|
|
*/
|
|
inline void gcode_G17() { workspace_plane = PLANE_XY; }
|
|
inline void gcode_G18() { workspace_plane = PLANE_ZX; }
|
|
inline void gcode_G19() { workspace_plane = PLANE_YZ; }
|
|
|
|
#endif // CNC_WORKSPACE_PLANES
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
/**
|
|
* G20: Set input mode to inches
|
|
*/
|
|
inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
|
|
|
|
/**
|
|
* G21: Set input mode to millimeters
|
|
*/
|
|
inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
|
|
#endif
|
|
|
|
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
/**
|
|
* G27: Park the nozzle
|
|
*/
|
|
inline void gcode_G27() {
|
|
// Don't allow nozzle parking without homing first
|
|
if (axis_unhomed_error()) return;
|
|
Nozzle::park(parser.ushortval('P'));
|
|
}
|
|
#endif // NOZZLE_PARK_FEATURE
|
|
|
|
#if ENABLED(QUICK_HOME)
|
|
|
|
static void quick_home_xy() {
|
|
|
|
// Pretend the current position is 0,0
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
|
sync_plan_position();
|
|
|
|
const int x_axis_home_dir =
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
x_home_dir(active_extruder)
|
|
#else
|
|
home_dir(X_AXIS)
|
|
#endif
|
|
;
|
|
|
|
const float mlx = max_length(X_AXIS),
|
|
mly = max_length(Y_AXIS),
|
|
mlratio = mlx > mly ? mly / mlx : mlx / mly,
|
|
fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
|
|
|
|
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
|
}
|
|
|
|
#endif // QUICK_HOME
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
|
|
void log_machine_info() {
|
|
SERIAL_ECHOPGM("Machine Type: ");
|
|
#if ENABLED(DELTA)
|
|
SERIAL_ECHOLNPGM("Delta");
|
|
#elif IS_SCARA
|
|
SERIAL_ECHOLNPGM("SCARA");
|
|
#elif IS_CORE
|
|
SERIAL_ECHOLNPGM("Core");
|
|
#else
|
|
SERIAL_ECHOLNPGM("Cartesian");
|
|
#endif
|
|
|
|
SERIAL_ECHOPGM("Probe: ");
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
|
|
#elif ENABLED(FIX_MOUNTED_PROBE)
|
|
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
|
|
#elif ENABLED(BLTOUCH)
|
|
SERIAL_ECHOLNPGM("BLTOUCH");
|
|
#elif HAS_Z_SERVO_ENDSTOP
|
|
SERIAL_ECHOLNPGM("SERVO PROBE");
|
|
#elif ENABLED(Z_PROBE_SLED)
|
|
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
|
|
#else
|
|
SERIAL_ECHOLNPGM("NONE");
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
|
|
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
|
|
#if X_PROBE_OFFSET_FROM_EXTRUDER > 0
|
|
SERIAL_ECHOPGM(" (Right");
|
|
#elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
|
SERIAL_ECHOPGM(" (Left");
|
|
#elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
|
|
SERIAL_ECHOPGM(" (Middle");
|
|
#else
|
|
SERIAL_ECHOPGM(" (Aligned With");
|
|
#endif
|
|
#if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
|
|
SERIAL_ECHOPGM("-Back");
|
|
#elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
|
SERIAL_ECHOPGM("-Front");
|
|
#elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
|
|
SERIAL_ECHOPGM("-Center");
|
|
#endif
|
|
if (zprobe_zoffset < 0)
|
|
SERIAL_ECHOPGM(" & Below");
|
|
else if (zprobe_zoffset > 0)
|
|
SERIAL_ECHOPGM(" & Above");
|
|
else
|
|
SERIAL_ECHOPGM(" & Same Z as");
|
|
SERIAL_ECHOLNPGM(" Nozzle)");
|
|
#endif
|
|
|
|
#if HAS_ABL
|
|
SERIAL_ECHOPGM("Auto Bed Leveling: ");
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
SERIAL_ECHOPGM("LINEAR");
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
SERIAL_ECHOPGM("BILINEAR");
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
SERIAL_ECHOPGM("3POINT");
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
SERIAL_ECHOPGM("UBL");
|
|
#endif
|
|
if (leveling_is_active()) {
|
|
SERIAL_ECHOLNPGM(" (enabled)");
|
|
#if ABL_PLANAR
|
|
const float diff[XYZ] = {
|
|
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
|
|
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
|
|
stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
|
|
};
|
|
SERIAL_ECHOPGM("ABL Adjustment X");
|
|
if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
|
|
SERIAL_ECHO(diff[X_AXIS]);
|
|
SERIAL_ECHOPGM(" Y");
|
|
if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
|
|
SERIAL_ECHO(diff[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" Z");
|
|
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
|
|
SERIAL_ECHO(diff[Z_AXIS]);
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
|
|
#endif
|
|
}
|
|
else
|
|
SERIAL_ECHOLNPGM(" (disabled)");
|
|
|
|
SERIAL_EOL();
|
|
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
|
|
SERIAL_ECHOPGM("Mesh Bed Leveling");
|
|
if (leveling_is_active()) {
|
|
float lz = current_position[Z_AXIS];
|
|
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
|
|
SERIAL_ECHOLNPGM(" (enabled)");
|
|
SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
|
|
}
|
|
else
|
|
SERIAL_ECHOPGM(" (disabled)");
|
|
|
|
SERIAL_EOL();
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
}
|
|
|
|
#endif // DEBUG_LEVELING_FEATURE
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
/**
|
|
* A delta can only safely home all axes at the same time
|
|
* This is like quick_home_xy() but for 3 towers.
|
|
*/
|
|
inline bool home_delta() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
|
|
#endif
|
|
// Init the current position of all carriages to 0,0,0
|
|
ZERO(current_position);
|
|
sync_plan_position();
|
|
|
|
// Move all carriages together linearly until an endstop is hit.
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
|
|
feedrate_mm_s = homing_feedrate(X_AXIS);
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
|
|
// If an endstop was not hit, then damage can occur if homing is continued.
|
|
// This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
|
|
// not set correctly.
|
|
if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
|
|
LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
|
|
return false;
|
|
}
|
|
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// At least one carriage has reached the top.
|
|
// Now re-home each carriage separately.
|
|
HOMEAXIS(A);
|
|
HOMEAXIS(B);
|
|
HOMEAXIS(C);
|
|
|
|
// Set all carriages to their home positions
|
|
// Do this here all at once for Delta, because
|
|
// XYZ isn't ABC. Applying this per-tower would
|
|
// give the impression that they are the same.
|
|
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#if ENABLED(Z_SAFE_HOMING)
|
|
|
|
inline void home_z_safely() {
|
|
|
|
// Disallow Z homing if X or Y are unknown
|
|
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
|
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
|
|
return;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
|
|
#endif
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
/**
|
|
* Move the Z probe (or just the nozzle) to the safe homing point
|
|
*/
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
|
|
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
|
|
|
|
#if HOMING_Z_WITH_PROBE
|
|
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
|
|
#endif
|
|
|
|
// This causes the carriage on Dual X to unpark
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
active_extruder_parked = false;
|
|
#endif
|
|
|
|
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
|
|
HOMEAXIS(Z);
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
|
|
#endif
|
|
}
|
|
|
|
#endif // Z_SAFE_HOMING
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
bool g29_in_progress = false;
|
|
#else
|
|
constexpr bool g29_in_progress = false;
|
|
#endif
|
|
|
|
/**
|
|
* G28: Home all axes according to settings
|
|
*
|
|
* Parameters
|
|
*
|
|
* None Home to all axes with no parameters.
|
|
* With QUICK_HOME enabled XY will home together, then Z.
|
|
*
|
|
* Cartesian parameters
|
|
*
|
|
* X Home to the X endstop
|
|
* Y Home to the Y endstop
|
|
* Z Home to the Z endstop
|
|
*
|
|
*/
|
|
inline void gcode_G28(const bool always_home_all) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM(">>> gcode_G28");
|
|
log_machine_info();
|
|
}
|
|
#endif
|
|
|
|
// Wait for planner moves to finish!
|
|
stepper.synchronize();
|
|
|
|
// Cancel the active G29 session
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
g29_in_progress = false;
|
|
#endif
|
|
|
|
// Disable the leveling matrix before homing
|
|
#if HAS_LEVELING
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
const bool ubl_state_at_entry = leveling_is_active();
|
|
#endif
|
|
set_bed_leveling_enabled(false);
|
|
#endif
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
workspace_plane = PLANE_XY;
|
|
#endif
|
|
|
|
// Always home with tool 0 active
|
|
#if HOTENDS > 1
|
|
const uint8_t old_tool_index = active_extruder;
|
|
tool_change(0, 0, true);
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
extruder_duplication_enabled = false;
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
|
#endif
|
|
endstops.enable(true); // Enable endstops for next homing move
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
home_delta();
|
|
UNUSED(always_home_all);
|
|
|
|
#else // NOT DELTA
|
|
|
|
const bool homeX = always_home_all || parser.seen('X'),
|
|
homeY = always_home_all || parser.seen('Y'),
|
|
homeZ = always_home_all || parser.seen('Z'),
|
|
home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
|
|
|
|
set_destination_to_current();
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
if (home_all || homeZ) {
|
|
HOMEAXIS(Z);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
if (home_all || homeX || homeY) {
|
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
|
destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
|
|
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING))
|
|
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
|
|
#endif
|
|
|
|
do_blocking_move_to_z(destination[Z_AXIS]);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(QUICK_HOME)
|
|
|
|
if (home_all || (homeX && homeY)) quick_home_xy();
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HOME_Y_BEFORE_X)
|
|
|
|
// Home Y
|
|
if (home_all || homeY) {
|
|
HOMEAXIS(Y);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
// Home X
|
|
if (home_all || homeX) {
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
// Always home the 2nd (right) extruder first
|
|
active_extruder = 1;
|
|
HOMEAXIS(X);
|
|
|
|
// Remember this extruder's position for later tool change
|
|
inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
|
|
|
|
// Home the 1st (left) extruder
|
|
active_extruder = 0;
|
|
HOMEAXIS(X);
|
|
|
|
// Consider the active extruder to be parked
|
|
COPY(raised_parked_position, current_position);
|
|
delayed_move_time = 0;
|
|
active_extruder_parked = true;
|
|
|
|
#else
|
|
|
|
HOMEAXIS(X);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(HOME_Y_BEFORE_X)
|
|
// Home Y
|
|
if (home_all || homeY) {
|
|
HOMEAXIS(Y);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Home Z last if homing towards the bed
|
|
#if Z_HOME_DIR < 0
|
|
if (home_all || homeZ) {
|
|
#if ENABLED(Z_SAFE_HOMING)
|
|
home_z_safely();
|
|
#else
|
|
HOMEAXIS(Z);
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
|
|
#endif
|
|
} // home_all || homeZ
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
#endif // !DELTA (gcode_G28)
|
|
|
|
endstops.not_homing();
|
|
|
|
#if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
|
// move to a height where we can use the full xy-area
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
set_bed_leveling_enabled(ubl_state_at_entry);
|
|
#endif
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
// Restore the active tool after homing
|
|
#if HOTENDS > 1
|
|
tool_change(old_tool_index, 0,
|
|
#if ENABLED(PARKING_EXTRUDER)
|
|
false // fetch the previous toolhead
|
|
#else
|
|
true
|
|
#endif
|
|
);
|
|
#endif
|
|
|
|
lcd_refresh();
|
|
|
|
report_current_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
|
|
#endif
|
|
} // G28
|
|
|
|
void home_all_axes() { gcode_G28(true); }
|
|
|
|
#if HAS_PROBING_PROCEDURE
|
|
|
|
void out_of_range_error(const char* p_edge) {
|
|
SERIAL_PROTOCOLPGM("?Probe ");
|
|
serialprintPGM(p_edge);
|
|
SERIAL_PROTOCOLLNPGM(" position out of range.");
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
|
|
|
|
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
|
|
extern bool lcd_wait_for_move;
|
|
#endif
|
|
|
|
inline void _manual_goto_xy(const float &x, const float &y) {
|
|
const float old_feedrate_mm_s = feedrate_mm_s;
|
|
#if MANUAL_PROBE_HEIGHT > 0
|
|
const float prev_z = current_position[Z_AXIS];
|
|
feedrate_mm_s = homing_feedrate(Z_AXIS);
|
|
current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
|
|
line_to_current_position();
|
|
#endif
|
|
|
|
feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
|
|
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
|
|
line_to_current_position();
|
|
|
|
#if MANUAL_PROBE_HEIGHT > 0
|
|
feedrate_mm_s = homing_feedrate(Z_AXIS);
|
|
current_position[Z_AXIS] = prev_z; // move back to the previous Z.
|
|
line_to_current_position();
|
|
#endif
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
|
|
lcd_wait_for_move = false;
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
// Save 130 bytes with non-duplication of PSTR
|
|
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
|
|
|
|
void mbl_mesh_report() {
|
|
SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
|
|
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
|
|
[](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
|
|
);
|
|
}
|
|
|
|
void mesh_probing_done() {
|
|
mbl.set_has_mesh(true);
|
|
home_all_axes();
|
|
set_bed_leveling_enabled(true);
|
|
#if ENABLED(MESH_G28_REST_ORIGIN)
|
|
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
|
|
set_destination_to_current();
|
|
line_to_destination(homing_feedrate(Z_AXIS));
|
|
stepper.synchronize();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* G29: Mesh-based Z probe, probes a grid and produces a
|
|
* mesh to compensate for variable bed height
|
|
*
|
|
* Parameters With MESH_BED_LEVELING:
|
|
*
|
|
* S0 Produce a mesh report
|
|
* S1 Start probing mesh points
|
|
* S2 Probe the next mesh point
|
|
* S3 Xn Yn Zn.nn Manually modify a single point
|
|
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
|
|
* S5 Reset and disable mesh
|
|
*
|
|
* The S0 report the points as below
|
|
*
|
|
* +----> X-axis 1-n
|
|
* |
|
|
* |
|
|
* v Y-axis 1-n
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
static int mbl_probe_index = -1;
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
static bool enable_soft_endstops;
|
|
#endif
|
|
|
|
const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
|
|
if (!WITHIN(state, 0, 5)) {
|
|
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
|
|
return;
|
|
}
|
|
|
|
int8_t px, py;
|
|
|
|
switch (state) {
|
|
case MeshReport:
|
|
if (leveling_is_valid()) {
|
|
SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
|
|
mbl_mesh_report();
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
|
|
break;
|
|
|
|
case MeshStart:
|
|
mbl.reset();
|
|
mbl_probe_index = 0;
|
|
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
|
|
break;
|
|
|
|
case MeshNext:
|
|
if (mbl_probe_index < 0) {
|
|
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
|
return;
|
|
}
|
|
// For each G29 S2...
|
|
if (mbl_probe_index == 0) {
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
// For the initial G29 S2 save software endstop state
|
|
enable_soft_endstops = soft_endstops_enabled;
|
|
#endif
|
|
}
|
|
else {
|
|
// For G29 S2 after adjusting Z.
|
|
mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
#endif
|
|
}
|
|
// If there's another point to sample, move there with optional lift.
|
|
if (mbl_probe_index < GRID_MAX_POINTS) {
|
|
mbl.zigzag(mbl_probe_index, px, py);
|
|
_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
// Disable software endstops to allow manual adjustment
|
|
// If G29 is not completed, they will not be re-enabled
|
|
soft_endstops_enabled = false;
|
|
#endif
|
|
|
|
mbl_probe_index++;
|
|
}
|
|
else {
|
|
// One last "return to the bed" (as originally coded) at completion
|
|
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
|
|
// After recording the last point, activate home and activate
|
|
mbl_probe_index = -1;
|
|
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
|
BUZZ(100, 659);
|
|
BUZZ(100, 698);
|
|
mesh_probing_done();
|
|
}
|
|
break;
|
|
|
|
case MeshSet:
|
|
if (parser.seenval('X')) {
|
|
px = parser.value_int() - 1;
|
|
if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
|
|
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_CHAR('X'); echo_not_entered();
|
|
return;
|
|
}
|
|
|
|
if (parser.seenval('Y')) {
|
|
py = parser.value_int() - 1;
|
|
if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_CHAR('Y'); echo_not_entered();
|
|
return;
|
|
}
|
|
|
|
if (parser.seenval('Z')) {
|
|
mbl.z_values[px][py] = parser.value_linear_units();
|
|
}
|
|
else {
|
|
SERIAL_CHAR('Z'); echo_not_entered();
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MeshSetZOffset:
|
|
if (parser.seenval('Z')) {
|
|
mbl.z_offset = parser.value_linear_units();
|
|
}
|
|
else {
|
|
SERIAL_CHAR('Z'); echo_not_entered();
|
|
return;
|
|
}
|
|
break;
|
|
|
|
case MeshReset:
|
|
reset_bed_level();
|
|
break;
|
|
|
|
} // switch(state)
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
#if ABL_GRID
|
|
#if ENABLED(PROBE_Y_FIRST)
|
|
#define PR_OUTER_VAR xCount
|
|
#define PR_OUTER_END abl_grid_points_x
|
|
#define PR_INNER_VAR yCount
|
|
#define PR_INNER_END abl_grid_points_y
|
|
#else
|
|
#define PR_OUTER_VAR yCount
|
|
#define PR_OUTER_END abl_grid_points_y
|
|
#define PR_INNER_VAR xCount
|
|
#define PR_INNER_END abl_grid_points_x
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* G29: Detailed Z probe, probes the bed at 3 or more points.
|
|
* Will fail if the printer has not been homed with G28.
|
|
*
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine
|
|
*
|
|
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
|
* or alter the bed level data. Useful to check the topology
|
|
* after a first run of G29.
|
|
*
|
|
* J Jettison current bed leveling data
|
|
*
|
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
*
|
|
* Parameters With LINEAR leveling only:
|
|
*
|
|
* P Set the size of the grid that will be probed (P x P points).
|
|
* Example: "G29 P4"
|
|
*
|
|
* X Set the X size of the grid that will be probed (X x Y points).
|
|
* Example: "G29 X7 Y5"
|
|
*
|
|
* Y Set the Y size of the grid that will be probed (X x Y points).
|
|
*
|
|
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
* assist with part placement).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
*
|
|
* Parameters With LINEAR and BILINEAR leveling only:
|
|
*
|
|
* S Set the XY travel speed between probe points (in units/min)
|
|
*
|
|
* F Set the Front limit of the probing grid
|
|
* B Set the Back limit of the probing grid
|
|
* L Set the Left limit of the probing grid
|
|
* R Set the Right limit of the probing grid
|
|
*
|
|
* Parameters with DEBUG_LEVELING_FEATURE only:
|
|
*
|
|
* C Make a totally fake grid with no actual probing.
|
|
* For use in testing when no probing is possible.
|
|
*
|
|
* Parameters with BILINEAR leveling only:
|
|
*
|
|
* Z Supply an additional Z probe offset
|
|
*
|
|
* Extra parameters with PROBE_MANUALLY:
|
|
*
|
|
* To do manual probing simply repeat G29 until the procedure is complete.
|
|
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
|
|
*
|
|
* Q Query leveling and G29 state
|
|
*
|
|
* A Abort current leveling procedure
|
|
*
|
|
* Extra parameters with BILINEAR only:
|
|
*
|
|
* W Write a mesh point. (If G29 is idle.)
|
|
* I X index for mesh point
|
|
* J Y index for mesh point
|
|
* X X for mesh point, overrides I
|
|
* Y Y for mesh point, overrides J
|
|
* Z Z for mesh point. Otherwise, raw current Z.
|
|
*
|
|
* Without PROBE_MANUALLY:
|
|
*
|
|
* E By default G29 will engage the Z probe, test the bed, then disengage.
|
|
* Include "E" to engage/disengage the Z probe for each sample.
|
|
* There's no extra effect if you have a fixed Z probe.
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
// G29 Q is also available if debugging
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
const bool query = parser.seen('Q');
|
|
const uint8_t old_debug_flags = marlin_debug_flags;
|
|
if (query) marlin_debug_flags |= DEBUG_LEVELING;
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS(">>> gcode_G29", current_position);
|
|
log_machine_info();
|
|
}
|
|
marlin_debug_flags = old_debug_flags;
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
if (query) return;
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
|
|
const bool faux = parser.boolval('C');
|
|
#elif ENABLED(PROBE_MANUALLY)
|
|
const bool faux = no_action;
|
|
#else
|
|
bool constexpr faux = false;
|
|
#endif
|
|
|
|
// Don't allow auto-leveling without homing first
|
|
if (axis_unhomed_error()) return;
|
|
|
|
// Define local vars 'static' for manual probing, 'auto' otherwise
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
#define ABL_VAR static
|
|
#else
|
|
#define ABL_VAR
|
|
#endif
|
|
|
|
ABL_VAR int verbose_level;
|
|
ABL_VAR float xProbe, yProbe, measured_z;
|
|
ABL_VAR bool dryrun, abl_should_enable;
|
|
|
|
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
ABL_VAR int abl_probe_index;
|
|
#endif
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
|
|
ABL_VAR bool enable_soft_endstops = true;
|
|
#endif
|
|
|
|
#if ABL_GRID
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
ABL_VAR uint8_t PR_OUTER_VAR;
|
|
ABL_VAR int8_t PR_INNER_VAR;
|
|
#endif
|
|
|
|
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
|
|
ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
|
|
abl_grid_points_y = GRID_MAX_POINTS_Y;
|
|
ABL_VAR bool do_topography_map;
|
|
#else // Bilinear
|
|
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
|
|
abl_grid_points_y = GRID_MAX_POINTS_Y;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
ABL_VAR int abl2;
|
|
#else // Bilinear
|
|
int constexpr abl2 = GRID_MAX_POINTS;
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
ABL_VAR float zoffset;
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
|
|
|
ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
|
|
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
|
|
mean;
|
|
#endif
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
|
int constexpr abl2 = 3;
|
|
|
|
// Probe at 3 arbitrary points
|
|
ABL_VAR vector_3 points[3] = {
|
|
vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
|
|
vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
|
|
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
|
|
};
|
|
|
|
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
struct linear_fit_data lsf_results;
|
|
incremental_LSF_reset(&lsf_results);
|
|
#endif
|
|
|
|
/**
|
|
* On the initial G29 fetch command parameters.
|
|
*/
|
|
if (!g29_in_progress) {
|
|
|
|
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
abl_probe_index = -1;
|
|
#endif
|
|
|
|
abl_should_enable = leveling_is_active();
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (parser.seen('W')) {
|
|
if (!leveling_is_valid()) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("No bilinear grid");
|
|
return;
|
|
}
|
|
|
|
const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
|
|
if (!WITHIN(z, -10, 10)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("Bad Z value");
|
|
return;
|
|
}
|
|
|
|
const float x = parser.floatval('X', NAN),
|
|
y = parser.floatval('Y', NAN);
|
|
int8_t i = parser.byteval('I', -1),
|
|
j = parser.byteval('J', -1);
|
|
|
|
if (!isnan(x) && !isnan(y)) {
|
|
// Get nearest i / j from x / y
|
|
i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
|
|
j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
|
|
i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
|
|
j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
|
|
}
|
|
if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
|
|
set_bed_leveling_enabled(false);
|
|
z_values[i][j] = z;
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
bed_level_virt_interpolate();
|
|
#endif
|
|
set_bed_leveling_enabled(abl_should_enable);
|
|
}
|
|
return;
|
|
} // parser.seen('W')
|
|
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
|
|
// Jettison bed leveling data
|
|
if (parser.seen('J')) {
|
|
reset_bed_level();
|
|
return;
|
|
}
|
|
|
|
#endif
|
|
|
|
verbose_level = parser.intval('V');
|
|
if (!WITHIN(verbose_level, 0, 4)) {
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
|
return;
|
|
}
|
|
|
|
dryrun = parser.boolval('D')
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|| no_action
|
|
#endif
|
|
;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
do_topography_map = verbose_level > 2 || parser.boolval('T');
|
|
|
|
// X and Y specify points in each direction, overriding the default
|
|
// These values may be saved with the completed mesh
|
|
abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
|
|
abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
|
|
if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
|
|
|
|
if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
|
|
SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
|
|
return;
|
|
}
|
|
|
|
abl2 = abl_grid_points_x * abl_grid_points_y;
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
zoffset = parser.linearval('Z');
|
|
|
|
#endif
|
|
|
|
#if ABL_GRID
|
|
|
|
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
|
|
|
|
left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
|
|
right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
|
|
front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
|
|
back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
|
|
|
|
const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
|
|
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
|
|
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
|
|
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
|
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
|
|
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
|
|
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
|
|
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
|
|
|
if (left_out || right_out || front_out || back_out) {
|
|
if (left_out) {
|
|
out_of_range_error(PSTR("(L)eft"));
|
|
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
|
|
}
|
|
if (right_out) {
|
|
out_of_range_error(PSTR("(R)ight"));
|
|
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
if (front_out) {
|
|
out_of_range_error(PSTR("(F)ront"));
|
|
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
|
|
}
|
|
if (back_out) {
|
|
out_of_range_error(PSTR("(B)ack"));
|
|
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// probe at the points of a lattice grid
|
|
xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
|
|
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
|
|
|
|
#endif // ABL_GRID
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
|
|
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
|
|
}
|
|
|
|
stepper.synchronize();
|
|
|
|
// Disable auto bed leveling during G29
|
|
planner.abl_enabled = false;
|
|
|
|
if (!dryrun) {
|
|
// Re-orient the current position without leveling
|
|
// based on where the steppers are positioned.
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
|
|
// Sync the planner to where the steppers stopped
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
#if HAS_BED_PROBE
|
|
// Deploy the probe. Probe will raise if needed.
|
|
if (DEPLOY_PROBE()) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
if (!faux) setup_for_endstop_or_probe_move();
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
if (!no_action)
|
|
#endif
|
|
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|
|
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
|
|
|| left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
|
|
|| front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
|
|
) {
|
|
if (dryrun) {
|
|
// Before reset bed level, re-enable to correct the position
|
|
planner.abl_enabled = abl_should_enable;
|
|
}
|
|
// Reset grid to 0.0 or "not probed". (Also disables ABL)
|
|
reset_bed_level();
|
|
|
|
// Initialize a grid with the given dimensions
|
|
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
|
|
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
|
|
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
|
|
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
|
|
|
|
// Can't re-enable (on error) until the new grid is written
|
|
abl_should_enable = false;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
|
|
#endif
|
|
|
|
// Probe at 3 arbitrary points
|
|
points[0].z = points[1].z = points[2].z = 0;
|
|
|
|
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
|
} // !g29_in_progress
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
|
|
// For manual probing, get the next index to probe now.
|
|
// On the first probe this will be incremented to 0.
|
|
if (!no_action) {
|
|
++abl_probe_index;
|
|
g29_in_progress = true;
|
|
}
|
|
|
|
// Abort current G29 procedure, go back to idle state
|
|
if (seenA && g29_in_progress) {
|
|
SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
#endif
|
|
planner.abl_enabled = abl_should_enable;
|
|
g29_in_progress = false;
|
|
#if ENABLED(LCD_BED_LEVELING)
|
|
lcd_wait_for_move = false;
|
|
#endif
|
|
}
|
|
|
|
// Query G29 status
|
|
if (verbose_level || seenQ) {
|
|
SERIAL_PROTOCOLPGM("Manual G29 ");
|
|
if (g29_in_progress) {
|
|
SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
|
|
SERIAL_PROTOCOLLNPAIR(" of ", abl2);
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("idle");
|
|
}
|
|
|
|
if (no_action) return;
|
|
|
|
if (abl_probe_index == 0) {
|
|
// For the initial G29 save software endstop state
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
enable_soft_endstops = soft_endstops_enabled;
|
|
#endif
|
|
}
|
|
else {
|
|
// For G29 after adjusting Z.
|
|
// Save the previous Z before going to the next point
|
|
measured_z = current_position[Z_AXIS];
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
mean += measured_z;
|
|
eqnBVector[abl_probe_index] = measured_z;
|
|
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
|
|
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
|
|
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
|
|
|
|
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
z_values[xCount][yCount] = measured_z + zoffset;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_PROTOCOLPAIR("Save X", xCount);
|
|
SERIAL_PROTOCOLPAIR(" Y", yCount);
|
|
SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
|
|
}
|
|
#endif
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
|
points[abl_probe_index].z = measured_z;
|
|
|
|
#endif
|
|
}
|
|
|
|
//
|
|
// If there's another point to sample, move there with optional lift.
|
|
//
|
|
|
|
#if ABL_GRID
|
|
|
|
// Skip any unreachable points
|
|
while (abl_probe_index < abl2) {
|
|
|
|
// Set xCount, yCount based on abl_probe_index, with zig-zag
|
|
PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
|
|
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
|
|
|
|
// Probe in reverse order for every other row/column
|
|
bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
|
|
|
|
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
|
|
|
|
const float xBase = xCount * xGridSpacing + left_probe_bed_position,
|
|
yBase = yCount * yGridSpacing + front_probe_bed_position;
|
|
|
|
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
|
|
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
indexIntoAB[xCount][yCount] = abl_probe_index;
|
|
#endif
|
|
|
|
// Keep looping till a reachable point is found
|
|
if (position_is_reachable_xy(xProbe, yProbe)) break;
|
|
++abl_probe_index;
|
|
}
|
|
|
|
// Is there a next point to move to?
|
|
if (abl_probe_index < abl2) {
|
|
_manual_goto_xy(xProbe, yProbe); // Can be used here too!
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
// Disable software endstops to allow manual adjustment
|
|
// If G29 is not completed, they will not be re-enabled
|
|
soft_endstops_enabled = false;
|
|
#endif
|
|
return;
|
|
}
|
|
else {
|
|
|
|
// Leveling done! Fall through to G29 finishing code below
|
|
|
|
SERIAL_PROTOCOLLNPGM("Grid probing done.");
|
|
|
|
// Re-enable software endstops, if needed
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
|
// Probe at 3 arbitrary points
|
|
if (abl_probe_index < 3) {
|
|
xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
|
|
yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
// Disable software endstops to allow manual adjustment
|
|
// If G29 is not completed, they will not be re-enabled
|
|
soft_endstops_enabled = false;
|
|
#endif
|
|
return;
|
|
}
|
|
else {
|
|
|
|
SERIAL_PROTOCOLLNPGM("3-point probing done.");
|
|
|
|
// Re-enable software endstops, if needed
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
soft_endstops_enabled = enable_soft_endstops;
|
|
#endif
|
|
|
|
if (!dryrun) {
|
|
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
|
if (planeNormal.z < 0) {
|
|
planeNormal.x *= -1;
|
|
planeNormal.y *= -1;
|
|
planeNormal.z *= -1;
|
|
}
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
// Can't re-enable (on error) until the new grid is written
|
|
abl_should_enable = false;
|
|
}
|
|
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
|
#else // !PROBE_MANUALLY
|
|
{
|
|
const bool stow_probe_after_each = parser.boolval('E');
|
|
|
|
#if ABL_GRID
|
|
|
|
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
|
|
|
|
// Outer loop is Y with PROBE_Y_FIRST disabled
|
|
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
|
|
|
|
int8_t inStart, inStop, inInc;
|
|
|
|
if (zig) { // away from origin
|
|
inStart = 0;
|
|
inStop = PR_INNER_END;
|
|
inInc = 1;
|
|
}
|
|
else { // towards origin
|
|
inStart = PR_INNER_END - 1;
|
|
inStop = -1;
|
|
inInc = -1;
|
|
}
|
|
|
|
zig ^= true; // zag
|
|
|
|
// Inner loop is Y with PROBE_Y_FIRST enabled
|
|
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
|
|
|
|
float xBase = left_probe_bed_position + xGridSpacing * xCount,
|
|
yBase = front_probe_bed_position + yGridSpacing * yCount;
|
|
|
|
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
|
|
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
|
|
#endif
|
|
|
|
#if IS_KINEMATIC
|
|
// Avoid probing outside the round or hexagonal area
|
|
if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
|
|
#endif
|
|
|
|
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
|
|
|
if (isnan(measured_z)) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
break;
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
mean += measured_z;
|
|
eqnBVector[abl_probe_index] = measured_z;
|
|
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
|
|
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
|
|
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
|
|
|
|
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
z_values[xCount][yCount] = measured_z + zoffset;
|
|
|
|
#endif
|
|
|
|
abl_should_enable = false;
|
|
idle();
|
|
|
|
} // inner
|
|
} // outer
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
|
|
|
// Probe at 3 arbitrary points
|
|
|
|
for (uint8_t i = 0; i < 3; ++i) {
|
|
// Retain the last probe position
|
|
xProbe = LOGICAL_X_POSITION(points[i].x);
|
|
yProbe = LOGICAL_Y_POSITION(points[i].y);
|
|
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
|
if (isnan(measured_z)) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
break;
|
|
}
|
|
points[i].z = measured_z;
|
|
}
|
|
|
|
if (!dryrun && !isnan(measured_z)) {
|
|
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
|
if (planeNormal.z < 0) {
|
|
planeNormal.x *= -1;
|
|
planeNormal.y *= -1;
|
|
planeNormal.z *= -1;
|
|
}
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
// Can't re-enable (on error) until the new grid is written
|
|
abl_should_enable = false;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_3POINT
|
|
|
|
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
|
|
if (STOW_PROBE()) {
|
|
planner.abl_enabled = abl_should_enable;
|
|
measured_z = NAN;
|
|
}
|
|
}
|
|
#endif // !PROBE_MANUALLY
|
|
|
|
//
|
|
// G29 Finishing Code
|
|
//
|
|
// Unless this is a dry run, auto bed leveling will
|
|
// definitely be enabled after this point.
|
|
//
|
|
// If code above wants to continue leveling, it should
|
|
// return or loop before this point.
|
|
//
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
|
|
#endif
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
g29_in_progress = false;
|
|
#if ENABLED(LCD_BED_LEVELING)
|
|
lcd_wait_for_move = false;
|
|
#endif
|
|
#endif
|
|
|
|
// Calculate leveling, print reports, correct the position
|
|
if (!isnan(measured_z)) {
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
print_bilinear_leveling_grid();
|
|
|
|
refresh_bed_level();
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
print_bilinear_leveling_grid_virt();
|
|
#endif
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
|
|
|
// For LINEAR leveling calculate matrix, print reports, correct the position
|
|
|
|
/**
|
|
* solve the plane equation ax + by + d = z
|
|
* A is the matrix with rows [x y 1] for all the probed points
|
|
* B is the vector of the Z positions
|
|
* the normal vector to the plane is formed by the coefficients of the
|
|
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
*/
|
|
float plane_equation_coefficients[3];
|
|
|
|
finish_incremental_LSF(&lsf_results);
|
|
plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
|
|
plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
|
|
plane_equation_coefficients[2] = -lsf_results.D;
|
|
|
|
mean /= abl2;
|
|
|
|
if (verbose_level) {
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
SERIAL_EOL();
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
SERIAL_PROTOCOL_F(mean, 8);
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
// Create the matrix but don't correct the position yet
|
|
if (!dryrun)
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(
|
|
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
|
|
);
|
|
|
|
// Show the Topography map if enabled
|
|
if (do_topography_map) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
|
|
" +--- BACK --+\n"
|
|
" | |\n"
|
|
" L | (+) | R\n"
|
|
" E | | I\n"
|
|
" F | (-) N (+) | G\n"
|
|
" T | | H\n"
|
|
" | (-) | T\n"
|
|
" | |\n"
|
|
" O-- FRONT --+\n"
|
|
" (0,0)");
|
|
|
|
float min_diff = 999;
|
|
|
|
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
|
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
|
int ind = indexIntoAB[xx][yy];
|
|
float diff = eqnBVector[ind] - mean,
|
|
x_tmp = eqnAMatrix[ind + 0 * abl2],
|
|
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
|
z_tmp = 0;
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
|
|
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL();
|
|
} // yy
|
|
SERIAL_EOL();
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
|
|
|
|
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
|
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
|
int ind = indexIntoAB[xx][yy];
|
|
float x_tmp = eqnAMatrix[ind + 0 * abl2],
|
|
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
|
z_tmp = 0;
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
float diff = eqnBVector[ind] - z_tmp - min_diff;
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +");
|
|
// Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL();
|
|
} // yy
|
|
SERIAL_EOL();
|
|
}
|
|
} //do_topography_map
|
|
|
|
#endif // AUTO_BED_LEVELING_LINEAR
|
|
|
|
#if ABL_PLANAR
|
|
|
|
// For LINEAR and 3POINT leveling correct the current position
|
|
|
|
if (verbose_level > 0)
|
|
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
|
|
|
|
if (!dryrun) {
|
|
//
|
|
// Correct the current XYZ position based on the tilted plane.
|
|
//
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
|
|
#endif
|
|
|
|
float converted[XYZ];
|
|
COPY(converted, current_position);
|
|
|
|
planner.abl_enabled = true;
|
|
planner.unapply_leveling(converted); // use conversion machinery
|
|
planner.abl_enabled = false;
|
|
|
|
// Use the last measured distance to the bed, if possible
|
|
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
|
|
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
|
) {
|
|
const float simple_z = current_position[Z_AXIS] - measured_z;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
|
|
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
|
|
}
|
|
#endif
|
|
converted[Z_AXIS] = simple_z;
|
|
}
|
|
|
|
// The rotated XY and corrected Z are now current_position
|
|
COPY(current_position, converted);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (!dryrun) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
|
|
#endif
|
|
|
|
// Unapply the offset because it is going to be immediately applied
|
|
// and cause compensation movement in Z
|
|
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif // ABL_PLANAR
|
|
|
|
#ifdef Z_PROBE_END_SCRIPT
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
|
|
#endif
|
|
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
stepper.synchronize();
|
|
#endif
|
|
|
|
// Auto Bed Leveling is complete! Enable if possible.
|
|
planner.abl_enabled = dryrun ? abl_should_enable : true;
|
|
} // !isnan(measured_z)
|
|
|
|
// Restore state after probing
|
|
if (!faux) clean_up_after_endstop_or_probe_move();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
|
|
#endif
|
|
|
|
report_current_position();
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
if (planner.abl_enabled)
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
#endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
/**
|
|
* G30: Do a single Z probe at the current XY
|
|
*
|
|
* Parameters:
|
|
*
|
|
* X Probe X position (default current X)
|
|
* Y Probe Y position (default current Y)
|
|
* S0 Leave the probe deployed
|
|
*/
|
|
inline void gcode_G30() {
|
|
const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
|
|
|
|
// Disable leveling so the planner won't mess with us
|
|
#if HAS_LEVELING
|
|
set_bed_leveling_enabled(false);
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
|
|
|
|
if (!isnan(measured_z)) {
|
|
SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
|
|
SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
|
|
SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
|
|
}
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
/**
|
|
* G31: Deploy the Z probe
|
|
*/
|
|
inline void gcode_G31() { DEPLOY_PROBE(); }
|
|
|
|
/**
|
|
* G32: Stow the Z probe
|
|
*/
|
|
inline void gcode_G32() { STOW_PROBE(); }
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if PROBE_SELECTED
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
/**
|
|
* G33 - Delta '1-4-7-point' Auto-Calibration
|
|
* Calibrate height, endstops, delta radius, and tower angles.
|
|
*
|
|
* Parameters:
|
|
*
|
|
* Pn Number of probe points:
|
|
*
|
|
* P0 No probe. Normalize only.
|
|
* P1 Probe center and set height only.
|
|
* P2 Probe center and towers. Set height, endstops, and delta radius.
|
|
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
|
* P4-P7 Probe all positions at different locations and average them.
|
|
*
|
|
* T0 Don't calibrate tower angle corrections
|
|
*
|
|
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
|
*
|
|
* Fn Force to run at least n iterations and takes the best result
|
|
*
|
|
* Vn Verbose level:
|
|
*
|
|
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
|
* V1 Report settings
|
|
* V2 Report settings and probe results
|
|
*
|
|
* E Engage the probe for each point
|
|
*/
|
|
|
|
void print_signed_float(const char * const prefix, const float &f) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
serialprintPGM(prefix);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
if (f >= 0) SERIAL_CHAR('+');
|
|
SERIAL_PROTOCOL_F(f, 2);
|
|
}
|
|
|
|
inline void print_G33_settings(const bool end_stops, const bool tower_angles){
|
|
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
|
if (end_stops) {
|
|
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
|
|
print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
|
|
print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
|
|
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
|
}
|
|
SERIAL_EOL();
|
|
if (tower_angles) {
|
|
SERIAL_PROTOCOLPGM(".Tower angle : ");
|
|
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
|
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
|
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
void G33_cleanup(
|
|
#if HOTENDS > 1
|
|
const uint8_t old_tool_index
|
|
#endif
|
|
) {
|
|
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
|
do_blocking_move_to_z(delta_clip_start_height);
|
|
#endif
|
|
STOW_PROBE();
|
|
clean_up_after_endstop_or_probe_move();
|
|
#if HOTENDS > 1
|
|
tool_change(old_tool_index, 0, true);
|
|
#endif
|
|
}
|
|
|
|
inline void gcode_G33() {
|
|
|
|
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
|
if (!WITHIN(probe_points, 0, 7)) {
|
|
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-7).");
|
|
return;
|
|
}
|
|
|
|
const int8_t verbose_level = parser.byteval('V', 1);
|
|
if (!WITHIN(verbose_level, 0, 2)) {
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
|
|
return;
|
|
}
|
|
|
|
const float calibration_precision = parser.floatval('C');
|
|
if (calibration_precision < 0) {
|
|
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
|
|
return;
|
|
}
|
|
|
|
const int8_t force_iterations = parser.intval('F', 0);
|
|
if (!WITHIN(force_iterations, 0, 30)) {
|
|
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
|
|
return;
|
|
}
|
|
|
|
const bool towers_set = parser.boolval('T', true),
|
|
stow_after_each = parser.boolval('E'),
|
|
_0p_calibration = probe_points == 0,
|
|
_1p_calibration = probe_points == 1,
|
|
_4p_calibration = probe_points == 2,
|
|
_4p_towers_points = _4p_calibration && towers_set,
|
|
_4p_opposite_points = _4p_calibration && !towers_set,
|
|
_7p_calibration = probe_points >= 3 || _0p_calibration,
|
|
_7p_half_circle = probe_points == 3,
|
|
_7p_double_circle = probe_points == 5,
|
|
_7p_triple_circle = probe_points == 6,
|
|
_7p_quadruple_circle = probe_points == 7,
|
|
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
|
|
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
|
|
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
|
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
int8_t iterations = 0;
|
|
float test_precision,
|
|
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
|
zero_std_dev_old = zero_std_dev,
|
|
zero_std_dev_min = zero_std_dev,
|
|
e_old[ABC] = {
|
|
endstop_adj[A_AXIS],
|
|
endstop_adj[B_AXIS],
|
|
endstop_adj[C_AXIS]
|
|
},
|
|
dr_old = delta_radius,
|
|
zh_old = home_offset[Z_AXIS],
|
|
ta_old[ABC] = {
|
|
delta_tower_angle_trim[A_AXIS],
|
|
delta_tower_angle_trim[B_AXIS],
|
|
delta_tower_angle_trim[C_AXIS]
|
|
};
|
|
|
|
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
|
|
const float circles = (_7p_quadruple_circle ? 1.5 :
|
|
_7p_triple_circle ? 1.0 :
|
|
_7p_double_circle ? 0.5 : 0),
|
|
r = (1 + circles * 0.1) * delta_calibration_radius;
|
|
for (uint8_t axis = 1; axis < 13; ++axis) {
|
|
const float a = RADIANS(180 + 30 * axis);
|
|
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
|
|
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
|
|
|
stepper.synchronize();
|
|
#if HAS_LEVELING
|
|
reset_bed_level(); // After calibration bed-level data is no longer valid
|
|
#endif
|
|
|
|
#if HOTENDS > 1
|
|
const uint8_t old_tool_index = active_extruder;
|
|
tool_change(0, 0, true);
|
|
#define G33_CLEANUP() G33_cleanup(old_tool_index)
|
|
#else
|
|
#define G33_CLEANUP() G33_cleanup()
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
endstops.enable(true);
|
|
if (!_0p_calibration) {
|
|
if (!home_delta())
|
|
return;
|
|
endstops.not_homing();
|
|
}
|
|
|
|
// print settings
|
|
|
|
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
|
|
serialprintPGM(checkingac);
|
|
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
|
|
SERIAL_EOL();
|
|
lcd_setstatusPGM(checkingac);
|
|
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
if (!_0p_calibration) {
|
|
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
|
if (isnan(measured_z)) return G33_CLEANUP();
|
|
home_offset[Z_AXIS] -= measured_z;
|
|
}
|
|
#endif
|
|
|
|
do {
|
|
|
|
float z_at_pt[13] = { 0.0 };
|
|
|
|
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
|
if (_0p_calibration) test_precision = 0.00;
|
|
iterations++;
|
|
|
|
// Probe the points
|
|
|
|
if (!_0p_calibration){
|
|
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
z_at_pt[0] += lcd_probe_pt(0, 0);
|
|
#else
|
|
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
#endif
|
|
}
|
|
if (_7p_calibration) { // probe extra center points
|
|
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
|
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
#else
|
|
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
|
#endif
|
|
}
|
|
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
|
}
|
|
if (!_1p_calibration) { // probe the radius
|
|
bool zig_zag = true;
|
|
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
|
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
|
for (uint8_t axis = start; axis < 13; axis += step) {
|
|
const float zigadd = (zig_zag ? 0.5 : 0.0),
|
|
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
|
_7p_triple_circle ? zigadd + 0.5 :
|
|
_7p_double_circle ? zigadd : 0;
|
|
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
|
const float a = RADIANS(180 + 30 * axis),
|
|
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
|
#else
|
|
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
|
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
|
|
#endif
|
|
}
|
|
zig_zag = !zig_zag;
|
|
z_at_pt[axis] /= (2 * offset_circles + 1);
|
|
}
|
|
}
|
|
if (_7p_intermed_points) // average intermediates to tower and opposites
|
|
for (uint8_t axis = 1; axis < 13; axis += 2)
|
|
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
|
|
|
}
|
|
float S1 = z_at_pt[0],
|
|
S2 = sq(z_at_pt[0]);
|
|
int16_t N = 1;
|
|
if (!_1p_calibration) // std dev from zero plane
|
|
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
|
|
S1 += z_at_pt[axis];
|
|
S2 += sq(z_at_pt[axis]);
|
|
N++;
|
|
}
|
|
zero_std_dev_old = zero_std_dev;
|
|
zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
|
|
|
// Solve matrices
|
|
|
|
if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
|
|
if (zero_std_dev < zero_std_dev_min) {
|
|
COPY(e_old, endstop_adj);
|
|
dr_old = delta_radius;
|
|
zh_old = home_offset[Z_AXIS];
|
|
COPY(ta_old, delta_tower_angle_trim);
|
|
}
|
|
|
|
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
|
|
float r_diff = delta_radius - delta_calibration_radius,
|
|
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
|
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
|
a_factor = 66.66 / delta_calibration_radius; //0.83 for cal_rd = 80mm
|
|
|
|
#define ZP(N,I) ((N) * z_at_pt[I])
|
|
#define Z6(I) ZP(6, I)
|
|
#define Z4(I) ZP(4, I)
|
|
#define Z2(I) ZP(2, I)
|
|
#define Z1(I) ZP(1, I)
|
|
h_factor /= 6.00;
|
|
r_factor /= 6.00;
|
|
|
|
#if ENABLED(PROBE_MANUALLY)
|
|
test_precision = 0.00; // forced end
|
|
#endif
|
|
|
|
switch (probe_points) {
|
|
case 1:
|
|
test_precision = 0.00; // forced end
|
|
LOOP_XYZ(axis) e_delta[axis] = Z1(0);
|
|
break;
|
|
|
|
case 2:
|
|
if (towers_set) {
|
|
e_delta[A_AXIS] = (Z6(0) + Z4(1) - Z2(5) - Z2(9)) * h_factor;
|
|
e_delta[B_AXIS] = (Z6(0) - Z2(1) + Z4(5) - Z2(9)) * h_factor;
|
|
e_delta[C_AXIS] = (Z6(0) - Z2(1) - Z2(5) + Z4(9)) * h_factor;
|
|
r_delta = (Z6(0) - Z2(1) - Z2(5) - Z2(9)) * r_factor;
|
|
}
|
|
else {
|
|
e_delta[A_AXIS] = (Z6(0) - Z4(7) + Z2(11) + Z2(3)) * h_factor;
|
|
e_delta[B_AXIS] = (Z6(0) + Z2(7) - Z4(11) + Z2(3)) * h_factor;
|
|
e_delta[C_AXIS] = (Z6(0) + Z2(7) + Z2(11) - Z4(3)) * h_factor;
|
|
r_delta = (Z6(0) - Z2(7) - Z2(11) - Z2(3)) * r_factor;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
e_delta[A_AXIS] = (Z6(0) + Z2(1) - Z1(5) - Z1(9) - Z2(7) + Z1(11) + Z1(3)) * h_factor;
|
|
e_delta[B_AXIS] = (Z6(0) - Z1(1) + Z2(5) - Z1(9) + Z1(7) - Z2(11) + Z1(3)) * h_factor;
|
|
e_delta[C_AXIS] = (Z6(0) - Z1(1) - Z1(5) + Z2(9) + Z1(7) + Z1(11) - Z2(3)) * h_factor;
|
|
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
|
|
|
|
if (towers_set) {
|
|
t_delta[A_AXIS] = ( - Z2(5) + Z1(9) - Z2(11) + Z1(3)) * a_factor;
|
|
t_delta[B_AXIS] = ( Z2(1) - Z1(9) + Z2(7) - Z1(3)) * a_factor;
|
|
t_delta[C_AXIS] = (-Z2(1) + Z1(5) - Z2(7) + Z1(11) ) * a_factor;
|
|
}
|
|
break;
|
|
}
|
|
|
|
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
|
delta_radius += r_delta;
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
|
|
}
|
|
else if (zero_std_dev >= test_precision) { // step one back
|
|
COPY(endstop_adj, e_old);
|
|
delta_radius = dr_old;
|
|
home_offset[Z_AXIS] = zh_old;
|
|
COPY(delta_tower_angle_trim, ta_old);
|
|
}
|
|
|
|
if (verbose_level != 0) { // !dry run
|
|
// normalise angles to least squares
|
|
float a_sum = 0.0;
|
|
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
|
|
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
|
|
|
|
// adjust delta_height and endstops by the max amount
|
|
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
|
home_offset[Z_AXIS] -= z_temp;
|
|
LOOP_XYZ(axis) endstop_adj[axis] -= z_temp;
|
|
}
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
NOMORE(zero_std_dev_min, zero_std_dev);
|
|
|
|
// print report
|
|
|
|
if (verbose_level != 1) {
|
|
SERIAL_PROTOCOLPGM(". ");
|
|
print_signed_float(PSTR("c"), z_at_pt[0]);
|
|
if (_4p_towers_points || _7p_calibration) {
|
|
print_signed_float(PSTR(" x"), z_at_pt[1]);
|
|
print_signed_float(PSTR(" y"), z_at_pt[5]);
|
|
print_signed_float(PSTR(" z"), z_at_pt[9]);
|
|
}
|
|
if (!_4p_opposite_points) SERIAL_EOL();
|
|
if ((_4p_opposite_points) || _7p_calibration) {
|
|
if (_7p_calibration) {
|
|
SERIAL_CHAR('.');
|
|
SERIAL_PROTOCOL_SP(13);
|
|
}
|
|
print_signed_float(PSTR(" yz"), z_at_pt[7]);
|
|
print_signed_float(PSTR("zx"), z_at_pt[11]);
|
|
print_signed_float(PSTR("xy"), z_at_pt[3]);
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
if (verbose_level != 0) { // !dry run
|
|
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
|
|
SERIAL_PROTOCOLPGM("Calibration OK");
|
|
SERIAL_PROTOCOL_SP(36);
|
|
#if DISABLED(PROBE_MANUALLY)
|
|
if (zero_std_dev >= test_precision && !_1p_calibration)
|
|
SERIAL_PROTOCOLPGM("rolling back.");
|
|
else
|
|
#endif
|
|
{
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
|
|
}
|
|
SERIAL_EOL();
|
|
char mess[21];
|
|
sprintf_P(mess, PSTR("Calibration sd:"));
|
|
if (zero_std_dev_min < 1)
|
|
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
|
|
else
|
|
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
|
|
lcd_setstatus(mess);
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
serialprintPGM(save_message);
|
|
SERIAL_EOL();
|
|
}
|
|
else { // !end iterations
|
|
char mess[15];
|
|
if (iterations < 31)
|
|
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
|
|
else
|
|
sprintf_P(mess, PSTR("No convergence"));
|
|
SERIAL_PROTOCOL(mess);
|
|
SERIAL_PROTOCOL_SP(36);
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
SERIAL_EOL();
|
|
lcd_setstatus(mess);
|
|
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
|
}
|
|
}
|
|
else { // dry run
|
|
const char *enddryrun = PSTR("End DRY-RUN");
|
|
serialprintPGM(enddryrun);
|
|
SERIAL_PROTOCOL_SP(39);
|
|
SERIAL_PROTOCOLPGM("std dev:");
|
|
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
|
SERIAL_EOL();
|
|
|
|
char mess[21];
|
|
sprintf_P(mess, enddryrun);
|
|
sprintf_P(&mess[11], PSTR(" sd:"));
|
|
if (zero_std_dev < 1)
|
|
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
|
|
else
|
|
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
|
|
lcd_setstatus(mess);
|
|
}
|
|
|
|
endstops.enable(true);
|
|
home_delta();
|
|
endstops.not_homing();
|
|
|
|
}
|
|
while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
|
|
|
|
G33_CLEANUP();
|
|
}
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|
|
|
|
#endif // PROBE_SELECTED
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
|
|
static bool G38_run_probe() {
|
|
|
|
bool G38_pass_fail = false;
|
|
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
|
// Get direction of move and retract
|
|
float retract_mm[XYZ];
|
|
LOOP_XYZ(i) {
|
|
float dist = destination[i] - current_position[i];
|
|
retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
|
|
}
|
|
#endif
|
|
|
|
stepper.synchronize(); // wait until the machine is idle
|
|
|
|
// Move until destination reached or target hit
|
|
endstops.enable(true);
|
|
G38_move = true;
|
|
G38_endstop_hit = false;
|
|
prepare_move_to_destination();
|
|
stepper.synchronize();
|
|
G38_move = false;
|
|
|
|
endstops.hit_on_purpose();
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
if (G38_endstop_hit) {
|
|
|
|
G38_pass_fail = true;
|
|
|
|
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
|
// Move away by the retract distance
|
|
set_destination_to_current();
|
|
LOOP_XYZ(i) destination[i] += retract_mm[i];
|
|
endstops.enable(false);
|
|
prepare_move_to_destination();
|
|
stepper.synchronize();
|
|
|
|
feedrate_mm_s /= 4;
|
|
|
|
// Bump the target more slowly
|
|
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
|
|
|
|
endstops.enable(true);
|
|
G38_move = true;
|
|
prepare_move_to_destination();
|
|
stepper.synchronize();
|
|
G38_move = false;
|
|
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
#endif
|
|
}
|
|
|
|
endstops.hit_on_purpose();
|
|
endstops.not_homing();
|
|
return G38_pass_fail;
|
|
}
|
|
|
|
/**
|
|
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
|
|
* G38.3 - probe toward workpiece, stop on contact
|
|
*
|
|
* Like G28 except uses Z min probe for all axes
|
|
*/
|
|
inline void gcode_G38(bool is_38_2) {
|
|
// Get X Y Z E F
|
|
gcode_get_destination();
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
// If any axis has enough movement, do the move
|
|
LOOP_XYZ(i)
|
|
if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
|
|
if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
|
|
// If G38.2 fails throw an error
|
|
if (!G38_run_probe() && is_38_2) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("Failed to reach target");
|
|
}
|
|
break;
|
|
}
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
}
|
|
|
|
#endif // G38_PROBE_TARGET
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* G42: Move X & Y axes to mesh coordinates (I & J)
|
|
*/
|
|
inline void gcode_G42() {
|
|
if (IsRunning()) {
|
|
const bool hasI = parser.seenval('I');
|
|
const int8_t ix = hasI ? parser.value_int() : 0;
|
|
const bool hasJ = parser.seenval('J');
|
|
const int8_t iy = hasJ ? parser.value_int() : 0;
|
|
|
|
if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
|
|
SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
|
|
return;
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
#define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
|
|
#define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
|
|
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
|
|
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
|
|
#endif
|
|
|
|
set_destination_to_current();
|
|
if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
|
|
if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
|
|
if (parser.boolval('P')) {
|
|
if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
|
if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
|
}
|
|
|
|
const float fval = parser.linearval('F');
|
|
if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
|
|
|
|
// SCARA kinematic has "safe" XY raw moves
|
|
#if IS_SCARA
|
|
prepare_uninterpolated_move_to_destination();
|
|
#else
|
|
prepare_move_to_destination();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
/**
|
|
* G92: Set current position to given X Y Z E
|
|
*/
|
|
inline void gcode_G92() {
|
|
bool didXYZ = false,
|
|
didE = parser.seenval('E');
|
|
|
|
if (!didE) stepper.synchronize();
|
|
|
|
LOOP_XYZE(i) {
|
|
if (parser.seenval(axis_codes[i])) {
|
|
#if IS_SCARA
|
|
current_position[i] = parser.value_axis_units((AxisEnum)i);
|
|
if (i != E_AXIS) didXYZ = true;
|
|
#else
|
|
#if HAS_POSITION_SHIFT
|
|
const float p = current_position[i];
|
|
#endif
|
|
const float v = parser.value_axis_units((AxisEnum)i);
|
|
|
|
current_position[i] = v;
|
|
|
|
if (i != E_AXIS) {
|
|
didXYZ = true;
|
|
#if HAS_POSITION_SHIFT
|
|
position_shift[i] += v - p; // Offset the coordinate space
|
|
update_software_endstops((AxisEnum)i);
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
|
|
#endif
|
|
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
if (didXYZ)
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
else if (didE)
|
|
sync_plan_position_e();
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
|
|
/**
|
|
* M0: Unconditional stop - Wait for user button press on LCD
|
|
* M1: Conditional stop - Wait for user button press on LCD
|
|
*/
|
|
inline void gcode_M0_M1() {
|
|
const char * const args = parser.string_arg;
|
|
|
|
millis_t ms = 0;
|
|
bool hasP = false, hasS = false;
|
|
if (parser.seenval('P')) {
|
|
ms = parser.value_millis(); // milliseconds to wait
|
|
hasP = ms > 0;
|
|
}
|
|
if (parser.seenval('S')) {
|
|
ms = parser.value_millis_from_seconds(); // seconds to wait
|
|
hasS = ms > 0;
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
if (!hasP && !hasS && args && *args)
|
|
lcd_setstatus(args, true);
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
|
|
dontExpireStatus();
|
|
#endif
|
|
}
|
|
|
|
#else
|
|
|
|
if (!hasP && !hasS && args && *args) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLN(args);
|
|
}
|
|
|
|
#endif
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
wait_for_user = true;
|
|
|
|
stepper.synchronize();
|
|
refresh_cmd_timeout();
|
|
|
|
if (ms > 0) {
|
|
ms += previous_cmd_ms; // wait until this time for a click
|
|
while (PENDING(millis(), ms) && wait_for_user) idle();
|
|
}
|
|
else {
|
|
#if ENABLED(ULTIPANEL)
|
|
if (lcd_detected()) {
|
|
while (wait_for_user) idle();
|
|
IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
#else
|
|
while (wait_for_user) idle();
|
|
#endif
|
|
}
|
|
|
|
wait_for_user = false;
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
#endif // HAS_RESUME_CONTINUE
|
|
|
|
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
/**
|
|
* M3: Spindle Clockwise
|
|
* M4: Spindle Counter-clockwise
|
|
*
|
|
* S0 turns off spindle.
|
|
*
|
|
* If no speed PWM output is defined then M3/M4 just turns it on.
|
|
*
|
|
* At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
|
|
* Hardware PWM is required. ISRs are too slow.
|
|
*
|
|
* NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
|
|
* No other settings give a PWM signal that goes from 0 to 5 volts.
|
|
*
|
|
* The system automatically sets WGM to Mode 1, so no special
|
|
* initialization is needed.
|
|
*
|
|
* WGM bits for timer 2 are automatically set by the system to
|
|
* Mode 1. This produces an acceptable 0 to 5 volt signal.
|
|
* No special initialization is needed.
|
|
*
|
|
* NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
|
|
* factors for timers 2, 3, 4, and 5 are acceptable.
|
|
*
|
|
* SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
|
|
* the spindle/laser during power-up or when connecting to the host
|
|
* (usually goes through a reset which sets all I/O pins to tri-state)
|
|
*
|
|
* PWM duty cycle goes from 0 (off) to 255 (always on).
|
|
*/
|
|
|
|
// Wait for spindle to come up to speed
|
|
inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
|
|
|
|
// Wait for spindle to stop turning
|
|
inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
|
|
|
|
/**
|
|
* ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
|
|
*
|
|
* it accepts inputs of 0-255
|
|
*/
|
|
|
|
inline void ocr_val_mode() {
|
|
uint8_t spindle_laser_power = parser.value_byte();
|
|
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
|
|
if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
|
|
analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
|
|
}
|
|
|
|
inline void gcode_M3_M4(bool is_M3) {
|
|
|
|
stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
|
|
#if SPINDLE_DIR_CHANGE
|
|
const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
|
|
if (SPINDLE_STOP_ON_DIR_CHANGE \
|
|
&& READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
|
|
&& READ(SPINDLE_DIR_PIN) != rotation_dir
|
|
) {
|
|
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
|
|
delay_for_power_down();
|
|
}
|
|
WRITE(SPINDLE_DIR_PIN, rotation_dir);
|
|
#endif
|
|
|
|
/**
|
|
* Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
|
|
* Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
|
|
* Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
|
|
*/
|
|
#if ENABLED(SPINDLE_LASER_PWM)
|
|
if (parser.seen('O')) ocr_val_mode();
|
|
else {
|
|
const float spindle_laser_power = parser.floatval('S');
|
|
if (spindle_laser_power == 0) {
|
|
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
|
|
delay_for_power_down();
|
|
}
|
|
else {
|
|
int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
|
|
NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
|
|
if (spindle_laser_power <= SPEED_POWER_MIN)
|
|
ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
|
|
if (spindle_laser_power >= SPEED_POWER_MAX)
|
|
ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
|
|
if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
|
|
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
|
|
analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
|
|
delay_for_power_up();
|
|
}
|
|
}
|
|
#else
|
|
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
|
|
delay_for_power_up();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M5 turn off spindle
|
|
*/
|
|
inline void gcode_M5() {
|
|
stepper.synchronize();
|
|
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
|
|
delay_for_power_down();
|
|
}
|
|
|
|
#endif // SPINDLE_LASER_ENABLE
|
|
|
|
/**
|
|
* M17: Enable power on all stepper motors
|
|
*/
|
|
inline void gcode_M17() {
|
|
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
enable_all_steppers();
|
|
}
|
|
|
|
#if IS_KINEMATIC
|
|
#define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
|
|
#else
|
|
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
static float resume_position[XYZE];
|
|
static bool move_away_flag = false;
|
|
#if ENABLED(SDSUPPORT)
|
|
static bool sd_print_paused = false;
|
|
#endif
|
|
|
|
static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
|
|
static millis_t next_buzz = 0;
|
|
static int8_t runout_beep = 0;
|
|
|
|
if (init) next_buzz = runout_beep = 0;
|
|
|
|
const millis_t ms = millis();
|
|
if (ELAPSED(ms, next_buzz)) {
|
|
if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
|
|
next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
|
|
BUZZ(300, 2000);
|
|
runout_beep++;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void ensure_safe_temperature() {
|
|
bool heaters_heating = true;
|
|
|
|
wait_for_heatup = true; // M108 will clear this
|
|
while (wait_for_heatup && heaters_heating) {
|
|
idle();
|
|
heaters_heating = false;
|
|
HOTEND_LOOP() {
|
|
if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
|
|
heaters_heating = true;
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
|
|
const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
|
|
) {
|
|
if (move_away_flag) return false; // already paused
|
|
|
|
if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
if (!thermalManager.allow_cold_extrude &&
|
|
thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
ensure_safe_temperature(); // wait for extruder to heat up before unloading
|
|
}
|
|
|
|
// Indicate that the printer is paused
|
|
move_away_flag = true;
|
|
|
|
// Pause the print job and timer
|
|
#if ENABLED(SDSUPPORT)
|
|
if (card.sdprinting) {
|
|
card.pauseSDPrint();
|
|
sd_print_paused = true;
|
|
}
|
|
#endif
|
|
print_job_timer.pause();
|
|
|
|
// Show initial message and wait for synchronize steppers
|
|
if (show_lcd) {
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
|
|
#endif
|
|
}
|
|
|
|
// Save current position
|
|
stepper.synchronize();
|
|
COPY(resume_position, current_position);
|
|
|
|
if (retract) {
|
|
// Initial retract before move to filament change position
|
|
set_destination_to_current();
|
|
destination[E_AXIS] += retract;
|
|
RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
// Lift Z axis
|
|
if (z_lift > 0)
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
|
|
|
|
// Move XY axes to filament exchange position
|
|
do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
|
|
|
|
if (unload_length != 0) {
|
|
if (show_lcd) {
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
|
|
idle();
|
|
#endif
|
|
}
|
|
|
|
// Unload filament
|
|
set_destination_to_current();
|
|
destination[E_AXIS] += unload_length;
|
|
RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
if (show_lcd) {
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
|
#endif
|
|
}
|
|
|
|
#if HAS_BUZZER
|
|
filament_change_beep(max_beep_count, true);
|
|
#endif
|
|
|
|
idle();
|
|
|
|
// Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
|
|
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
|
|
disable_e_steppers();
|
|
safe_delay(100);
|
|
#endif
|
|
|
|
// Start the heater idle timers
|
|
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
|
|
|
|
HOTEND_LOOP()
|
|
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
|
|
bool nozzle_timed_out = false;
|
|
|
|
// Wait for filament insert by user and press button
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
wait_for_user = true; // LCD click or M108 will clear this
|
|
while (wait_for_user) {
|
|
#if HAS_BUZZER
|
|
filament_change_beep(max_beep_count);
|
|
#endif
|
|
|
|
// If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
|
|
// re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
|
|
if (!nozzle_timed_out)
|
|
HOTEND_LOOP()
|
|
nozzle_timed_out |= thermalManager.is_heater_idle(e);
|
|
|
|
if (nozzle_timed_out) {
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
|
|
#endif
|
|
|
|
// Wait for LCD click or M108
|
|
while (wait_for_user) idle(true);
|
|
|
|
// Re-enable the heaters if they timed out
|
|
HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
|
|
|
|
// Wait for the heaters to reach the target temperatures
|
|
ensure_safe_temperature();
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
|
#endif
|
|
|
|
// Start the heater idle timers
|
|
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
|
|
|
|
HOTEND_LOOP()
|
|
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
|
|
|
|
wait_for_user = true; /* Wait for user to load filament */
|
|
nozzle_timed_out = false;
|
|
|
|
#if HAS_BUZZER
|
|
filament_change_beep(max_beep_count, true);
|
|
#endif
|
|
}
|
|
|
|
idle(true);
|
|
}
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
|
|
bool nozzle_timed_out = false;
|
|
|
|
if (!move_away_flag) return;
|
|
|
|
// Re-enable the heaters if they timed out
|
|
HOTEND_LOOP() {
|
|
nozzle_timed_out |= thermalManager.is_heater_idle(e);
|
|
thermalManager.reset_heater_idle_timer(e);
|
|
}
|
|
|
|
if (nozzle_timed_out) ensure_safe_temperature();
|
|
|
|
#if HAS_BUZZER
|
|
filament_change_beep(max_beep_count, true);
|
|
#endif
|
|
|
|
set_destination_to_current();
|
|
|
|
if (load_length != 0) {
|
|
#if ENABLED(ULTIPANEL)
|
|
// Show "insert filament"
|
|
if (nozzle_timed_out)
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
|
#endif
|
|
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
wait_for_user = true; // LCD click or M108 will clear this
|
|
while (wait_for_user && nozzle_timed_out) {
|
|
#if HAS_BUZZER
|
|
filament_change_beep(max_beep_count);
|
|
#endif
|
|
idle(true);
|
|
}
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
// Show "load" message
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
|
|
#endif
|
|
|
|
// Load filament
|
|
destination[E_AXIS] += load_length;
|
|
RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
|
|
|
|
float extrude_length = initial_extrude_length;
|
|
|
|
do {
|
|
if (extrude_length > 0) {
|
|
// "Wait for filament extrude"
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
|
|
|
|
// Extrude filament to get into hotend
|
|
destination[E_AXIS] += extrude_length;
|
|
RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
// Show "Extrude More" / "Resume" menu and wait for reply
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
wait_for_user = false;
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
|
|
while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
|
|
|
|
// Keep looping if "Extrude More" was selected
|
|
} while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
// "Wait for print to resume"
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
|
|
#endif
|
|
|
|
// Set extruder to saved position
|
|
destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
|
|
planner.set_e_position_mm(current_position[E_AXIS]);
|
|
|
|
// Move XY to starting position, then Z
|
|
do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
|
|
do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
filament_ran_out = false;
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
// Show status screen
|
|
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
if (sd_print_paused) {
|
|
card.startFileprint();
|
|
sd_print_paused = false;
|
|
}
|
|
#endif
|
|
|
|
move_away_flag = false;
|
|
}
|
|
#endif // ADVANCED_PAUSE_FEATURE
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* M20: List SD card to serial output
|
|
*/
|
|
inline void gcode_M20() {
|
|
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
}
|
|
|
|
/**
|
|
* M21: Init SD Card
|
|
*/
|
|
inline void gcode_M21() { card.initsd(); }
|
|
|
|
/**
|
|
* M22: Release SD Card
|
|
*/
|
|
inline void gcode_M22() { card.release(); }
|
|
|
|
/**
|
|
* M23: Open a file
|
|
*/
|
|
inline void gcode_M23() {
|
|
// Simplify3D includes the size, so zero out all spaces (#7227)
|
|
for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
|
|
card.openFile(parser.string_arg, true);
|
|
}
|
|
|
|
/**
|
|
* M24: Start or Resume SD Print
|
|
*/
|
|
inline void gcode_M24() {
|
|
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
resume_print();
|
|
#endif
|
|
|
|
card.startFileprint();
|
|
print_job_timer.start();
|
|
}
|
|
|
|
/**
|
|
* M25: Pause SD Print
|
|
*/
|
|
inline void gcode_M25() {
|
|
card.pauseSDPrint();
|
|
print_job_timer.pause();
|
|
|
|
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M26: Set SD Card file index
|
|
*/
|
|
inline void gcode_M26() {
|
|
if (card.cardOK && parser.seenval('S'))
|
|
card.setIndex(parser.value_long());
|
|
}
|
|
|
|
/**
|
|
* M27: Get SD Card status
|
|
*/
|
|
inline void gcode_M27() { card.getStatus(); }
|
|
|
|
/**
|
|
* M28: Start SD Write
|
|
*/
|
|
inline void gcode_M28() { card.openFile(parser.string_arg, false); }
|
|
|
|
/**
|
|
* M29: Stop SD Write
|
|
* Processed in write to file routine above
|
|
*/
|
|
inline void gcode_M29() {
|
|
// card.saving = false;
|
|
}
|
|
|
|
/**
|
|
* M30 <filename>: Delete SD Card file
|
|
*/
|
|
inline void gcode_M30() {
|
|
if (card.cardOK) {
|
|
card.closefile();
|
|
card.removeFile(parser.string_arg);
|
|
}
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* M31: Get the time since the start of SD Print (or last M109)
|
|
*/
|
|
inline void gcode_M31() {
|
|
char buffer[21];
|
|
duration_t elapsed = print_job_timer.duration();
|
|
elapsed.toString(buffer);
|
|
lcd_setstatus(buffer);
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR("Print time: ", buffer);
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* M32: Select file and start SD Print
|
|
*/
|
|
inline void gcode_M32() {
|
|
if (card.sdprinting)
|
|
stepper.synchronize();
|
|
|
|
char* namestartpos = parser.string_arg;
|
|
const bool call_procedure = parser.boolval('P');
|
|
|
|
if (card.cardOK) {
|
|
card.openFile(namestartpos, true, call_procedure);
|
|
|
|
if (parser.seenval('S'))
|
|
card.setIndex(parser.value_long());
|
|
|
|
card.startFileprint();
|
|
|
|
// Procedure calls count as normal print time.
|
|
if (!call_procedure) print_job_timer.start();
|
|
}
|
|
}
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
|
|
/**
|
|
* M33: Get the long full path of a file or folder
|
|
*
|
|
* Parameters:
|
|
* <dospath> Case-insensitive DOS-style path to a file or folder
|
|
*
|
|
* Example:
|
|
* M33 miscel~1/armchair/armcha~1.gco
|
|
*
|
|
* Output:
|
|
* /Miscellaneous/Armchair/Armchair.gcode
|
|
*/
|
|
inline void gcode_M33() {
|
|
card.printLongPath(parser.string_arg);
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
|
/**
|
|
* M34: Set SD Card Sorting Options
|
|
*/
|
|
inline void gcode_M34() {
|
|
if (parser.seen('S')) card.setSortOn(parser.value_bool());
|
|
if (parser.seenval('F')) {
|
|
const int v = parser.value_long();
|
|
card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
|
|
}
|
|
//if (parser.seen('R')) card.setSortReverse(parser.value_bool());
|
|
}
|
|
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
|
|
|
|
/**
|
|
* M928: Start SD Write
|
|
*/
|
|
inline void gcode_M928() {
|
|
card.openLogFile(parser.string_arg);
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* Sensitive pin test for M42, M226
|
|
*/
|
|
static bool pin_is_protected(const int8_t pin) {
|
|
static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
|
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
|
if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M42: Change pin status via GCode
|
|
*
|
|
* P<pin> Pin number (LED if omitted)
|
|
* S<byte> Pin status from 0 - 255
|
|
*/
|
|
inline void gcode_M42() {
|
|
if (!parser.seenval('S')) return;
|
|
const byte pin_status = parser.value_byte();
|
|
|
|
const int pin_number = parser.intval('P', LED_PIN);
|
|
if (pin_number < 0) return;
|
|
|
|
if (pin_is_protected(pin_number)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
|
|
return;
|
|
}
|
|
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
|
|
#if FAN_COUNT > 0
|
|
switch (pin_number) {
|
|
#if HAS_FAN0
|
|
case FAN_PIN: fanSpeeds[0] = pin_status; break;
|
|
#endif
|
|
#if HAS_FAN1
|
|
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
|
|
#endif
|
|
#if HAS_FAN2
|
|
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(PINS_DEBUGGING)
|
|
|
|
#include "pinsDebug.h"
|
|
|
|
inline void toggle_pins() {
|
|
const bool I_flag = parser.boolval('I');
|
|
const int repeat = parser.intval('R', 1),
|
|
start = parser.intval('S'),
|
|
end = parser.intval('E', NUM_DIGITAL_PINS - 1),
|
|
wait = parser.intval('W', 500);
|
|
|
|
for (uint8_t pin = start; pin <= end; pin++) {
|
|
//report_pin_state_extended(pin, I_flag, false);
|
|
|
|
if (!I_flag && pin_is_protected(pin)) {
|
|
report_pin_state_extended(pin, I_flag, true, "Untouched ");
|
|
SERIAL_EOL();
|
|
}
|
|
else {
|
|
report_pin_state_extended(pin, I_flag, true, "Pulsing ");
|
|
#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
|
|
if (pin == TEENSY_E2) {
|
|
SET_OUTPUT(TEENSY_E2);
|
|
for (int16_t j = 0; j < repeat; j++) {
|
|
WRITE(TEENSY_E2, LOW); safe_delay(wait);
|
|
WRITE(TEENSY_E2, HIGH); safe_delay(wait);
|
|
WRITE(TEENSY_E2, LOW); safe_delay(wait);
|
|
}
|
|
}
|
|
else if (pin == TEENSY_E3) {
|
|
SET_OUTPUT(TEENSY_E3);
|
|
for (int16_t j = 0; j < repeat; j++) {
|
|
WRITE(TEENSY_E3, LOW); safe_delay(wait);
|
|
WRITE(TEENSY_E3, HIGH); safe_delay(wait);
|
|
WRITE(TEENSY_E3, LOW); safe_delay(wait);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
pinMode(pin, OUTPUT);
|
|
for (int16_t j = 0; j < repeat; j++) {
|
|
digitalWrite(pin, 0); safe_delay(wait);
|
|
digitalWrite(pin, 1); safe_delay(wait);
|
|
digitalWrite(pin, 0); safe_delay(wait);
|
|
}
|
|
}
|
|
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
SERIAL_ECHOLNPGM("Done.");
|
|
|
|
} // toggle_pins
|
|
|
|
inline void servo_probe_test() {
|
|
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
|
|
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("SERVO not setup");
|
|
|
|
#elif !HAS_Z_SERVO_ENDSTOP
|
|
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
|
|
|
|
#else // HAS_Z_SERVO_ENDSTOP
|
|
|
|
const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
|
|
|
|
SERIAL_PROTOCOLLNPGM("Servo probe test");
|
|
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
|
|
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
|
|
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
|
|
|
|
bool probe_inverting;
|
|
|
|
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
|
|
|
#define PROBE_TEST_PIN Z_MIN_PIN
|
|
|
|
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
|
|
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
|
|
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
|
|
|
|
#if Z_MIN_ENDSTOP_INVERTING
|
|
SERIAL_PROTOCOLLNPGM("true");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("false");
|
|
#endif
|
|
|
|
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
|
|
|
|
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
|
|
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
|
|
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
|
|
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
|
|
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
|
|
|
|
#if Z_MIN_PROBE_ENDSTOP_INVERTING
|
|
SERIAL_PROTOCOLLNPGM("true");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("false");
|
|
#endif
|
|
|
|
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
|
|
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
|
|
SET_INPUT_PULLUP(PROBE_TEST_PIN);
|
|
bool deploy_state, stow_state;
|
|
for (uint8_t i = 0; i < 4; i++) {
|
|
MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
|
|
safe_delay(500);
|
|
deploy_state = READ(PROBE_TEST_PIN);
|
|
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
|
|
safe_delay(500);
|
|
stow_state = READ(PROBE_TEST_PIN);
|
|
}
|
|
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
|
|
|
|
refresh_cmd_timeout();
|
|
|
|
if (deploy_state != stow_state) {
|
|
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
|
|
if (deploy_state) {
|
|
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
|
|
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
|
|
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
|
|
}
|
|
#if ENABLED(BLTOUCH)
|
|
SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
|
|
#endif
|
|
|
|
}
|
|
else { // measure active signal length
|
|
MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
|
|
safe_delay(500);
|
|
SERIAL_PROTOCOLLNPGM("please trigger probe");
|
|
uint16_t probe_counter = 0;
|
|
|
|
// Allow 30 seconds max for operator to trigger probe
|
|
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
|
|
|
|
safe_delay(2);
|
|
|
|
if (0 == j % (500 * 1)) // keep cmd_timeout happy
|
|
refresh_cmd_timeout();
|
|
|
|
if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
|
|
|
|
for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
|
|
safe_delay(2);
|
|
|
|
if (probe_counter == 50)
|
|
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
|
|
else if (probe_counter >= 2)
|
|
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
|
|
|
|
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
|
|
|
|
} // pulse detected
|
|
|
|
} // for loop waiting for trigger
|
|
|
|
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
|
|
|
|
} // measure active signal length
|
|
|
|
#endif
|
|
|
|
} // servo_probe_test
|
|
|
|
/**
|
|
* M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
|
|
*
|
|
* M43 - report name and state of pin(s)
|
|
* P<pin> Pin to read or watch. If omitted, reads all pins.
|
|
* I Flag to ignore Marlin's pin protection.
|
|
*
|
|
* M43 W - Watch pins -reporting changes- until reset, click, or M108.
|
|
* P<pin> Pin to read or watch. If omitted, read/watch all pins.
|
|
* I Flag to ignore Marlin's pin protection.
|
|
*
|
|
* M43 E<bool> - Enable / disable background endstop monitoring
|
|
* - Machine continues to operate
|
|
* - Reports changes to endstops
|
|
* - Toggles LED_PIN when an endstop changes
|
|
* - Can not reliably catch the 5mS pulse from BLTouch type probes
|
|
*
|
|
* M43 T - Toggle pin(s) and report which pin is being toggled
|
|
* S<pin> - Start Pin number. If not given, will default to 0
|
|
* L<pin> - End Pin number. If not given, will default to last pin defined for this board
|
|
* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
|
|
* R - Repeat pulses on each pin this number of times before continueing to next pin
|
|
* W - Wait time (in miliseconds) between pulses. If not given will default to 500
|
|
*
|
|
* M43 S - Servo probe test
|
|
* P<index> - Probe index (optional - defaults to 0
|
|
*/
|
|
inline void gcode_M43() {
|
|
|
|
if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
|
|
toggle_pins();
|
|
return;
|
|
}
|
|
|
|
// Enable or disable endstop monitoring
|
|
if (parser.seen('E')) {
|
|
endstop_monitor_flag = parser.value_bool();
|
|
SERIAL_PROTOCOLPGM("endstop monitor ");
|
|
serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
|
|
SERIAL_PROTOCOLLNPGM("abled");
|
|
return;
|
|
}
|
|
|
|
if (parser.seen('S')) {
|
|
servo_probe_test();
|
|
return;
|
|
}
|
|
|
|
// Get the range of pins to test or watch
|
|
const uint8_t first_pin = parser.byteval('P'),
|
|
last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
|
|
|
|
if (first_pin > last_pin) return;
|
|
|
|
const bool ignore_protection = parser.boolval('I');
|
|
|
|
// Watch until click, M108, or reset
|
|
if (parser.boolval('W')) {
|
|
SERIAL_PROTOCOLLNPGM("Watching pins");
|
|
byte pin_state[last_pin - first_pin + 1];
|
|
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
|
|
if (pin_is_protected(pin) && !ignore_protection) continue;
|
|
pinMode(pin, INPUT_PULLUP);
|
|
delay(1);
|
|
/*
|
|
if (IS_ANALOG(pin))
|
|
pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
|
|
else
|
|
//*/
|
|
pin_state[pin - first_pin] = digitalRead(pin);
|
|
}
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
wait_for_user = true;
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
#endif
|
|
|
|
for (;;) {
|
|
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
|
|
if (pin_is_protected(pin) && !ignore_protection) continue;
|
|
const byte val =
|
|
/*
|
|
IS_ANALOG(pin)
|
|
? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
|
|
:
|
|
//*/
|
|
digitalRead(pin);
|
|
if (val != pin_state[pin - first_pin]) {
|
|
report_pin_state_extended(pin, ignore_protection, false);
|
|
pin_state[pin - first_pin] = val;
|
|
}
|
|
}
|
|
|
|
#if HAS_RESUME_CONTINUE
|
|
if (!wait_for_user) {
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
break;
|
|
}
|
|
#endif
|
|
|
|
safe_delay(200);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Report current state of selected pin(s)
|
|
for (uint8_t pin = first_pin; pin <= last_pin; pin++)
|
|
report_pin_state_extended(pin, ignore_protection, true);
|
|
}
|
|
|
|
#endif // PINS_DEBUGGING
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
|
/**
|
|
* M48: Z probe repeatability measurement function.
|
|
*
|
|
* Usage:
|
|
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
|
|
* P = Number of sampled points (4-50, default 10)
|
|
* X = Sample X position
|
|
* Y = Sample Y position
|
|
* V = Verbose level (0-4, default=1)
|
|
* E = Engage Z probe for each reading
|
|
* L = Number of legs of movement before probe
|
|
* S = Schizoid (Or Star if you prefer)
|
|
*
|
|
* This function assumes the bed has been homed. Specifically, that a G28 command
|
|
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
|
|
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
* regenerated.
|
|
*/
|
|
inline void gcode_M48() {
|
|
|
|
if (axis_unhomed_error()) return;
|
|
|
|
const int8_t verbose_level = parser.byteval('V', 1);
|
|
if (!WITHIN(verbose_level, 0, 4)) {
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
|
return;
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
|
|
|
|
const int8_t n_samples = parser.byteval('P', 10);
|
|
if (!WITHIN(n_samples, 4, 50)) {
|
|
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
|
|
return;
|
|
}
|
|
|
|
const bool stow_probe_after_each = parser.boolval('E');
|
|
|
|
float X_current = current_position[X_AXIS],
|
|
Y_current = current_position[Y_AXIS];
|
|
|
|
const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
#if DISABLED(DELTA)
|
|
if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
|
|
out_of_range_error(PSTR("X"));
|
|
return;
|
|
}
|
|
if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
|
|
out_of_range_error(PSTR("Y"));
|
|
return;
|
|
}
|
|
#else
|
|
if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
|
|
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
bool seen_L = parser.seen('L');
|
|
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
|
|
if (n_legs > 15) {
|
|
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
|
|
return;
|
|
}
|
|
if (n_legs == 1) n_legs = 2;
|
|
|
|
const bool schizoid_flag = parser.boolval('S');
|
|
if (schizoid_flag && !seen_L) n_legs = 7;
|
|
|
|
/**
|
|
* Now get everything to the specified probe point So we can safely do a
|
|
* probe to get us close to the bed. If the Z-Axis is far from the bed,
|
|
* we don't want to use that as a starting point for each probe.
|
|
*/
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
|
|
|
|
// Disable bed level correction in M48 because we want the raw data when we probe
|
|
|
|
#if HAS_LEVELING
|
|
const bool was_enabled = leveling_is_active();
|
|
set_bed_leveling_enabled(false);
|
|
#endif
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
|
|
|
|
// Move to the first point, deploy, and probe
|
|
const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
|
|
bool probing_good = !isnan(t);
|
|
|
|
if (probing_good) {
|
|
randomSeed(millis());
|
|
|
|
for (uint8_t n = 0; n < n_samples; n++) {
|
|
if (n_legs) {
|
|
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
float angle = random(0.0, 360.0);
|
|
const float radius = random(
|
|
#if ENABLED(DELTA)
|
|
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
|
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
|
#else
|
|
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
|
#endif
|
|
);
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
SERIAL_ECHOPGM(" Direction: ");
|
|
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
|
SERIAL_ECHOLNPGM("Clockwise");
|
|
}
|
|
|
|
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
double delta_angle;
|
|
|
|
if (schizoid_flag)
|
|
// The points of a 5 point star are 72 degrees apart. We need to
|
|
// skip a point and go to the next one on the star.
|
|
delta_angle = dir * 2.0 * 72.0;
|
|
|
|
else
|
|
// If we do this line, we are just trying to move further
|
|
// around the circle.
|
|
delta_angle = dir * (float) random(25, 45);
|
|
|
|
angle += delta_angle;
|
|
|
|
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
|
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
|
#if DISABLED(DELTA)
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
#else
|
|
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
// back in closer to the origin.
|
|
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
|
|
X_current *= 0.8;
|
|
Y_current *= 0.8;
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
SERIAL_ECHOLNPAIR(", ", Y_current);
|
|
}
|
|
}
|
|
#endif
|
|
if (verbose_level > 3) {
|
|
SERIAL_PROTOCOLPGM("Going to:");
|
|
SERIAL_ECHOPAIR(" X", X_current);
|
|
SERIAL_ECHOPAIR(" Y", Y_current);
|
|
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
|
}
|
|
do_blocking_move_to_xy(X_current, Y_current);
|
|
} // n_legs loop
|
|
} // n_legs
|
|
|
|
// Probe a single point
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
|
|
|
|
// Break the loop if the probe fails
|
|
probing_good = !isnan(sample_set[n]);
|
|
if (!probing_good) break;
|
|
|
|
/**
|
|
* Get the current mean for the data points we have so far
|
|
*/
|
|
double sum = 0.0;
|
|
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
mean = sum / (n + 1);
|
|
|
|
NOMORE(min, sample_set[n]);
|
|
NOLESS(max, sample_set[n]);
|
|
|
|
/**
|
|
* Now, use that mean to calculate the standard deviation for the
|
|
* data points we have so far
|
|
*/
|
|
sum = 0.0;
|
|
for (uint8_t j = 0; j <= n; j++)
|
|
sum += sq(sample_set[j] - mean);
|
|
|
|
sigma = SQRT(sum / (n + 1));
|
|
if (verbose_level > 0) {
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n + 1);
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
SERIAL_PROTOCOL((int)n_samples);
|
|
SERIAL_PROTOCOLPGM(": z: ");
|
|
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 4);
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_PROTOCOLPGM(" min: ");
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
SERIAL_PROTOCOLPGM(" max: ");
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
SERIAL_PROTOCOLPGM(" range: ");
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
} // n_samples loop
|
|
}
|
|
|
|
STOW_PROBE();
|
|
|
|
if (probing_good) {
|
|
SERIAL_PROTOCOLLNPGM("Finished!");
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_PROTOCOLPGM(" Min: ");
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
SERIAL_PROTOCOLPGM(" Max: ");
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
SERIAL_PROTOCOLPGM(" Range: ");
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_EOL();
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
// Re-enable bed level correction if it had been on
|
|
#if HAS_LEVELING
|
|
set_bed_leveling_enabled(was_enabled);
|
|
#endif
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
|
|
|
inline void gcode_M49() {
|
|
ubl.g26_debug_flag ^= true;
|
|
SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
|
|
serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
|
|
|
|
/**
|
|
* M75: Start print timer
|
|
*/
|
|
inline void gcode_M75() { print_job_timer.start(); }
|
|
|
|
/**
|
|
* M76: Pause print timer
|
|
*/
|
|
inline void gcode_M76() { print_job_timer.pause(); }
|
|
|
|
/**
|
|
* M77: Stop print timer
|
|
*/
|
|
inline void gcode_M77() { print_job_timer.stop(); }
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
/**
|
|
* M78: Show print statistics
|
|
*/
|
|
inline void gcode_M78() {
|
|
// "M78 S78" will reset the statistics
|
|
if (parser.intval('S') == 78)
|
|
print_job_timer.initStats();
|
|
else
|
|
print_job_timer.showStats();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M104: Set hot end temperature
|
|
*/
|
|
inline void gcode_M104() {
|
|
if (get_target_extruder_from_command(104)) return;
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
if (target_extruder != active_extruder) return;
|
|
#endif
|
|
|
|
if (parser.seenval('S')) {
|
|
const int16_t temp = parser.value_celsius();
|
|
thermalManager.setTargetHotend(temp, target_extruder);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
/**
|
|
* Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
|
|
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
|
* standby mode, for instance in a dual extruder setup, without affecting
|
|
* the running print timer.
|
|
*/
|
|
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
|
|
print_job_timer.stop();
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
#endif
|
|
|
|
if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
|
|
lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
|
|
}
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
planner.autotemp_M104_M109();
|
|
#endif
|
|
}
|
|
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
|
|
void print_heater_state(const float &c, const float &t,
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
const float r,
|
|
#endif
|
|
const int8_t e=-2
|
|
) {
|
|
#if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
|
|
UNUSED(e);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOLCHAR(
|
|
#if HAS_TEMP_BED && HAS_TEMP_HOTEND
|
|
e == -1 ? 'B' : 'T'
|
|
#elif HAS_TEMP_HOTEND
|
|
'T'
|
|
#else
|
|
'B'
|
|
#endif
|
|
);
|
|
#if HOTENDS > 1
|
|
if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
|
|
#endif
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL(c);
|
|
SERIAL_PROTOCOLPAIR(" /" , t);
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
|
|
SERIAL_PROTOCOLCHAR(')');
|
|
#endif
|
|
}
|
|
|
|
void print_heaterstates() {
|
|
#if HAS_TEMP_HOTEND
|
|
print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
, thermalManager.rawHotendTemp(target_extruder)
|
|
#endif
|
|
);
|
|
#endif
|
|
#if HAS_TEMP_BED
|
|
print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
thermalManager.rawBedTemp(),
|
|
#endif
|
|
-1 // BED
|
|
);
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
thermalManager.rawHotendTemp(e),
|
|
#endif
|
|
e
|
|
);
|
|
#endif
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
|
|
#endif
|
|
#if HOTENDS > 1
|
|
HOTEND_LOOP() {
|
|
SERIAL_PROTOCOLPAIR(" @", e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M105: Read hot end and bed temperature
|
|
*/
|
|
inline void gcode_M105() {
|
|
if (get_target_extruder_from_command(105)) return;
|
|
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
print_heaterstates();
|
|
#else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
|
|
|
static uint8_t auto_report_temp_interval;
|
|
static millis_t next_temp_report_ms;
|
|
|
|
/**
|
|
* M155: Set temperature auto-report interval. M155 S<seconds>
|
|
*/
|
|
inline void gcode_M155() {
|
|
if (parser.seenval('S')) {
|
|
auto_report_temp_interval = parser.value_byte();
|
|
NOMORE(auto_report_temp_interval, 60);
|
|
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
}
|
|
}
|
|
|
|
inline void auto_report_temperatures() {
|
|
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
|
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
|
print_heaterstates();
|
|
SERIAL_EOL();
|
|
}
|
|
}
|
|
|
|
#endif // AUTO_REPORT_TEMPERATURES
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
/**
|
|
* M106: Set Fan Speed
|
|
*
|
|
* S<int> Speed between 0-255
|
|
* P<index> Fan index, if more than one fan
|
|
*/
|
|
inline void gcode_M106() {
|
|
uint16_t s = parser.ushortval('S', 255);
|
|
NOMORE(s, 255);
|
|
const uint8_t p = parser.byteval('P', 0);
|
|
if (p < FAN_COUNT) fanSpeeds[p] = s;
|
|
}
|
|
|
|
/**
|
|
* M107: Fan Off
|
|
*/
|
|
inline void gcode_M107() {
|
|
const uint16_t p = parser.ushortval('P');
|
|
if (p < FAN_COUNT) fanSpeeds[p] = 0;
|
|
}
|
|
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
|
|
/**
|
|
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
|
|
*/
|
|
inline void gcode_M108() { wait_for_heatup = false; }
|
|
|
|
|
|
/**
|
|
* M112: Emergency Stop
|
|
*/
|
|
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
|
|
|
|
|
|
/**
|
|
* M410: Quickstop - Abort all planned moves
|
|
*
|
|
* This will stop the carriages mid-move, so most likely they
|
|
* will be out of sync with the stepper position after this.
|
|
*/
|
|
inline void gcode_M410() { quickstop_stepper(); }
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
|
|
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
|
|
*/
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG
|
|
#define MIN_COOLING_SLOPE_DEG 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME
|
|
#define MIN_COOLING_SLOPE_TIME 60
|
|
#endif
|
|
|
|
inline void gcode_M109() {
|
|
|
|
if (get_target_extruder_from_command(109)) return;
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
#if ENABLED(SINGLENOZZLE)
|
|
if (target_extruder != active_extruder) return;
|
|
#endif
|
|
|
|
const bool no_wait_for_cooling = parser.seenval('S');
|
|
if (no_wait_for_cooling || parser.seenval('R')) {
|
|
const int16_t temp = parser.value_celsius();
|
|
thermalManager.setTargetHotend(temp, target_extruder);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
/**
|
|
* Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
|
|
* standby mode, (e.g., in a dual extruder setup) without affecting
|
|
* the running print timer.
|
|
*/
|
|
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
|
|
print_job_timer.stop();
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
else
|
|
print_job_timer.start();
|
|
#endif
|
|
|
|
if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
|
|
}
|
|
else return;
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
planner.autotemp_M104_M109();
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
|
|
#endif
|
|
|
|
float target_temp = -1.0, old_temp = 9999.0;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING)
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = thermalManager.degHotend(target_extruder);
|
|
uint8_t old_blue = 0;
|
|
#endif
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
|
|
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
|
|
target_temp = thermalManager.degTargetHotend(target_extruder);
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
|
|
next_temp_ms = now + 1000UL;
|
|
print_heaterstates();
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_PROTOCOLCHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
|
|
|
const float temp = thermalManager.degHotend(target_extruder);
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
// Gradually change LED strip from violet to red as nozzle heats up
|
|
if (!wants_to_cool) {
|
|
const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
|
|
if (blue != old_blue) {
|
|
old_blue = blue;
|
|
set_led_color(255, 0, blue
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
, 0, true
|
|
#endif
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = FABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
|
|
}
|
|
else if (temp_diff > TEMP_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
|
if (wants_to_cool) {
|
|
// break after MIN_COOLING_SLOPE_TIME seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
} while (wait_for_heatup && TEMP_CONDITIONS);
|
|
|
|
if (wait_for_heatup) {
|
|
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
#if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
|
|
set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
|
|
#else
|
|
set_led_color(255, 255, 255); // Set LEDs All On
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING)
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
#endif
|
|
}
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
#ifndef MIN_COOLING_SLOPE_DEG_BED
|
|
#define MIN_COOLING_SLOPE_DEG_BED 1.50
|
|
#endif
|
|
#ifndef MIN_COOLING_SLOPE_TIME_BED
|
|
#define MIN_COOLING_SLOPE_TIME_BED 60
|
|
#endif
|
|
|
|
/**
|
|
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
*/
|
|
inline void gcode_M190() {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
const bool no_wait_for_cooling = parser.seenval('S');
|
|
if (no_wait_for_cooling || parser.seenval('R')) {
|
|
thermalManager.setTargetBed(parser.value_celsius());
|
|
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
|
if (parser.value_celsius() > BED_MINTEMP)
|
|
print_job_timer.start();
|
|
#endif
|
|
}
|
|
else return;
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
|
|
#endif
|
|
|
|
float target_temp = -1.0, old_temp = 9999.0;
|
|
bool wants_to_cool = false;
|
|
wait_for_heatup = true;
|
|
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING)
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
target_extruder = active_extruder; // for print_heaterstates
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
const float start_temp = thermalManager.degBed();
|
|
uint8_t old_red = 255;
|
|
#endif
|
|
|
|
do {
|
|
// Target temperature might be changed during the loop
|
|
if (target_temp != thermalManager.degTargetBed()) {
|
|
wants_to_cool = thermalManager.isCoolingBed();
|
|
target_temp = thermalManager.degTargetBed();
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
}
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
|
next_temp_ms = now + 1000UL;
|
|
print_heaterstates();
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residency_start_ms)
|
|
SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
|
else
|
|
SERIAL_PROTOCOLCHAR('?');
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
idle();
|
|
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
|
|
|
const float temp = thermalManager.degBed();
|
|
|
|
#if ENABLED(PRINTER_EVENT_LEDS)
|
|
// Gradually change LED strip from blue to violet as bed heats up
|
|
if (!wants_to_cool) {
|
|
const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
|
|
if (red != old_red) {
|
|
old_red = red;
|
|
set_led_color(red, 0, 255
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
, 0, true
|
|
#endif
|
|
);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
const float temp_diff = FABS(target_temp - temp);
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
|
|
}
|
|
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = now;
|
|
}
|
|
|
|
#endif // TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
|
if (wants_to_cool) {
|
|
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
|
|
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
|
|
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
|
if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
|
|
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
|
|
old_temp = temp;
|
|
}
|
|
}
|
|
|
|
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
|
|
|
|
if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
|
|
#if DISABLED(BUSY_WHILE_HEATING)
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_TEMP_BED
|
|
|
|
/**
|
|
* M110: Set Current Line Number
|
|
*/
|
|
inline void gcode_M110() {
|
|
if (parser.seenval('N')) gcode_LastN = parser.value_long();
|
|
}
|
|
|
|
/**
|
|
* M111: Set the debug level
|
|
*/
|
|
inline void gcode_M111() {
|
|
if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
|
|
|
|
const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
|
|
str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
|
|
str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
|
|
str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
|
|
str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
, str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
|
|
#endif
|
|
;
|
|
|
|
const static char* const debug_strings[] PROGMEM = {
|
|
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
, str_debug_32
|
|
#endif
|
|
};
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
|
|
if (marlin_debug_flags) {
|
|
uint8_t comma = 0;
|
|
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
|
|
if (TEST(marlin_debug_flags, i)) {
|
|
if (comma++) SERIAL_CHAR(',');
|
|
serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
/**
|
|
* M113: Get or set Host Keepalive interval (0 to disable)
|
|
*
|
|
* S<seconds> Optional. Set the keepalive interval.
|
|
*/
|
|
inline void gcode_M113() {
|
|
if (parser.seenval('S')) {
|
|
host_keepalive_interval = parser.value_byte();
|
|
NOMORE(host_keepalive_interval, 60);
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
|
|
#if HAS_HEATER_1
|
|
/**
|
|
* M126: Heater 1 valve open
|
|
*/
|
|
inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
|
|
/**
|
|
* M127: Heater 1 valve close
|
|
*/
|
|
inline void gcode_M127() { baricuda_valve_pressure = 0; }
|
|
#endif
|
|
|
|
#if HAS_HEATER_2
|
|
/**
|
|
* M128: Heater 2 valve open
|
|
*/
|
|
inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
|
|
/**
|
|
* M129: Heater 2 valve close
|
|
*/
|
|
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
|
|
#endif
|
|
|
|
#endif // BARICUDA
|
|
|
|
/**
|
|
* M140: Set bed temperature
|
|
*/
|
|
inline void gcode_M140() {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
/**
|
|
* M145: Set the heatup state for a material in the LCD menu
|
|
*
|
|
* S<material> (0=PLA, 1=ABS)
|
|
* H<hotend temp>
|
|
* B<bed temp>
|
|
* F<fan speed>
|
|
*/
|
|
inline void gcode_M145() {
|
|
const uint8_t material = (uint8_t)parser.intval('S');
|
|
if (material >= COUNT(lcd_preheat_hotend_temp)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
|
|
}
|
|
else {
|
|
int v;
|
|
if (parser.seenval('H')) {
|
|
v = parser.value_int();
|
|
lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
|
}
|
|
if (parser.seenval('F')) {
|
|
v = parser.value_int();
|
|
lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
|
|
}
|
|
#if TEMP_SENSOR_BED != 0
|
|
if (parser.seenval('B')) {
|
|
v = parser.value_int();
|
|
lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
/**
|
|
* M149: Set temperature units
|
|
*/
|
|
inline void gcode_M149() {
|
|
if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
|
|
else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
|
|
else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M80 : Turn on the Power Supply
|
|
* M80 S : Report the current state and exit
|
|
*/
|
|
inline void gcode_M80() {
|
|
|
|
// S: Report the current power supply state and exit
|
|
if (parser.seen('S')) {
|
|
serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
|
|
return;
|
|
}
|
|
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
|
|
|
|
/**
|
|
* If you have a switch on suicide pin, this is useful
|
|
* if you want to start another print with suicide feature after
|
|
* a print without suicide...
|
|
*/
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
delay(100);
|
|
tmc2130_init(); // Settings only stick when the driver has power
|
|
#endif
|
|
|
|
powersupply_on = true;
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M81: Turn off Power, including Power Supply, if there is one.
|
|
*
|
|
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
|
|
*/
|
|
inline void gcode_M81() {
|
|
thermalManager.disable_all_heaters();
|
|
stepper.finish_and_disable();
|
|
|
|
#if FAN_COUNT > 0
|
|
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
fans_paused = false;
|
|
ZERO(paused_fanSpeeds);
|
|
#endif
|
|
#endif
|
|
|
|
safe_delay(1000); // Wait 1 second before switching off
|
|
|
|
#if HAS_SUICIDE
|
|
stepper.synchronize();
|
|
suicide();
|
|
#elif HAS_POWER_SWITCH
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
powersupply_on = false;
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M82: Set E codes absolute (default)
|
|
*/
|
|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
|
|
|
/**
|
|
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
|
|
*/
|
|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
|
|
|
/**
|
|
* M18, M84: Disable stepper motors
|
|
*/
|
|
inline void gcode_M18_M84() {
|
|
if (parser.seenval('S')) {
|
|
stepper_inactive_time = parser.value_millis_from_seconds();
|
|
}
|
|
else {
|
|
bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
|
|
if (all_axis) {
|
|
stepper.finish_and_disable();
|
|
}
|
|
else {
|
|
stepper.synchronize();
|
|
if (parser.seen('X')) disable_X();
|
|
if (parser.seen('Y')) disable_Y();
|
|
if (parser.seen('Z')) disable_Z();
|
|
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
|
|
if (parser.seen('E')) disable_e_steppers();
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
|
|
ubl_lcd_map_control = defer_return_to_status = false;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M85() {
|
|
if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
|
|
}
|
|
|
|
/**
|
|
* Multi-stepper support for M92, M201, M203
|
|
*/
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
#define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
|
|
#define TARGET_EXTRUDER target_extruder
|
|
#else
|
|
#define GET_TARGET_EXTRUDER(CMD) NOOP
|
|
#define TARGET_EXTRUDER 0
|
|
#endif
|
|
|
|
/**
|
|
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
|
|
* (Follows the same syntax as G92)
|
|
*
|
|
* With multiple extruders use T to specify which one.
|
|
*/
|
|
inline void gcode_M92() {
|
|
|
|
GET_TARGET_EXTRUDER(92);
|
|
|
|
LOOP_XYZE(i) {
|
|
if (parser.seen(axis_codes[i])) {
|
|
if (i == E_AXIS) {
|
|
const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
|
|
if (value < 20.0) {
|
|
float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
|
|
planner.max_jerk[E_AXIS] *= factor;
|
|
planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
|
|
planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
|
|
}
|
|
planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
|
|
}
|
|
else {
|
|
planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
|
|
}
|
|
}
|
|
}
|
|
planner.refresh_positioning();
|
|
}
|
|
|
|
/**
|
|
* Output the current position to serial
|
|
*/
|
|
void report_current_position() {
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
stepper.report_positions();
|
|
|
|
#if IS_SCARA
|
|
SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
|
|
SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
|
|
SERIAL_EOL();
|
|
#endif
|
|
}
|
|
|
|
#ifdef M114_DETAIL
|
|
|
|
void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
|
|
char str[12];
|
|
for (uint8_t i = 0; i < n; i++) {
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_CHAR(axis_codes[i]);
|
|
SERIAL_CHAR(':');
|
|
SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
|
|
|
|
void report_current_position_detail() {
|
|
|
|
stepper.synchronize();
|
|
|
|
SERIAL_PROTOCOLPGM("\nLogical:");
|
|
report_xyze(current_position);
|
|
|
|
SERIAL_PROTOCOLPGM("Raw: ");
|
|
const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
|
|
report_xyz(raw);
|
|
|
|
SERIAL_PROTOCOLPGM("Leveled:");
|
|
float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
planner.apply_leveling(leveled);
|
|
report_xyz(leveled);
|
|
|
|
SERIAL_PROTOCOLPGM("UnLevel:");
|
|
float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
|
|
planner.unapply_leveling(unleveled);
|
|
report_xyz(unleveled);
|
|
|
|
#if IS_KINEMATIC
|
|
#if IS_SCARA
|
|
SERIAL_PROTOCOLPGM("ScaraK: ");
|
|
#else
|
|
SERIAL_PROTOCOLPGM("DeltaK: ");
|
|
#endif
|
|
inverse_kinematics(leveled); // writes delta[]
|
|
report_xyz(delta);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM("Stepper:");
|
|
const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
|
|
report_xyze(step_count, 4, 0);
|
|
|
|
#if IS_SCARA
|
|
const float deg[XYZ] = {
|
|
stepper.get_axis_position_degrees(A_AXIS),
|
|
stepper.get_axis_position_degrees(B_AXIS)
|
|
};
|
|
SERIAL_PROTOCOLPGM("Degrees:");
|
|
report_xyze(deg, 2);
|
|
#endif
|
|
|
|
SERIAL_PROTOCOLPGM("FromStp:");
|
|
get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
|
|
const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
|
|
report_xyze(from_steppers);
|
|
|
|
const float diff[XYZE] = {
|
|
from_steppers[X_AXIS] - leveled[X_AXIS],
|
|
from_steppers[Y_AXIS] - leveled[Y_AXIS],
|
|
from_steppers[Z_AXIS] - leveled[Z_AXIS],
|
|
from_steppers[E_AXIS] - current_position[E_AXIS]
|
|
};
|
|
SERIAL_PROTOCOLPGM("Differ: ");
|
|
report_xyze(diff);
|
|
}
|
|
#endif // M114_DETAIL
|
|
|
|
/**
|
|
* M114: Report current position to host
|
|
*/
|
|
inline void gcode_M114() {
|
|
|
|
#ifdef M114_DETAIL
|
|
if (parser.seen('D')) {
|
|
report_current_position_detail();
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
report_current_position();
|
|
}
|
|
|
|
/**
|
|
* M115: Capabilities string
|
|
*/
|
|
inline void gcode_M115() {
|
|
SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
|
|
|
|
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
|
|
|
|
// EEPROM (M500, M501)
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
|
|
#endif
|
|
|
|
// AUTOREPORT_TEMP (M155)
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
|
SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
|
|
#endif
|
|
|
|
// PROGRESS (M530 S L, M531 <file>, M532 X L)
|
|
SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
|
|
|
|
// Print Job timer M75, M76, M77
|
|
SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
|
|
|
|
// AUTOLEVEL (G29)
|
|
#if HAS_ABL
|
|
SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
|
|
#endif
|
|
|
|
// Z_PROBE (G30)
|
|
#if HAS_BED_PROBE
|
|
SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
|
|
#endif
|
|
|
|
// MESH_REPORT (M420 V)
|
|
#if HAS_LEVELING
|
|
SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
|
|
#endif
|
|
|
|
// SOFTWARE_POWER (M80, M81)
|
|
#if HAS_POWER_SWITCH
|
|
SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
|
|
#endif
|
|
|
|
// CASE LIGHTS (M355)
|
|
#if HAS_CASE_LIGHT
|
|
SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
|
|
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
|
|
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
|
|
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
|
|
#endif
|
|
|
|
// EMERGENCY_PARSER (M108, M112, M410)
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
|
|
#else
|
|
SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
|
|
#endif
|
|
|
|
#endif // EXTENDED_CAPABILITIES_REPORT
|
|
}
|
|
|
|
/**
|
|
* M117: Set LCD Status Message
|
|
*/
|
|
inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
|
|
|
|
/**
|
|
* M118: Display a message in the host console.
|
|
*
|
|
* A Append '// ' for an action command, as in OctoPrint
|
|
* E Have the host 'echo:' the text
|
|
*/
|
|
inline void gcode_M118() {
|
|
if (parser.boolval('E')) SERIAL_ECHO_START();
|
|
if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
|
|
SERIAL_ECHOLN(parser.string_arg);
|
|
}
|
|
|
|
/**
|
|
* M119: Output endstop states to serial output
|
|
*/
|
|
inline void gcode_M119() { endstops.M119(); }
|
|
|
|
/**
|
|
* M120: Enable endstops and set non-homing endstop state to "enabled"
|
|
*/
|
|
inline void gcode_M120() { endstops.enable_globally(true); }
|
|
|
|
/**
|
|
* M121: Disable endstops and set non-homing endstop state to "disabled"
|
|
*/
|
|
inline void gcode_M121() { endstops.enable_globally(false); }
|
|
|
|
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
|
|
/**
|
|
* M125: Store current position and move to filament change position.
|
|
* Called on pause (by M25) to prevent material leaking onto the
|
|
* object. On resume (M24) the head will be moved back and the
|
|
* print will resume.
|
|
*
|
|
* If Marlin is compiled without SD Card support, M125 can be
|
|
* used directly to pause the print and move to park position,
|
|
* resuming with a button click or M108.
|
|
*
|
|
* L = override retract length
|
|
* X = override X
|
|
* Y = override Y
|
|
* Z = override Z raise
|
|
*/
|
|
inline void gcode_M125() {
|
|
|
|
// Initial retract before move to filament change position
|
|
const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
|
|
#ifdef PAUSE_PARK_RETRACT_LENGTH
|
|
- (PAUSE_PARK_RETRACT_LENGTH)
|
|
#endif
|
|
;
|
|
|
|
// Lift Z axis
|
|
const float z_lift = parser.linearval('Z')
|
|
#ifdef PAUSE_PARK_Z_ADD
|
|
+ PAUSE_PARK_Z_ADD
|
|
#endif
|
|
;
|
|
|
|
// Move XY axes to filament change position or given position
|
|
const float x_pos = parser.linearval('X')
|
|
#ifdef PAUSE_PARK_X_POS
|
|
+ PAUSE_PARK_X_POS
|
|
#endif
|
|
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
|
|
+ (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
|
|
#endif
|
|
;
|
|
const float y_pos = parser.linearval('Y')
|
|
#ifdef PAUSE_PARK_Y_POS
|
|
+ PAUSE_PARK_Y_POS
|
|
#endif
|
|
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
|
|
+ (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
|
|
#endif
|
|
;
|
|
|
|
#if DISABLED(SDSUPPORT)
|
|
const bool job_running = print_job_timer.isRunning();
|
|
#endif
|
|
|
|
if (pause_print(retract, z_lift, x_pos, y_pos)) {
|
|
#if DISABLED(SDSUPPORT)
|
|
// Wait for lcd click or M108
|
|
wait_for_filament_reload();
|
|
|
|
// Return to print position and continue
|
|
resume_print();
|
|
|
|
if (job_running) print_job_timer.start();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // PARK_HEAD_ON_PAUSE
|
|
|
|
#if HAS_COLOR_LEDS
|
|
|
|
/**
|
|
* M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
|
|
*
|
|
* Always sets all 3 or 4 components. If a component is left out, set to 0.
|
|
*
|
|
* Examples:
|
|
*
|
|
* M150 R255 ; Turn LED red
|
|
* M150 R255 U127 ; Turn LED orange (PWM only)
|
|
* M150 ; Turn LED off
|
|
* M150 R U B ; Turn LED white
|
|
* M150 W ; Turn LED white using a white LED
|
|
*
|
|
*/
|
|
inline void gcode_M150() {
|
|
set_led_color(
|
|
parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
|
parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
|
parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
|
|
#if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
|
|
, parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#endif // HAS_COLOR_LEDS
|
|
|
|
/**
|
|
* M200: Set filament diameter and set E axis units to cubic units
|
|
*
|
|
* T<extruder> - Optional extruder number. Current extruder if omitted.
|
|
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
|
|
*/
|
|
inline void gcode_M200() {
|
|
|
|
if (get_target_extruder_from_command(200)) return;
|
|
|
|
if (parser.seen('D')) {
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = (parser.value_linear_units() != 0.0);
|
|
if (volumetric_enabled) {
|
|
filament_size[target_extruder] = parser.value_linear_units();
|
|
// make sure all extruders have some sane value for the filament size
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
}
|
|
}
|
|
calculate_volumetric_multipliers();
|
|
}
|
|
|
|
/**
|
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
*
|
|
* With multiple extruders use T to specify which one.
|
|
*/
|
|
inline void gcode_M201() {
|
|
|
|
GET_TARGET_EXTRUDER(201);
|
|
|
|
LOOP_XYZE(i) {
|
|
if (parser.seen(axis_codes[i])) {
|
|
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
|
|
planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
planner.reset_acceleration_rates();
|
|
}
|
|
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
inline void gcode_M202() {
|
|
LOOP_XYZE(i) {
|
|
if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
|
*
|
|
* With multiple extruders use T to specify which one.
|
|
*/
|
|
inline void gcode_M203() {
|
|
|
|
GET_TARGET_EXTRUDER(203);
|
|
|
|
LOOP_XYZE(i)
|
|
if (parser.seen(axis_codes[i])) {
|
|
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
|
|
planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
|
|
*
|
|
* P = Printing moves
|
|
* R = Retract only (no X, Y, Z) moves
|
|
* T = Travel (non printing) moves
|
|
*
|
|
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
*/
|
|
inline void gcode_M204() {
|
|
if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
|
planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
|
|
}
|
|
if (parser.seen('P')) {
|
|
planner.acceleration = parser.value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
|
|
}
|
|
if (parser.seen('R')) {
|
|
planner.retract_acceleration = parser.value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
|
|
}
|
|
if (parser.seen('T')) {
|
|
planner.travel_acceleration = parser.value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M205: Set Advanced Settings
|
|
*
|
|
* S = Min Feed Rate (units/s)
|
|
* T = Min Travel Feed Rate (units/s)
|
|
* B = Min Segment Time (µs)
|
|
* X = Max X Jerk (units/sec^2)
|
|
* Y = Max Y Jerk (units/sec^2)
|
|
* Z = Max Z Jerk (units/sec^2)
|
|
* E = Max E Jerk (units/sec^2)
|
|
*/
|
|
inline void gcode_M205() {
|
|
if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
|
|
if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
|
|
if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
|
|
if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
|
|
if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
|
|
if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
|
|
if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
|
|
}
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
/**
|
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
|
*
|
|
* *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
|
|
* *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
|
|
* *** In the next 1.2 release, it will simply be disabled by default.
|
|
*/
|
|
inline void gcode_M206() {
|
|
LOOP_XYZ(i)
|
|
if (parser.seen(axis_codes[i]))
|
|
set_home_offset((AxisEnum)i, parser.value_linear_units());
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
|
|
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
|
|
#endif
|
|
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
report_current_position();
|
|
}
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
#if ENABLED(DELTA)
|
|
/**
|
|
* M665: Set delta configurations
|
|
*
|
|
* H = delta height
|
|
* L = diagonal rod
|
|
* R = delta radius
|
|
* S = segments per second
|
|
* B = delta calibration radius
|
|
* X = Alpha (Tower 1) angle trim
|
|
* Y = Beta (Tower 2) angle trim
|
|
* Z = Rotate A and B by this angle
|
|
*/
|
|
inline void gcode_M665() {
|
|
if (parser.seen('H')) {
|
|
home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
|
|
update_software_endstops(Z_AXIS);
|
|
}
|
|
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
|
|
if (parser.seen('R')) delta_radius = parser.value_linear_units();
|
|
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
|
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
|
|
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
|
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
|
if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
|
|
}
|
|
/**
|
|
* M666: Set delta endstop adjustment
|
|
*/
|
|
inline void gcode_M666() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
|
}
|
|
#endif
|
|
LOOP_XYZ(i) {
|
|
if (parser.seen(axis_codes[i])) {
|
|
if (parser.value_linear_units() * Z_HOME_DIR <= 0)
|
|
endstop_adj[i] = parser.value_linear_units();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
|
|
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#elif IS_SCARA
|
|
|
|
/**
|
|
* M665: Set SCARA settings
|
|
*
|
|
* Parameters:
|
|
*
|
|
* S[segments-per-second] - Segments-per-second
|
|
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
|
|
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
|
|
*
|
|
* A, P, and X are all aliases for the shoulder angle
|
|
* B, T, and Y are all aliases for the elbow angle
|
|
*/
|
|
inline void gcode_M665() {
|
|
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
|
|
|
const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
|
|
const uint8_t sumAPX = hasA + hasP + hasX;
|
|
if (sumAPX == 1)
|
|
home_offset[A_AXIS] = parser.value_float();
|
|
else if (sumAPX > 1) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
|
|
return;
|
|
}
|
|
|
|
const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
|
|
const uint8_t sumBTY = hasB + hasT + hasY;
|
|
if (sumBTY == 1)
|
|
home_offset[B_AXIS] = parser.value_float();
|
|
else if (sumBTY > 1) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
|
|
return;
|
|
}
|
|
}
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
/**
|
|
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
|
|
*/
|
|
inline void gcode_M666() {
|
|
if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
|
|
SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
|
|
}
|
|
|
|
#endif // !DELTA && Z_DUAL_ENDSTOPS
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* M207: Set firmware retraction values
|
|
*
|
|
* S[+units] retract_length
|
|
* W[+units] swap_retract_length (multi-extruder)
|
|
* F[units/min] retract_feedrate_mm_s
|
|
* Z[units] retract_zlift
|
|
*/
|
|
inline void gcode_M207() {
|
|
if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
|
|
if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
|
if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
|
|
if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
|
|
}
|
|
|
|
/**
|
|
* M208: Set firmware un-retraction values
|
|
*
|
|
* S[+units] retract_recover_length (in addition to M207 S*)
|
|
* W[+units] swap_retract_recover_length (multi-extruder)
|
|
* F[units/min] retract_recover_feedrate_mm_s
|
|
* R[units/min] swap_retract_recover_feedrate_mm_s
|
|
*/
|
|
inline void gcode_M208() {
|
|
if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
|
|
if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
|
if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
|
if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
|
|
}
|
|
|
|
/**
|
|
* M209: Enable automatic retract (M209 S1)
|
|
* For slicers that don't support G10/11, reversed extrude-only
|
|
* moves will be classified as retraction.
|
|
*/
|
|
inline void gcode_M209() {
|
|
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
|
if (parser.seen('S')) {
|
|
autoretract_enabled = parser.value_bool();
|
|
for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // FWRETRACT
|
|
|
|
/**
|
|
* M211: Enable, Disable, and/or Report software endstops
|
|
*
|
|
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
|
|
*/
|
|
inline void gcode_M211() {
|
|
SERIAL_ECHO_START();
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
|
|
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
|
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
|
|
#else
|
|
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
|
SERIAL_ECHOPGM(MSG_OFF);
|
|
#endif
|
|
SERIAL_ECHOPGM(MSG_SOFT_MIN);
|
|
SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
|
|
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
|
|
SERIAL_ECHOPGM(MSG_SOFT_MAX);
|
|
SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
|
|
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
|
|
}
|
|
|
|
#if HOTENDS > 1
|
|
|
|
/**
|
|
* M218 - set hotend offset (in linear units)
|
|
*
|
|
* T<tool>
|
|
* X<xoffset>
|
|
* Y<yoffset>
|
|
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
|
|
*/
|
|
inline void gcode_M218() {
|
|
if (get_target_extruder_from_command(218) || target_extruder == 0) return;
|
|
|
|
if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
|
|
if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
|
|
if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
|
|
#endif
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
HOTEND_LOOP() {
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
|
|
#endif
|
|
}
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#endif // HOTENDS > 1
|
|
|
|
/**
|
|
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
|
*/
|
|
inline void gcode_M220() {
|
|
if (parser.seenval('S')) feedrate_percentage = parser.value_int();
|
|
}
|
|
|
|
/**
|
|
* M221: Set extrusion percentage (M221 T0 S95)
|
|
*/
|
|
inline void gcode_M221() {
|
|
if (get_target_extruder_from_command(221)) return;
|
|
if (parser.seenval('S'))
|
|
flow_percentage[target_extruder] = parser.value_int();
|
|
}
|
|
|
|
/**
|
|
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
|
*/
|
|
inline void gcode_M226() {
|
|
if (parser.seen('P')) {
|
|
const int pin_number = parser.value_int(),
|
|
pin_state = parser.intval('S', -1); // required pin state - default is inverted
|
|
|
|
if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
|
|
|
|
int target = LOW;
|
|
|
|
stepper.synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
switch (pin_state) {
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while (digitalRead(pin_number) != target) idle();
|
|
|
|
} // pin_state -1 0 1 && pin_number > -1
|
|
} // parser.seen('P')
|
|
}
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
/**
|
|
* M260: Send data to a I2C slave device
|
|
*
|
|
* This is a PoC, the formating and arguments for the GCODE will
|
|
* change to be more compatible, the current proposal is:
|
|
*
|
|
* M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
|
|
*
|
|
* M260 B<byte-1 value in base 10>
|
|
* M260 B<byte-2 value in base 10>
|
|
* M260 B<byte-3 value in base 10>
|
|
*
|
|
* M260 S1 ; Send the buffered data and reset the buffer
|
|
* M260 R1 ; Reset the buffer without sending data
|
|
*
|
|
*/
|
|
inline void gcode_M260() {
|
|
// Set the target address
|
|
if (parser.seen('A')) i2c.address(parser.value_byte());
|
|
|
|
// Add a new byte to the buffer
|
|
if (parser.seen('B')) i2c.addbyte(parser.value_byte());
|
|
|
|
// Flush the buffer to the bus
|
|
if (parser.seen('S')) i2c.send();
|
|
|
|
// Reset and rewind the buffer
|
|
else if (parser.seen('R')) i2c.reset();
|
|
}
|
|
|
|
/**
|
|
* M261: Request X bytes from I2C slave device
|
|
*
|
|
* Usage: M261 A<slave device address base 10> B<number of bytes>
|
|
*/
|
|
inline void gcode_M261() {
|
|
if (parser.seen('A')) i2c.address(parser.value_byte());
|
|
|
|
uint8_t bytes = parser.byteval('B', 1);
|
|
|
|
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
|
|
i2c.relay(bytes);
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLN("Bad i2c request");
|
|
}
|
|
}
|
|
|
|
#endif // EXPERIMENTAL_I2CBUS
|
|
|
|
#if HAS_SERVOS
|
|
|
|
/**
|
|
* M280: Get or set servo position. P<index> [S<angle>]
|
|
*/
|
|
inline void gcode_M280() {
|
|
if (!parser.seen('P')) return;
|
|
const int servo_index = parser.value_int();
|
|
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
|
|
if (parser.seen('S'))
|
|
MOVE_SERVO(servo_index, parser.value_int());
|
|
else {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(" Servo ", servo_index);
|
|
SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHOPAIR("Servo ", servo_index);
|
|
SERIAL_ECHOLNPGM(" out of range");
|
|
}
|
|
}
|
|
|
|
#endif // HAS_SERVOS
|
|
|
|
#if HAS_BUZZER
|
|
|
|
/**
|
|
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
|
*/
|
|
inline void gcode_M300() {
|
|
uint16_t const frequency = parser.ushortval('S', 260);
|
|
uint16_t duration = parser.ushortval('P', 1000);
|
|
|
|
// Limits the tone duration to 0-5 seconds.
|
|
NOMORE(duration, 5000);
|
|
|
|
BUZZ(duration, frequency);
|
|
}
|
|
|
|
#endif // HAS_BUZZER
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
/**
|
|
* M301: Set PID parameters P I D (and optionally C, L)
|
|
*
|
|
* P[float] Kp term
|
|
* I[float] Ki term (unscaled)
|
|
* D[float] Kd term (unscaled)
|
|
*
|
|
* With PID_EXTRUSION_SCALING:
|
|
*
|
|
* C[float] Kc term
|
|
* L[float] LPQ length
|
|
*/
|
|
inline void gcode_M301() {
|
|
|
|
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
const uint8_t e = parser.byteval('E'); // extruder being updated
|
|
|
|
if (e < HOTENDS) { // catch bad input value
|
|
if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
|
|
if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
|
|
if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
|
|
if (parser.seen('L')) lpq_len = parser.value_float();
|
|
NOMORE(lpq_len, LPQ_MAX_LEN);
|
|
#endif
|
|
|
|
thermalManager.updatePID();
|
|
SERIAL_ECHO_START();
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
|
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
|
|
#endif // PID_PARAMS_PER_HOTEND
|
|
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
|
|
SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
}
|
|
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
inline void gcode_M304() {
|
|
if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
|
|
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
|
|
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
|
|
|
|
thermalManager.updatePID();
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
|
|
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
|
|
SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
|
/**
|
|
* M240: Trigger a camera by emulating a Canon RC-1
|
|
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
|
*/
|
|
inline void gcode_M240() {
|
|
#ifdef CHDK
|
|
|
|
OUT_WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#elif HAS_PHOTOGRAPH
|
|
|
|
const uint8_t NUM_PULSES = 16;
|
|
const float PULSE_LENGTH = 0.01524;
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
|
|
#endif // !CHDK && HAS_PHOTOGRAPH
|
|
}
|
|
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
|
|
/**
|
|
* M250: Read and optionally set the LCD contrast
|
|
*/
|
|
inline void gcode_M250() {
|
|
if (parser.seen('C')) set_lcd_contrast(parser.value_int());
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#endif // HAS_LCD_CONTRAST
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
|
/**
|
|
* M302: Allow cold extrudes, or set the minimum extrude temperature
|
|
*
|
|
* S<temperature> sets the minimum extrude temperature
|
|
* P<bool> enables (1) or disables (0) cold extrusion
|
|
*
|
|
* Examples:
|
|
*
|
|
* M302 ; report current cold extrusion state
|
|
* M302 P0 ; enable cold extrusion checking
|
|
* M302 P1 ; disables cold extrusion checking
|
|
* M302 S0 ; always allow extrusion (disables checking)
|
|
* M302 S170 ; only allow extrusion above 170
|
|
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
|
|
*/
|
|
inline void gcode_M302() {
|
|
const bool seen_S = parser.seen('S');
|
|
if (seen_S) {
|
|
thermalManager.extrude_min_temp = parser.value_celsius();
|
|
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
|
|
}
|
|
|
|
if (parser.seen('P'))
|
|
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
|
|
else if (!seen_S) {
|
|
// Report current state
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
|
|
SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
|
|
SERIAL_ECHOLNPGM("C)");
|
|
}
|
|
}
|
|
|
|
#endif // PREVENT_COLD_EXTRUSION
|
|
|
|
/**
|
|
* M303: PID relay autotune
|
|
*
|
|
* S<temperature> sets the target temperature. (default 150C)
|
|
* E<extruder> (-1 for the bed) (default 0)
|
|
* C<cycles>
|
|
* U<bool> with a non-zero value will apply the result to current settings
|
|
*/
|
|
inline void gcode_M303() {
|
|
#if HAS_PID_HEATING
|
|
const int e = parser.intval('E'), c = parser.intval('C', 5);
|
|
const bool u = parser.boolval('U');
|
|
|
|
int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
|
|
|
|
if (WITHIN(e, 0, HOTENDS - 1))
|
|
target_extruder = e;
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING)
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
#endif
|
|
|
|
thermalManager.PID_autotune(temp, e, c, u);
|
|
|
|
#if DISABLED(BUSY_WHILE_HEATING)
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
#endif
|
|
#else
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
|
|
if (IsRunning()) {
|
|
forward_kinematics_SCARA(delta_a, delta_b);
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
|
|
destination[Z_AXIS] = current_position[Z_AXIS];
|
|
prepare_move_to_destination();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M360() {
|
|
SERIAL_ECHOLNPGM(" Cal: Theta 0");
|
|
return SCARA_move_to_cal(0, 120);
|
|
}
|
|
|
|
/**
|
|
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M361() {
|
|
SERIAL_ECHOLNPGM(" Cal: Theta 90");
|
|
return SCARA_move_to_cal(90, 130);
|
|
}
|
|
|
|
/**
|
|
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M362() {
|
|
SERIAL_ECHOLNPGM(" Cal: Psi 0");
|
|
return SCARA_move_to_cal(60, 180);
|
|
}
|
|
|
|
/**
|
|
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M363() {
|
|
SERIAL_ECHOLNPGM(" Cal: Psi 90");
|
|
return SCARA_move_to_cal(50, 90);
|
|
}
|
|
|
|
/**
|
|
* M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
|
|
*/
|
|
inline bool gcode_M364() {
|
|
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
|
|
return SCARA_move_to_cal(45, 135);
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#if ENABLED(EXT_SOLENOID)
|
|
|
|
void enable_solenoid(const uint8_t num) {
|
|
switch (num) {
|
|
case 0:
|
|
OUT_WRITE(SOL0_PIN, HIGH);
|
|
break;
|
|
#if HAS_SOLENOID_1 && EXTRUDERS > 1
|
|
case 1:
|
|
OUT_WRITE(SOL1_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_2 && EXTRUDERS > 2
|
|
case 2:
|
|
OUT_WRITE(SOL2_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_3 && EXTRUDERS > 3
|
|
case 3:
|
|
OUT_WRITE(SOL3_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_4 && EXTRUDERS > 4
|
|
case 4:
|
|
OUT_WRITE(SOL4_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
default:
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
|
|
void disable_all_solenoids() {
|
|
OUT_WRITE(SOL0_PIN, LOW);
|
|
#if HAS_SOLENOID_1 && EXTRUDERS > 1
|
|
OUT_WRITE(SOL1_PIN, LOW);
|
|
#endif
|
|
#if HAS_SOLENOID_2 && EXTRUDERS > 2
|
|
OUT_WRITE(SOL2_PIN, LOW);
|
|
#endif
|
|
#if HAS_SOLENOID_3 && EXTRUDERS > 3
|
|
OUT_WRITE(SOL3_PIN, LOW);
|
|
#endif
|
|
#if HAS_SOLENOID_4 && EXTRUDERS > 4
|
|
OUT_WRITE(SOL4_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M380: Enable solenoid on the active extruder
|
|
*/
|
|
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
|
|
|
/**
|
|
* M381: Disable all solenoids
|
|
*/
|
|
inline void gcode_M381() { disable_all_solenoids(); }
|
|
|
|
#endif // EXT_SOLENOID
|
|
|
|
/**
|
|
* M400: Finish all moves
|
|
*/
|
|
inline void gcode_M400() { stepper.synchronize(); }
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
/**
|
|
* M401: Engage Z Servo endstop if available
|
|
*/
|
|
inline void gcode_M401() { DEPLOY_PROBE(); }
|
|
|
|
/**
|
|
* M402: Retract Z Servo endstop if enabled
|
|
*/
|
|
inline void gcode_M402() { STOW_PROBE(); }
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
/**
|
|
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
|
|
*/
|
|
inline void gcode_M404() {
|
|
if (parser.seen('W')) {
|
|
filament_width_nominal = parser.value_linear_units();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M405: Turn on filament sensor for control
|
|
*/
|
|
inline void gcode_M405() {
|
|
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
|
|
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
|
|
if (parser.seen('D')) {
|
|
meas_delay_cm = parser.value_byte();
|
|
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
|
|
}
|
|
|
|
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
|
const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
|
|
|
|
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
|
measurement_delay[i] = temp_ratio;
|
|
|
|
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
|
|
}
|
|
|
|
filament_sensor = true;
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
//SERIAL_PROTOCOL(flow_percentage[active_extruder]);
|
|
}
|
|
|
|
/**
|
|
* M406: Turn off filament sensor for control
|
|
*/
|
|
inline void gcode_M406() {
|
|
filament_sensor = false;
|
|
calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
|
}
|
|
|
|
/**
|
|
* M407: Get measured filament diameter on serial output
|
|
*/
|
|
inline void gcode_M407() {
|
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
}
|
|
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
void quickstop_stepper() {
|
|
stepper.quick_stop();
|
|
stepper.synchronize();
|
|
set_current_from_steppers_for_axis(ALL_AXES);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
}
|
|
|
|
#if HAS_LEVELING
|
|
/**
|
|
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
|
|
*
|
|
* S[bool] Turns leveling on or off
|
|
* Z[height] Sets the Z fade height (0 or none to disable)
|
|
* V[bool] Verbose - Print the leveling grid
|
|
*
|
|
* With AUTO_BED_LEVELING_UBL only:
|
|
*
|
|
* L[index] Load UBL mesh from index (0 is default)
|
|
*/
|
|
inline void gcode_M420() {
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
// L to load a mesh from the EEPROM
|
|
if (parser.seen('L')) {
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
|
|
const int16_t a = settings.calc_num_meshes();
|
|
|
|
if (!a) {
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
return;
|
|
}
|
|
|
|
if (!WITHIN(storage_slot, 0, a - 1)) {
|
|
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
|
|
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
|
return;
|
|
}
|
|
|
|
settings.load_mesh(storage_slot);
|
|
ubl.state.storage_slot = storage_slot;
|
|
|
|
#else
|
|
|
|
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
|
return;
|
|
|
|
#endif
|
|
}
|
|
|
|
// L to load a mesh from the EEPROM
|
|
if (parser.seen('L') || parser.seen('V')) {
|
|
ubl.display_map(0); // Currently only supports one map type
|
|
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
|
|
SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
// V to print the matrix or mesh
|
|
if (parser.seen('V')) {
|
|
#if ABL_PLANAR
|
|
planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
|
|
#else
|
|
if (leveling_is_valid()) {
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
print_bilinear_leveling_grid();
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
print_bilinear_leveling_grid_virt();
|
|
#endif
|
|
#elif ENABLED(MESH_BED_LEVELING)
|
|
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
|
|
mbl_mesh_report();
|
|
#endif
|
|
}
|
|
#endif
|
|
}
|
|
|
|
const bool to_enable = parser.boolval('S');
|
|
if (parser.seen('S'))
|
|
set_bed_leveling_enabled(to_enable);
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
|
|
#endif
|
|
|
|
const bool new_status = leveling_is_active();
|
|
|
|
if (to_enable && !new_status) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
|
|
}
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM("Fade Height ");
|
|
if (planner.z_fade_height > 0.0)
|
|
SERIAL_ECHOLN(planner.z_fade_height);
|
|
else
|
|
SERIAL_ECHOLNPGM(MSG_OFF);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
*
|
|
* Usage:
|
|
* M421 X<linear> Y<linear> Z<linear>
|
|
* M421 X<linear> Y<linear> Q<offset>
|
|
* M421 I<xindex> J<yindex> Z<linear>
|
|
* M421 I<xindex> J<yindex> Q<offset>
|
|
*/
|
|
inline void gcode_M421() {
|
|
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
|
|
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
|
|
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
|
|
const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
|
|
const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
|
|
|
|
if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
}
|
|
else if (ix < 0 || iy < 0) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
}
|
|
else
|
|
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
/**
|
|
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
*
|
|
* Usage:
|
|
* M421 I<xindex> J<yindex> Z<linear>
|
|
* M421 I<xindex> J<yindex> Q<offset>
|
|
*/
|
|
inline void gcode_M421() {
|
|
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
|
|
const bool hasI = ix >= 0,
|
|
hasJ = iy >= 0,
|
|
hasZ = parser.seen('Z'),
|
|
hasQ = !hasZ && parser.seen('Q');
|
|
|
|
if (!hasI || !hasJ || !(hasZ || hasQ)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
}
|
|
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
}
|
|
else {
|
|
z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
bed_level_virt_interpolate();
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
/**
|
|
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
*
|
|
* Usage:
|
|
* M421 I<xindex> J<yindex> Z<linear>
|
|
* M421 I<xindex> J<yindex> Q<offset>
|
|
* M421 C Z<linear>
|
|
* M421 C Q<offset>
|
|
*/
|
|
inline void gcode_M421() {
|
|
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
|
|
const bool hasI = ix >= 0,
|
|
hasJ = iy >= 0,
|
|
hasC = parser.seen('C'),
|
|
hasZ = parser.seen('Z'),
|
|
hasQ = !hasZ && parser.seen('Q');
|
|
|
|
if (hasC) {
|
|
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
|
|
ix = location.x_index;
|
|
iy = location.y_index;
|
|
}
|
|
|
|
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
|
}
|
|
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
|
}
|
|
else
|
|
ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
#if HAS_M206_COMMAND
|
|
|
|
/**
|
|
* M428: Set home_offset based on the distance between the
|
|
* current_position and the nearest "reference point."
|
|
* If an axis is past center its endstop position
|
|
* is the reference-point. Otherwise it uses 0. This allows
|
|
* the Z offset to be set near the bed when using a max endstop.
|
|
*
|
|
* M428 can't be used more than 2cm away from 0 or an endstop.
|
|
*
|
|
* Use M206 to set these values directly.
|
|
*/
|
|
inline void gcode_M428() {
|
|
bool err = false;
|
|
LOOP_XYZ(i) {
|
|
if (axis_homed[i]) {
|
|
const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
|
|
diff = base - RAW_POSITION(current_position[i], i);
|
|
if (WITHIN(diff, -20, 20)) {
|
|
set_home_offset((AxisEnum)i, diff);
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
|
|
LCD_ALERTMESSAGEPGM("Err: Too far!");
|
|
BUZZ(200, 40);
|
|
err = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!err) {
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
report_current_position();
|
|
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
|
|
BUZZ(100, 659);
|
|
BUZZ(100, 698);
|
|
}
|
|
}
|
|
|
|
#endif // HAS_M206_COMMAND
|
|
|
|
/**
|
|
* M500: Store settings in EEPROM
|
|
*/
|
|
inline void gcode_M500() {
|
|
(void)settings.save();
|
|
}
|
|
|
|
/**
|
|
* M501: Read settings from EEPROM
|
|
*/
|
|
inline void gcode_M501() {
|
|
(void)settings.load();
|
|
}
|
|
|
|
/**
|
|
* M502: Revert to default settings
|
|
*/
|
|
inline void gcode_M502() {
|
|
(void)settings.reset();
|
|
}
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
/**
|
|
* M503: print settings currently in memory
|
|
*/
|
|
inline void gcode_M503() {
|
|
(void)settings.report(!parser.boolval('S', true));
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
/**
|
|
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
|
*/
|
|
inline void gcode_M540() {
|
|
if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
|
|
}
|
|
|
|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
|
|
static float last_zoffset = NAN;
|
|
|
|
if (!isnan(last_zoffset)) {
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
|
|
const float diff = zprobe_zoffset - last_zoffset;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
// Correct bilinear grid for new probe offset
|
|
if (diff) {
|
|
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
|
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
|
z_values[x][y] -= diff;
|
|
}
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
bed_level_virt_interpolate();
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
|
|
if (!no_babystep && leveling_is_active())
|
|
thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
|
|
#else
|
|
UNUSED(no_babystep);
|
|
#endif
|
|
|
|
#if ENABLED(DELTA) // correct the delta_height
|
|
home_offset[Z_AXIS] -= diff;
|
|
#endif
|
|
}
|
|
|
|
last_zoffset = zprobe_zoffset;
|
|
}
|
|
|
|
inline void gcode_M851() {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
|
|
if (parser.seen('Z')) {
|
|
const float value = parser.value_linear_units();
|
|
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
|
|
zprobe_zoffset = value;
|
|
refresh_zprobe_zoffset();
|
|
SERIAL_ECHO(zprobe_zoffset);
|
|
}
|
|
else
|
|
SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
|
|
}
|
|
else
|
|
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
|
|
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
|
|
/**
|
|
* M600: Pause for filament change
|
|
*
|
|
* E[distance] - Retract the filament this far (negative value)
|
|
* Z[distance] - Move the Z axis by this distance
|
|
* X[position] - Move to this X position, with Y
|
|
* Y[position] - Move to this Y position, with X
|
|
* U[distance] - Retract distance for removal (negative value) (manual reload)
|
|
* L[distance] - Extrude distance for insertion (positive value) (manual reload)
|
|
* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
|
|
*
|
|
* Default values are used for omitted arguments.
|
|
*
|
|
*/
|
|
inline void gcode_M600() {
|
|
|
|
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
|
|
// Don't allow filament change without homing first
|
|
if (axis_unhomed_error()) home_all_axes();
|
|
#endif
|
|
|
|
// Initial retract before move to filament change position
|
|
const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
|
|
#ifdef PAUSE_PARK_RETRACT_LENGTH
|
|
- (PAUSE_PARK_RETRACT_LENGTH)
|
|
#endif
|
|
;
|
|
|
|
// Lift Z axis
|
|
const float z_lift = parser.linearval('Z', 0
|
|
#ifdef PAUSE_PARK_Z_ADD
|
|
+ PAUSE_PARK_Z_ADD
|
|
#endif
|
|
);
|
|
|
|
// Move XY axes to filament exchange position
|
|
const float x_pos = parser.linearval('X', 0
|
|
#ifdef PAUSE_PARK_X_POS
|
|
+ PAUSE_PARK_X_POS
|
|
#endif
|
|
);
|
|
const float y_pos = parser.linearval('Y', 0
|
|
#ifdef PAUSE_PARK_Y_POS
|
|
+ PAUSE_PARK_Y_POS
|
|
#endif
|
|
);
|
|
|
|
// Unload filament
|
|
const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
|
|
#if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
|
|
- (FILAMENT_CHANGE_UNLOAD_LENGTH)
|
|
#endif
|
|
;
|
|
|
|
// Load filament
|
|
const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
|
|
#ifdef FILAMENT_CHANGE_LOAD_LENGTH
|
|
+ FILAMENT_CHANGE_LOAD_LENGTH
|
|
#endif
|
|
;
|
|
|
|
const int beep_count = parser.intval('B',
|
|
#ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
|
|
FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
|
|
#else
|
|
-1
|
|
#endif
|
|
);
|
|
|
|
const bool job_running = print_job_timer.isRunning();
|
|
|
|
if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
|
|
wait_for_filament_reload(beep_count);
|
|
resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
|
|
}
|
|
|
|
// Resume the print job timer if it was running
|
|
if (job_running) print_job_timer.start();
|
|
}
|
|
|
|
#endif // ADVANCED_PAUSE_FEATURE
|
|
|
|
#if ENABLED(MK2_MULTIPLEXER)
|
|
|
|
inline void select_multiplexed_stepper(const uint8_t e) {
|
|
stepper.synchronize();
|
|
disable_e_steppers();
|
|
WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
|
|
WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
|
|
WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
|
|
safe_delay(100);
|
|
}
|
|
|
|
/**
|
|
* M702: Unload all extruders
|
|
*/
|
|
inline void gcode_M702() {
|
|
for (uint8_t s = 0; s < E_STEPPERS; s++) {
|
|
select_multiplexed_stepper(e);
|
|
// TODO: standard unload filament function
|
|
// MK2 firmware behavior:
|
|
// - Make sure temperature is high enough
|
|
// - Raise Z to at least 15 to make room
|
|
// - Extrude 1cm of filament in 1 second
|
|
// - Under 230C quickly purge ~12mm, over 230C purge ~10mm
|
|
// - Change E max feedrate to 80, eject the filament from the tube. Sync.
|
|
// - Restore E max feedrate to 50
|
|
}
|
|
// Go back to the last active extruder
|
|
select_multiplexed_stepper(active_extruder);
|
|
disable_e_steppers();
|
|
}
|
|
|
|
#endif // MK2_MULTIPLEXER
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
/**
|
|
* M605: Set dual x-carriage movement mode
|
|
*
|
|
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
* units x-offset and an optional differential hotend temperature of
|
|
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
*
|
|
* Note: the X axis should be homed after changing dual x-carriage mode.
|
|
*/
|
|
inline void gcode_M605() {
|
|
stepper.synchronize();
|
|
if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_FULL_CONTROL_MODE:
|
|
case DXC_AUTO_PARK_MODE:
|
|
break;
|
|
case DXC_DUPLICATION_MODE:
|
|
if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
|
|
if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
|
|
break;
|
|
default:
|
|
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
break;
|
|
}
|
|
active_extruder_parked = false;
|
|
extruder_duplication_enabled = false;
|
|
delayed_move_time = 0;
|
|
}
|
|
|
|
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
|
|
inline void gcode_M605() {
|
|
stepper.synchronize();
|
|
extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
|
|
}
|
|
|
|
#endif // DUAL_NOZZLE_DUPLICATION_MODE
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
/**
|
|
* M900: Set and/or Get advance K factor and WH/D ratio
|
|
*
|
|
* K<factor> Set advance K factor
|
|
* R<ratio> Set ratio directly (overrides WH/D)
|
|
* W<width> H<height> D<diam> Set ratio from WH/D
|
|
*/
|
|
inline void gcode_M900() {
|
|
stepper.synchronize();
|
|
|
|
const float newK = parser.floatval('K', -1);
|
|
if (newK >= 0) planner.extruder_advance_k = newK;
|
|
|
|
float newR = parser.floatval('R', -1);
|
|
if (newR < 0) {
|
|
const float newD = parser.floatval('D', -1),
|
|
newW = parser.floatval('W', -1),
|
|
newH = parser.floatval('H', -1);
|
|
if (newD >= 0 && newW >= 0 && newH >= 0)
|
|
newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
|
|
}
|
|
if (newR >= 0) planner.advance_ed_ratio = newR;
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
|
|
SERIAL_ECHOPGM(" E/D=");
|
|
const float ratio = planner.advance_ed_ratio;
|
|
if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
|
|
SERIAL_EOL();
|
|
}
|
|
#endif // LIN_ADVANCE
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
|
|
static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
|
|
SERIAL_CHAR(name);
|
|
SERIAL_ECHOPGM(" axis driver current: ");
|
|
SERIAL_ECHOLN(st.getCurrent());
|
|
}
|
|
static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
|
|
st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
|
|
tmc2130_get_current(st, name);
|
|
}
|
|
|
|
static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
|
|
SERIAL_CHAR(name);
|
|
SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
|
|
serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
|
|
SERIAL_EOL();
|
|
}
|
|
static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
|
|
st.clear_otpw();
|
|
SERIAL_CHAR(name);
|
|
SERIAL_ECHOLNPGM(" prewarn flag cleared");
|
|
}
|
|
|
|
static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
|
|
SERIAL_CHAR(name);
|
|
SERIAL_ECHOPGM(" stealthChop max speed set to ");
|
|
SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
|
|
}
|
|
static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
|
|
st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
|
|
tmc2130_get_pwmthrs(st, name, spmm);
|
|
}
|
|
|
|
static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
|
|
SERIAL_CHAR(name);
|
|
SERIAL_ECHOPGM(" driver homing sensitivity set to ");
|
|
SERIAL_ECHOLN(st.sgt());
|
|
}
|
|
static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
|
|
st.sgt(sgt_val);
|
|
tmc2130_get_sgt(st, name);
|
|
}
|
|
|
|
/**
|
|
* M906: Set motor current in milliamps using axis codes X, Y, Z, E
|
|
* Report driver currents when no axis specified
|
|
*
|
|
* S1: Enable automatic current control
|
|
* S0: Disable
|
|
*/
|
|
inline void gcode_M906() {
|
|
uint16_t values[XYZE];
|
|
LOOP_XYZE(i)
|
|
values[i] = parser.intval(axis_codes[i]);
|
|
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
|
|
else tmc2130_get_current(stepperX, 'X');
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
|
|
else tmc2130_get_current(stepperY, 'Y');
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
|
|
else tmc2130_get_current(stepperZ, 'Z');
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
|
|
else tmc2130_get_current(stepperE0, 'E');
|
|
#endif
|
|
|
|
#if ENABLED(AUTOMATIC_CURRENT_CONTROL)
|
|
if (parser.seen('S')) auto_current_control = parser.value_bool();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M911: Report TMC2130 stepper driver overtemperature pre-warn flag
|
|
* The flag is held by the library and persist until manually cleared by M912
|
|
*/
|
|
inline void gcode_M911() {
|
|
const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
|
|
reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
|
|
*/
|
|
inline void gcode_M912() {
|
|
const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
|
|
clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M913: Set HYBRID_THRESHOLD speed.
|
|
*/
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
inline void gcode_M913() {
|
|
uint16_t values[XYZE];
|
|
LOOP_XYZE(i)
|
|
values[i] = parser.intval(axis_codes[i]);
|
|
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
|
|
else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
|
|
else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
|
|
else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
|
|
else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
|
|
#endif
|
|
}
|
|
#endif // HYBRID_THRESHOLD
|
|
|
|
/**
|
|
* M914: Set SENSORLESS_HOMING sensitivity.
|
|
*/
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
inline void gcode_M914() {
|
|
#if ENABLED(X_IS_TMC2130)
|
|
if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
|
|
else tmc2130_get_sgt(stepperX, 'X');
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
|
|
else tmc2130_get_sgt(stepperY, 'Y');
|
|
#endif
|
|
}
|
|
#endif // SENSORLESS_HOMING
|
|
|
|
#endif // HAVE_TMC2130
|
|
|
|
/**
|
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
|
*/
|
|
inline void gcode_M907() {
|
|
#if HAS_DIGIPOTSS
|
|
|
|
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
|
|
if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
|
|
if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
|
|
|
|
#elif HAS_MOTOR_CURRENT_PWM
|
|
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
// this one uses actual amps in floating point
|
|
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
|
|
#endif
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
if (parser.seen('S')) {
|
|
const float dac_percent = parser.value_float();
|
|
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
|
}
|
|
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
|
|
#endif
|
|
}
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
/**
|
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
|
*/
|
|
inline void gcode_M908() {
|
|
#if HAS_DIGIPOTSS
|
|
stepper.digitalPotWrite(
|
|
parser.intval('P'),
|
|
parser.intval('S')
|
|
);
|
|
#endif
|
|
#ifdef DAC_STEPPER_CURRENT
|
|
dac_current_raw(
|
|
parser.byteval('P', -1),
|
|
parser.ushortval('S', 0)
|
|
);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
inline void gcode_M909() { dac_print_values(); }
|
|
|
|
inline void gcode_M910() { dac_commit_eeprom(); }
|
|
|
|
#endif
|
|
|
|
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
inline void gcode_M350() {
|
|
if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
|
|
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
|
|
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
|
|
stepper.microstep_readings();
|
|
}
|
|
|
|
/**
|
|
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
|
* S# determines MS1 or MS2, X# sets the pin high/low.
|
|
*/
|
|
inline void gcode_M351() {
|
|
if (parser.seenval('S')) switch (parser.value_byte()) {
|
|
case 1:
|
|
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
|
|
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
|
|
break;
|
|
case 2:
|
|
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
|
|
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
|
|
break;
|
|
}
|
|
stepper.microstep_readings();
|
|
}
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
#if HAS_CASE_LIGHT
|
|
#ifndef INVERT_CASE_LIGHT
|
|
#define INVERT_CASE_LIGHT false
|
|
#endif
|
|
uint8_t case_light_brightness; // LCD routine wants INT
|
|
bool case_light_on;
|
|
|
|
void update_case_light() {
|
|
pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
|
|
if (case_light_on) {
|
|
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
|
|
analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
|
|
}
|
|
else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
|
|
}
|
|
else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
|
|
}
|
|
#endif // HAS_CASE_LIGHT
|
|
|
|
/**
|
|
* M355: Turn case light on/off and set brightness
|
|
*
|
|
* P<byte> Set case light brightness (PWM pin required - ignored otherwise)
|
|
*
|
|
* S<bool> Set case light on/off
|
|
*
|
|
* When S turns on the light on a PWM pin then the current brightness level is used/restored
|
|
*
|
|
* M355 P200 S0 turns off the light & sets the brightness level
|
|
* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
|
|
*/
|
|
inline void gcode_M355() {
|
|
#if HAS_CASE_LIGHT
|
|
uint8_t args = 0;
|
|
if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
|
|
if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
|
|
if (args) update_case_light();
|
|
|
|
// always report case light status
|
|
SERIAL_ECHO_START();
|
|
if (!case_light_on) {
|
|
SERIAL_ECHOLN("Case light: off");
|
|
}
|
|
else {
|
|
if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
|
|
else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
|
|
}
|
|
|
|
#else
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
|
|
#endif // HAS_CASE_LIGHT
|
|
}
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
|
|
/**
|
|
* M163: Set a single mix factor for a mixing extruder
|
|
* This is called "weight" by some systems.
|
|
*
|
|
* S[index] The channel index to set
|
|
* P[float] The mix value
|
|
*
|
|
*/
|
|
inline void gcode_M163() {
|
|
const int mix_index = parser.intval('S');
|
|
if (mix_index < MIXING_STEPPERS) {
|
|
float mix_value = parser.floatval('P');
|
|
NOLESS(mix_value, 0.0);
|
|
mixing_factor[mix_index] = RECIPROCAL(mix_value);
|
|
}
|
|
}
|
|
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
/**
|
|
* M164: Store the current mix factors as a virtual tool.
|
|
*
|
|
* S[index] The virtual tool to store
|
|
*
|
|
*/
|
|
inline void gcode_M164() {
|
|
const int tool_index = parser.intval('S');
|
|
if (tool_index < MIXING_VIRTUAL_TOOLS) {
|
|
normalize_mix();
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
/**
|
|
* M165: Set multiple mix factors for a mixing extruder.
|
|
* Factors that are left out will be set to 0.
|
|
* All factors together must add up to 1.0.
|
|
*
|
|
* A[factor] Mix factor for extruder stepper 1
|
|
* B[factor] Mix factor for extruder stepper 2
|
|
* C[factor] Mix factor for extruder stepper 3
|
|
* D[factor] Mix factor for extruder stepper 4
|
|
* H[factor] Mix factor for extruder stepper 5
|
|
* I[factor] Mix factor for extruder stepper 6
|
|
*
|
|
*/
|
|
inline void gcode_M165() { gcode_get_mix(); }
|
|
#endif
|
|
|
|
#endif // MIXING_EXTRUDER
|
|
|
|
/**
|
|
* M999: Restart after being stopped
|
|
*
|
|
* Default behaviour is to flush the serial buffer and request
|
|
* a resend to the host starting on the last N line received.
|
|
*
|
|
* Sending "M999 S1" will resume printing without flushing the
|
|
* existing command buffer.
|
|
*
|
|
*/
|
|
inline void gcode_M999() {
|
|
Running = true;
|
|
lcd_reset_alert_level();
|
|
|
|
if (parser.boolval('S')) return;
|
|
|
|
// gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
}
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
#if EXTRUDERS > 3
|
|
#define REQ_ANGLES 4
|
|
#define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
|
|
#else
|
|
#define REQ_ANGLES 2
|
|
#define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
|
|
#endif
|
|
inline void move_extruder_servo(const uint8_t e) {
|
|
constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
|
|
static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
|
|
stepper.synchronize();
|
|
#if EXTRUDERS & 1
|
|
if (e < EXTRUDERS - 1)
|
|
#endif
|
|
{
|
|
MOVE_SERVO(_SERVO_NR, angles[e]);
|
|
safe_delay(500);
|
|
}
|
|
}
|
|
#endif // SWITCHING_EXTRUDER
|
|
|
|
#if ENABLED(SWITCHING_NOZZLE)
|
|
inline void move_nozzle_servo(const uint8_t e) {
|
|
const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
|
|
stepper.synchronize();
|
|
MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
|
|
safe_delay(500);
|
|
}
|
|
#endif
|
|
|
|
inline void invalid_extruder_error(const uint8_t e) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_CHAR('T');
|
|
SERIAL_ECHO_F(e, DEC);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
|
|
#if ENABLED(PARKING_EXTRUDER)
|
|
|
|
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
#define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
|
|
#else
|
|
#define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
|
|
#endif
|
|
|
|
void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
|
|
switch (extruder_num) {
|
|
case 1: OUT_WRITE(SOL1_PIN, state); break;
|
|
default: OUT_WRITE(SOL0_PIN, state); break;
|
|
}
|
|
#if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
|
|
dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
|
|
#endif
|
|
}
|
|
|
|
inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
|
|
inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
|
|
|
|
#endif // PARKING_EXTRUDER
|
|
|
|
#if HAS_FANMUX
|
|
|
|
void fanmux_switch(const uint8_t e) {
|
|
WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
|
|
#if PIN_EXISTS(FANMUX1)
|
|
WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
|
|
#if PIN_EXISTS(FANMUX2)
|
|
WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
FORCE_INLINE void fanmux_init(void){
|
|
SET_OUTPUT(FANMUX0_PIN);
|
|
#if PIN_EXISTS(FANMUX1)
|
|
SET_OUTPUT(FANMUX1_PIN);
|
|
#if PIN_EXISTS(FANMUX2)
|
|
SET_OUTPUT(FANMUX2_PIN);
|
|
#endif
|
|
#endif
|
|
fanmux_switch(0);
|
|
}
|
|
|
|
#endif // HAS_FANMUX
|
|
|
|
/**
|
|
* Perform a tool-change, which may result in moving the
|
|
* previous tool out of the way and the new tool into place.
|
|
*/
|
|
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
|
|
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
|
|
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
|
|
return invalid_extruder_error(tmp_extruder);
|
|
|
|
// T0-Tnnn: Switch virtual tool by changing the mix
|
|
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
|
|
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
|
|
|
|
#else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
|
|
|
if (tmp_extruder >= EXTRUDERS)
|
|
return invalid_extruder_error(tmp_extruder);
|
|
|
|
#if HOTENDS > 1
|
|
|
|
const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
|
|
|
|
feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
|
|
|
if (tmp_extruder != active_extruder) {
|
|
if (!no_move && axis_unhomed_error()) {
|
|
no_move = true;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
|
|
#endif
|
|
}
|
|
|
|
// Save current position to destination, for use later
|
|
set_destination_to_current();
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("Dual X Carriage Mode ");
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
|
|
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
|
|
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
const float xhome = x_home_pos(active_extruder);
|
|
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
|
|
&& IsRunning()
|
|
&& (delayed_move_time || current_position[X_AXIS] != xhome)
|
|
) {
|
|
float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
|
|
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
|
NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPAIR("Raise to ", raised_z);
|
|
SERIAL_ECHOLNPAIR("MoveX to ", xhome);
|
|
SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
|
|
}
|
|
#endif
|
|
// Park old head: 1) raise 2) move to park position 3) lower
|
|
for (uint8_t i = 0; i < 3; i++)
|
|
planner.buffer_line(
|
|
i == 0 ? current_position[X_AXIS] : xhome,
|
|
current_position[Y_AXIS],
|
|
i == 2 ? current_position[Z_AXIS] : raised_z,
|
|
current_position[E_AXIS],
|
|
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
|
|
active_extruder
|
|
);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
// Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
|
|
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
|
|
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
|
|
|
// Activate the new extruder ahead of calling set_axis_is_at_home!
|
|
active_extruder = tmp_extruder;
|
|
|
|
// This function resets the max/min values - the current position may be overwritten below.
|
|
set_axis_is_at_home(X_AXIS);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
|
|
#endif
|
|
|
|
// Only when auto-parking are carriages safe to move
|
|
if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
|
|
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_FULL_CONTROL_MODE:
|
|
// New current position is the position of the activated extruder
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
|
// Save the inactive extruder's position (from the old current_position)
|
|
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
|
break;
|
|
case DXC_AUTO_PARK_MODE:
|
|
// record raised toolhead position for use by unpark
|
|
COPY(raised_parked_position, current_position);
|
|
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
|
NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
|
|
#endif
|
|
active_extruder_parked = true;
|
|
delayed_move_time = 0;
|
|
break;
|
|
case DXC_DUPLICATION_MODE:
|
|
// If the new extruder is the left one, set it "parked"
|
|
// This triggers the second extruder to move into the duplication position
|
|
active_extruder_parked = (active_extruder == 0);
|
|
|
|
if (active_extruder_parked)
|
|
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
|
else
|
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
|
extruder_duplication_enabled = false;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
|
|
SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
|
|
DEBUG_POS("New extruder (parked)", current_position);
|
|
}
|
|
#endif
|
|
|
|
// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
|
|
|
|
#else // !DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
|
|
const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
|
float z_raise = 0;
|
|
if (!no_move) {
|
|
|
|
const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
|
|
midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
|
|
grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
|
|
+ (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
|
|
/**
|
|
* Steps:
|
|
* 1. raise Z-Axis to have enough clearance
|
|
* 2. move to park poition of old extruder
|
|
* 3. disengage magnetc field, wait for delay
|
|
* 4. move near new extruder
|
|
* 5. engage magnetic field for new extruder
|
|
* 6. move to parking incl. offset of new extruder
|
|
* 7. lower Z-Axis
|
|
*/
|
|
|
|
// STEP 1
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("Starting Autopark");
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
|
|
#endif
|
|
z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
|
|
current_position[Z_AXIS] += z_raise;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
|
|
#endif
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
stepper.synchronize();
|
|
|
|
// STEP 2
|
|
current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
|
|
#endif
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
stepper.synchronize();
|
|
|
|
// STEP 3
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("(3) Disengage magnet ");
|
|
#endif
|
|
pe_deactivate_magnet(active_extruder);
|
|
|
|
// STEP 4
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
|
|
#endif
|
|
current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
|
|
#endif
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
stepper.synchronize();
|
|
|
|
// STEP 5
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("(5) Engage magnetic field");
|
|
#endif
|
|
|
|
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
pe_activate_magnet(active_extruder); //just save power for inverted magnets
|
|
#endif
|
|
pe_activate_magnet(tmp_extruder);
|
|
|
|
// STEP 6
|
|
current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
current_position[X_AXIS] = grabpos;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
|
|
#endif
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
|
|
stepper.synchronize();
|
|
|
|
// Step 7
|
|
current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("(7) Move midway between hotends");
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
|
|
#endif
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
|
stepper.synchronize();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
SERIAL_ECHOLNPGM("Autopark done.");
|
|
#endif
|
|
}
|
|
else { // nomove == true
|
|
// Only engage magnetic field for new extruder
|
|
pe_activate_magnet(tmp_extruder);
|
|
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
pe_activate_magnet(active_extruder); // Just save power for inverted magnets
|
|
#endif
|
|
}
|
|
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
|
|
#endif
|
|
|
|
#endif // dualParking extruder
|
|
|
|
#if ENABLED(SWITCHING_NOZZLE)
|
|
#define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
|
|
// <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
|
|
const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
|
|
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
|
|
|
|
// Always raise by some amount (destination copied from current_position earlier)
|
|
current_position[Z_AXIS] += z_raise;
|
|
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
|
move_nozzle_servo(tmp_extruder);
|
|
#endif
|
|
|
|
/**
|
|
* Set current_position to the position of the new nozzle.
|
|
* Offsets are based on linear distance, so we need to get
|
|
* the resulting position in coordinate space.
|
|
*
|
|
* - With grid or 3-point leveling, offset XYZ by a tilted vector
|
|
* - With mesh leveling, update Z for the new position
|
|
* - Otherwise, just use the raw linear distance
|
|
*
|
|
* Software endstops are altered here too. Consider a case where:
|
|
* E0 at X=0 ... E1 at X=10
|
|
* When we switch to E1 now X=10, but E1 can't move left.
|
|
* To express this we apply the change in XY to the software endstops.
|
|
* E1 can move farther right than E0, so the right limit is extended.
|
|
*
|
|
* Note that we don't adjust the Z software endstops. Why not?
|
|
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
|
|
* because the bed is 1mm lower at the new position. As long as
|
|
* the first nozzle is out of the way, the carriage should be
|
|
* allowed to move 1mm lower. This technically "breaks" the
|
|
* Z software endstop. But this is technically correct (and
|
|
* there is no viable alternative).
|
|
*/
|
|
#if ABL_PLANAR
|
|
// Offset extruder, make sure to apply the bed level rotation matrix
|
|
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
|
|
hotend_offset[Y_AXIS][tmp_extruder],
|
|
0),
|
|
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
|
|
hotend_offset[Y_AXIS][active_extruder],
|
|
0),
|
|
offset_vec = tmp_offset_vec - act_offset_vec;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
|
|
act_offset_vec.debug(PSTR("act_offset_vec"));
|
|
offset_vec.debug(PSTR("offset_vec (BEFORE)"));
|
|
}
|
|
#endif
|
|
|
|
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
|
|
#endif
|
|
|
|
// Adjustments to the current position
|
|
const float xydiff[2] = { offset_vec.x, offset_vec.y };
|
|
current_position[Z_AXIS] += offset_vec.z;
|
|
|
|
#else // !ABL_PLANAR
|
|
|
|
const float xydiff[2] = {
|
|
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
|
|
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
|
|
};
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (leveling_is_active()) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
|
|
#endif
|
|
float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
|
|
y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
|
|
z1 = current_position[Z_AXIS], z2 = z1;
|
|
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
|
|
planner.apply_leveling(x2, y2, z2);
|
|
current_position[Z_AXIS] += z2 - z1;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING))
|
|
SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#endif // !HAS_ABL
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
|
|
SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
|
|
SERIAL_ECHOLNPGM(" }");
|
|
}
|
|
#endif
|
|
|
|
// The newly-selected extruder XY is actually at...
|
|
current_position[X_AXIS] += xydiff[X_AXIS];
|
|
current_position[Y_AXIS] += xydiff[Y_AXIS];
|
|
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
|
|
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
|
|
#if HAS_POSITION_SHIFT
|
|
position_shift[i] += xydiff[i];
|
|
#endif
|
|
update_software_endstops((AxisEnum)i);
|
|
}
|
|
#endif
|
|
|
|
// Set the new active extruder
|
|
active_extruder = tmp_extruder;
|
|
|
|
#endif // !DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
|
|
#endif
|
|
|
|
// Tell the planner the new "current position"
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
// Move to the "old position" (move the extruder into place)
|
|
if (!no_move && IsRunning()) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
|
|
#endif
|
|
prepare_move_to_destination();
|
|
}
|
|
|
|
#if ENABLED(SWITCHING_NOZZLE)
|
|
// Move back down, if needed. (Including when the new tool is higher.)
|
|
if (z_raise != z_diff) {
|
|
destination[Z_AXIS] += z_diff;
|
|
feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
|
|
prepare_move_to_destination();
|
|
}
|
|
#endif
|
|
|
|
} // (tmp_extruder != active_extruder)
|
|
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
|
|
disable_all_solenoids();
|
|
enable_solenoid_on_active_extruder();
|
|
#endif // EXT_SOLENOID
|
|
|
|
feedrate_mm_s = old_feedrate_mm_s;
|
|
|
|
#else // HOTENDS <= 1
|
|
|
|
UNUSED(fr_mm_s);
|
|
UNUSED(no_move);
|
|
|
|
#if ENABLED(MK2_MULTIPLEXER)
|
|
if (tmp_extruder >= E_STEPPERS)
|
|
return invalid_extruder_error(tmp_extruder);
|
|
|
|
select_multiplexed_stepper(tmp_extruder);
|
|
#endif
|
|
|
|
// Set the new active extruder
|
|
active_extruder = tmp_extruder;
|
|
|
|
#endif // HOTENDS <= 1
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
|
|
stepper.synchronize();
|
|
move_extruder_servo(active_extruder);
|
|
#endif
|
|
|
|
#if HAS_FANMUX
|
|
fanmux_switch(active_extruder);
|
|
#endif
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
|
|
|
|
#endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
|
}
|
|
|
|
/**
|
|
* T0-T3: Switch tool, usually switching extruders
|
|
*
|
|
* F[units/min] Set the movement feedrate
|
|
* S1 Don't move the tool in XY after change
|
|
*/
|
|
inline void gcode_T(uint8_t tmp_extruder) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
|
|
SERIAL_CHAR(')');
|
|
SERIAL_EOL();
|
|
DEBUG_POS("BEFORE", current_position);
|
|
}
|
|
#endif
|
|
|
|
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
|
|
|
|
tool_change(tmp_extruder);
|
|
|
|
#elif HOTENDS > 1
|
|
|
|
tool_change(
|
|
tmp_extruder,
|
|
MMM_TO_MMS(parser.linearval('F')),
|
|
(tmp_extruder == active_extruder) || parser.boolval('S')
|
|
);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS("AFTER", current_position);
|
|
SERIAL_ECHOLNPGM("<<< gcode_T");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Process a single command and dispatch it to its handler
|
|
* This is called from the main loop()
|
|
*/
|
|
void process_next_command() {
|
|
char * const current_command = command_queue[cmd_queue_index_r];
|
|
|
|
if (DEBUGGING(ECHO)) {
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLN(current_command);
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
|
|
M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
|
|
#endif
|
|
}
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
// Parse the next command in the queue
|
|
parser.parse(current_command);
|
|
|
|
// Handle a known G, M, or T
|
|
switch (parser.command_letter) {
|
|
case 'G': switch (parser.codenum) {
|
|
|
|
// G0, G1
|
|
case 0:
|
|
case 1:
|
|
#if IS_SCARA
|
|
gcode_G0_G1(parser.codenum == 0);
|
|
#else
|
|
gcode_G0_G1();
|
|
#endif
|
|
break;
|
|
|
|
// G2, G3
|
|
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
|
|
case 2: // G2: CW ARC
|
|
case 3: // G3: CCW ARC
|
|
gcode_G2_G3(parser.codenum == 2);
|
|
break;
|
|
#endif
|
|
|
|
// G4 Dwell
|
|
case 4:
|
|
gcode_G4();
|
|
break;
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
case 5: // G5: Cubic B_spline
|
|
gcode_G5();
|
|
break;
|
|
#endif // BEZIER_CURVE_SUPPORT
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
case 10: // G10: retract
|
|
gcode_G10();
|
|
break;
|
|
case 11: // G11: retract_recover
|
|
gcode_G11();
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
|
case 12:
|
|
gcode_G12(); // G12: Nozzle Clean
|
|
break;
|
|
#endif // NOZZLE_CLEAN_FEATURE
|
|
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
case 17: // G17: Select Plane XY
|
|
gcode_G17();
|
|
break;
|
|
case 18: // G18: Select Plane ZX
|
|
gcode_G18();
|
|
break;
|
|
case 19: // G19: Select Plane YZ
|
|
gcode_G19();
|
|
break;
|
|
#endif // CNC_WORKSPACE_PLANES
|
|
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
case 20: // G20: Inch Mode
|
|
gcode_G20();
|
|
break;
|
|
|
|
case 21: // G21: MM Mode
|
|
gcode_G21();
|
|
break;
|
|
#endif // INCH_MODE_SUPPORT
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
|
case 26: // G26: Mesh Validation Pattern generation
|
|
gcode_G26();
|
|
break;
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
#if ENABLED(NOZZLE_PARK_FEATURE)
|
|
case 27: // G27: Nozzle Park
|
|
gcode_G27();
|
|
break;
|
|
#endif // NOZZLE_PARK_FEATURE
|
|
|
|
case 28: // G28: Home all axes, one at a time
|
|
gcode_G28(false);
|
|
break;
|
|
|
|
#if HAS_LEVELING
|
|
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
|
|
// or provides access to the UBL System if enabled.
|
|
gcode_G29();
|
|
break;
|
|
#endif // HAS_LEVELING
|
|
|
|
#if HAS_BED_PROBE
|
|
|
|
case 30: // G30 Single Z probe
|
|
gcode_G30();
|
|
break;
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
case 31: // G31: dock the sled
|
|
gcode_G31();
|
|
break;
|
|
|
|
case 32: // G32: undock the sled
|
|
gcode_G32();
|
|
break;
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if PROBE_SELECTED
|
|
|
|
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
|
|
|
case 33: // G33: Delta Auto-Calibration
|
|
gcode_G33();
|
|
break;
|
|
|
|
#endif // DELTA_AUTO_CALIBRATION
|
|
|
|
#endif // PROBE_SELECTED
|
|
|
|
#if ENABLED(G38_PROBE_TARGET)
|
|
case 38: // G38.2 & G38.3
|
|
if (parser.subcode == 2 || parser.subcode == 3)
|
|
gcode_G38(parser.subcode == 2);
|
|
break;
|
|
#endif
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
|
|
case 92: // G92
|
|
gcode_G92();
|
|
break;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
|
|
case 42:
|
|
gcode_G42();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_GCODE_PARSER)
|
|
case 800:
|
|
parser.debug(); // GCode Parser Test for G
|
|
break;
|
|
#endif
|
|
}
|
|
break;
|
|
|
|
case 'M': switch (parser.codenum) {
|
|
#if HAS_RESUME_CONTINUE
|
|
case 0: // M0: Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1: Conditional stop - Wait for user button press on LCD
|
|
gcode_M0_M1();
|
|
break;
|
|
#endif // ULTIPANEL
|
|
|
|
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
case 3:
|
|
gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
|
|
break; // synchronizes with movement commands
|
|
case 4:
|
|
gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
|
|
break; // synchronizes with movement commands
|
|
case 5:
|
|
gcode_M5(); // M5 - turn spindle/laser off
|
|
break; // synchronizes with movement commands
|
|
#endif
|
|
case 17: // M17: Enable all stepper motors
|
|
gcode_M17();
|
|
break;
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
case 20: // M20: list SD card
|
|
gcode_M20(); break;
|
|
case 21: // M21: init SD card
|
|
gcode_M21(); break;
|
|
case 22: // M22: release SD card
|
|
gcode_M22(); break;
|
|
case 23: // M23: Select file
|
|
gcode_M23(); break;
|
|
case 24: // M24: Start SD print
|
|
gcode_M24(); break;
|
|
case 25: // M25: Pause SD print
|
|
gcode_M25(); break;
|
|
case 26: // M26: Set SD index
|
|
gcode_M26(); break;
|
|
case 27: // M27: Get SD status
|
|
gcode_M27(); break;
|
|
case 28: // M28: Start SD write
|
|
gcode_M28(); break;
|
|
case 29: // M29: Stop SD write
|
|
gcode_M29(); break;
|
|
case 30: // M30 <filename> Delete File
|
|
gcode_M30(); break;
|
|
case 32: // M32: Select file and start SD print
|
|
gcode_M32(); break;
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
case 33: // M33: Get the long full path to a file or folder
|
|
gcode_M33(); break;
|
|
#endif
|
|
|
|
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
|
case 34: // M34: Set SD card sorting options
|
|
gcode_M34(); break;
|
|
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
|
|
|
|
case 928: // M928: Start SD write
|
|
gcode_M928(); break;
|
|
#endif // SDSUPPORT
|
|
|
|
case 31: // M31: Report time since the start of SD print or last M109
|
|
gcode_M31(); break;
|
|
|
|
case 42: // M42: Change pin state
|
|
gcode_M42(); break;
|
|
|
|
#if ENABLED(PINS_DEBUGGING)
|
|
case 43: // M43: Read pin state
|
|
gcode_M43(); break;
|
|
#endif
|
|
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
case 48: // M48: Z probe repeatability test
|
|
gcode_M48();
|
|
break;
|
|
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
|
case 49: // M49: Turn on or off G26 debug flag for verbose output
|
|
gcode_M49();
|
|
break;
|
|
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
|
|
|
|
case 75: // M75: Start print timer
|
|
gcode_M75(); break;
|
|
case 76: // M76: Pause print timer
|
|
gcode_M76(); break;
|
|
case 77: // M77: Stop print timer
|
|
gcode_M77(); break;
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
case 78: // M78: Show print statistics
|
|
gcode_M78(); break;
|
|
#endif
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
case 100: // M100: Free Memory Report
|
|
gcode_M100();
|
|
break;
|
|
#endif
|
|
|
|
case 104: // M104: Set hot end temperature
|
|
gcode_M104();
|
|
break;
|
|
|
|
case 110: // M110: Set Current Line Number
|
|
gcode_M110();
|
|
break;
|
|
|
|
case 111: // M111: Set debug level
|
|
gcode_M111();
|
|
break;
|
|
|
|
#if DISABLED(EMERGENCY_PARSER)
|
|
|
|
case 108: // M108: Cancel Waiting
|
|
gcode_M108();
|
|
break;
|
|
|
|
case 112: // M112: Emergency Stop
|
|
gcode_M112();
|
|
break;
|
|
|
|
case 410: // M410 quickstop - Abort all the planned moves.
|
|
gcode_M410();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
case 113: // M113: Set Host Keepalive interval
|
|
gcode_M113();
|
|
break;
|
|
#endif
|
|
|
|
case 140: // M140: Set bed temperature
|
|
gcode_M140();
|
|
break;
|
|
|
|
case 105: // M105: Report current temperature
|
|
gcode_M105();
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
return; // "ok" already printed
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
|
case 155: // M155: Set temperature auto-report interval
|
|
gcode_M155();
|
|
break;
|
|
#endif
|
|
|
|
case 109: // M109: Wait for hotend temperature to reach target
|
|
gcode_M109();
|
|
break;
|
|
|
|
#if HAS_TEMP_BED
|
|
case 190: // M190: Wait for bed temperature to reach target
|
|
gcode_M190();
|
|
break;
|
|
#endif // HAS_TEMP_BED
|
|
|
|
#if FAN_COUNT > 0
|
|
case 106: // M106: Fan On
|
|
gcode_M106();
|
|
break;
|
|
case 107: // M107: Fan Off
|
|
gcode_M107();
|
|
break;
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
|
case 125: // M125: Store current position and move to filament change position
|
|
gcode_M125(); break;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
// PWM for HEATER_1_PIN
|
|
#if HAS_HEATER_1
|
|
case 126: // M126: valve open
|
|
gcode_M126();
|
|
break;
|
|
case 127: // M127: valve closed
|
|
gcode_M127();
|
|
break;
|
|
#endif // HAS_HEATER_1
|
|
|
|
// PWM for HEATER_2_PIN
|
|
#if HAS_HEATER_2
|
|
case 128: // M128: valve open
|
|
gcode_M128();
|
|
break;
|
|
case 129: // M129: valve closed
|
|
gcode_M129();
|
|
break;
|
|
#endif // HAS_HEATER_2
|
|
#endif // BARICUDA
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
case 80: // M80: Turn on Power Supply
|
|
gcode_M80();
|
|
break;
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
case 81: // M81: Turn off Power, including Power Supply, if possible
|
|
gcode_M81();
|
|
break;
|
|
|
|
case 82: // M82: Set E axis normal mode (same as other axes)
|
|
gcode_M82();
|
|
break;
|
|
case 83: // M83: Set E axis relative mode
|
|
gcode_M83();
|
|
break;
|
|
case 18: // M18 => M84
|
|
case 84: // M84: Disable all steppers or set timeout
|
|
gcode_M18_M84();
|
|
break;
|
|
case 85: // M85: Set inactivity stepper shutdown timeout
|
|
gcode_M85();
|
|
break;
|
|
case 92: // M92: Set the steps-per-unit for one or more axes
|
|
gcode_M92();
|
|
break;
|
|
case 114: // M114: Report current position
|
|
gcode_M114();
|
|
break;
|
|
case 115: // M115: Report capabilities
|
|
gcode_M115();
|
|
break;
|
|
case 117: // M117: Set LCD message text, if possible
|
|
gcode_M117();
|
|
break;
|
|
case 118: // M118: Display a message in the host console
|
|
gcode_M118();
|
|
break;
|
|
case 119: // M119: Report endstop states
|
|
gcode_M119();
|
|
break;
|
|
case 120: // M120: Enable endstops
|
|
gcode_M120();
|
|
break;
|
|
case 121: // M121: Disable endstops
|
|
gcode_M121();
|
|
break;
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
case 145: // M145: Set material heatup parameters
|
|
gcode_M145();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
case 149: // M149: Set temperature units
|
|
gcode_M149();
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_COLOR_LEDS
|
|
|
|
case 150: // M150: Set Status LED Color
|
|
gcode_M150();
|
|
break;
|
|
|
|
#endif // HAS_COLOR_LEDS
|
|
|
|
#if ENABLED(MIXING_EXTRUDER)
|
|
case 163: // M163: Set a component weight for mixing extruder
|
|
gcode_M163();
|
|
break;
|
|
#if MIXING_VIRTUAL_TOOLS > 1
|
|
case 164: // M164: Save current mix as a virtual extruder
|
|
gcode_M164();
|
|
break;
|
|
#endif
|
|
#if ENABLED(DIRECT_MIXING_IN_G1)
|
|
case 165: // M165: Set multiple mix weights
|
|
gcode_M165();
|
|
break;
|
|
#endif
|
|
#endif
|
|
|
|
case 200: // M200: Set filament diameter, E to cubic units
|
|
gcode_M200();
|
|
break;
|
|
case 201: // M201: Set max acceleration for print moves (units/s^2)
|
|
gcode_M201();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
gcode_M202();
|
|
break;
|
|
#endif
|
|
case 203: // M203: Set max feedrate (units/sec)
|
|
gcode_M203();
|
|
break;
|
|
case 204: // M204: Set acceleration
|
|
gcode_M204();
|
|
break;
|
|
case 205: // M205: Set advanced settings
|
|
gcode_M205();
|
|
break;
|
|
|
|
#if HAS_M206_COMMAND
|
|
case 206: // M206: Set home offsets
|
|
gcode_M206();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
case 665: // M665: Set delta configurations
|
|
gcode_M665();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
case 666: // M666: Set delta or dual endstop adjustment
|
|
gcode_M666();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
case 207: // M207: Set Retract Length, Feedrate, and Z lift
|
|
gcode_M207();
|
|
break;
|
|
case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
|
|
gcode_M208();
|
|
break;
|
|
case 209: // M209: Turn Automatic Retract Detection on/off
|
|
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
case 211: // M211: Enable, Disable, and/or Report software endstops
|
|
gcode_M211();
|
|
break;
|
|
|
|
#if HOTENDS > 1
|
|
case 218: // M218: Set a tool offset
|
|
gcode_M218();
|
|
break;
|
|
#endif
|
|
|
|
case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
|
|
gcode_M220();
|
|
break;
|
|
|
|
case 221: // M221: Set Flow Percentage
|
|
gcode_M221();
|
|
break;
|
|
|
|
case 226: // M226: Wait until a pin reaches a state
|
|
gcode_M226();
|
|
break;
|
|
|
|
#if HAS_SERVOS
|
|
case 280: // M280: Set servo position absolute
|
|
gcode_M280();
|
|
break;
|
|
#endif // HAS_SERVOS
|
|
|
|
#if HAS_BUZZER
|
|
case 300: // M300: Play beep tone
|
|
gcode_M300();
|
|
break;
|
|
#endif // HAS_BUZZER
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
case 301: // M301: Set hotend PID parameters
|
|
gcode_M301();
|
|
break;
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
case 304: // M304: Set bed PID parameters
|
|
gcode_M304();
|
|
break;
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
gcode_M240();
|
|
break;
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
case 250: // M250: Set LCD contrast
|
|
gcode_M250();
|
|
break;
|
|
#endif // HAS_LCD_CONTRAST
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
case 260: // M260: Send data to an i2c slave
|
|
gcode_M260();
|
|
break;
|
|
|
|
case 261: // M261: Request data from an i2c slave
|
|
gcode_M261();
|
|
break;
|
|
|
|
#endif // EXPERIMENTAL_I2CBUS
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
|
|
gcode_M302();
|
|
break;
|
|
#endif // PREVENT_COLD_EXTRUSION
|
|
|
|
case 303: // M303: PID autotune
|
|
gcode_M303();
|
|
break;
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
case 360: // M360: SCARA Theta pos1
|
|
if (gcode_M360()) return;
|
|
break;
|
|
case 361: // M361: SCARA Theta pos2
|
|
if (gcode_M361()) return;
|
|
break;
|
|
case 362: // M362: SCARA Psi pos1
|
|
if (gcode_M362()) return;
|
|
break;
|
|
case 363: // M363: SCARA Psi pos2
|
|
if (gcode_M363()) return;
|
|
break;
|
|
case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
|
|
if (gcode_M364()) return;
|
|
break;
|
|
#endif // SCARA
|
|
|
|
case 400: // M400: Finish all moves
|
|
gcode_M400();
|
|
break;
|
|
|
|
#if HAS_BED_PROBE
|
|
case 401: // M401: Deploy probe
|
|
gcode_M401();
|
|
break;
|
|
case 402: // M402: Stow probe
|
|
gcode_M402();
|
|
break;
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
gcode_M404();
|
|
break;
|
|
case 405: // M405: Turn on filament sensor for control
|
|
gcode_M405();
|
|
break;
|
|
case 406: // M406: Turn off filament sensor for control
|
|
gcode_M406();
|
|
break;
|
|
case 407: // M407: Display measured filament diameter
|
|
gcode_M407();
|
|
break;
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
#if HAS_LEVELING
|
|
case 420: // M420: Enable/Disable Bed Leveling
|
|
gcode_M420();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
case 421: // M421: Set a Mesh Bed Leveling Z coordinate
|
|
gcode_M421();
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_M206_COMMAND
|
|
case 428: // M428: Apply current_position to home_offset
|
|
gcode_M428();
|
|
break;
|
|
#endif
|
|
|
|
case 500: // M500: Store settings in EEPROM
|
|
gcode_M500();
|
|
break;
|
|
case 501: // M501: Read settings from EEPROM
|
|
gcode_M501();
|
|
break;
|
|
case 502: // M502: Revert to default settings
|
|
gcode_M502();
|
|
break;
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
case 503: // M503: print settings currently in memory
|
|
gcode_M503();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
case 540: // M540: Set abort on endstop hit for SD printing
|
|
gcode_M540();
|
|
break;
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
case 851: // M851: Set Z Probe Z Offset
|
|
gcode_M851();
|
|
break;
|
|
#endif // HAS_BED_PROBE
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
case 600: // M600: Pause for filament change
|
|
gcode_M600();
|
|
break;
|
|
#endif // ADVANCED_PAUSE_FEATURE
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
|
case 605: // M605: Set Dual X Carriage movement mode
|
|
gcode_M605();
|
|
break;
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(MK2_MULTIPLEXER)
|
|
case 702: // M702: Unload all extruders
|
|
gcode_M702();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
case 900: // M900: Set advance K factor.
|
|
gcode_M900();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
|
|
gcode_M906();
|
|
break;
|
|
#endif
|
|
|
|
case 907: // M907: Set digital trimpot motor current using axis codes.
|
|
gcode_M907();
|
|
break;
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
case 908: // M908: Control digital trimpot directly.
|
|
gcode_M908();
|
|
break;
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
case 909: // M909: Print digipot/DAC current value
|
|
gcode_M909();
|
|
break;
|
|
|
|
case 910: // M910: Commit digipot/DAC value to external EEPROM
|
|
gcode_M910();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
case 911: // M911: Report TMC2130 prewarn triggered flags
|
|
gcode_M911();
|
|
break;
|
|
|
|
case 912: // M911: Clear TMC2130 prewarn triggered flags
|
|
gcode_M912();
|
|
break;
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
case 913: // M913: Set HYBRID_THRESHOLD speed.
|
|
gcode_M913();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
case 914: // M914: Set SENSORLESS_HOMING sensitivity.
|
|
gcode_M914();
|
|
break;
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
gcode_M350();
|
|
break;
|
|
|
|
case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
gcode_M351();
|
|
break;
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
case 355: // M355 set case light brightness
|
|
gcode_M355();
|
|
break;
|
|
|
|
#if ENABLED(DEBUG_GCODE_PARSER)
|
|
case 800:
|
|
parser.debug(); // GCode Parser Test for M
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
|
|
case 860: // M860 Report encoder module position
|
|
gcode_M860();
|
|
break;
|
|
|
|
case 861: // M861 Report encoder module status
|
|
gcode_M861();
|
|
break;
|
|
|
|
case 862: // M862 Perform axis test
|
|
gcode_M862();
|
|
break;
|
|
|
|
case 863: // M863 Calibrate steps/mm
|
|
gcode_M863();
|
|
break;
|
|
|
|
case 864: // M864 Change module address
|
|
gcode_M864();
|
|
break;
|
|
|
|
case 865: // M865 Check module firmware version
|
|
gcode_M865();
|
|
break;
|
|
|
|
case 866: // M866 Report axis error count
|
|
gcode_M866();
|
|
break;
|
|
|
|
case 867: // M867 Toggle error correction
|
|
gcode_M867();
|
|
break;
|
|
|
|
case 868: // M868 Set error correction threshold
|
|
gcode_M868();
|
|
break;
|
|
|
|
case 869: // M869 Report axis error
|
|
gcode_M869();
|
|
break;
|
|
|
|
#endif // I2C_POSITION_ENCODERS
|
|
|
|
case 999: // M999: Restart after being Stopped
|
|
gcode_M999();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 'T':
|
|
gcode_T(parser.codenum);
|
|
break;
|
|
|
|
default: parser.unknown_command_error();
|
|
}
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
ok_to_send();
|
|
}
|
|
|
|
/**
|
|
* Send a "Resend: nnn" message to the host to
|
|
* indicate that a command needs to be re-sent.
|
|
*/
|
|
void FlushSerialRequestResend() {
|
|
//char command_queue[cmd_queue_index_r][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
ok_to_send();
|
|
}
|
|
|
|
/**
|
|
* Send an "ok" message to the host, indicating
|
|
* that a command was successfully processed.
|
|
*
|
|
* If ADVANCED_OK is enabled also include:
|
|
* N<int> Line number of the command, if any
|
|
* P<int> Planner space remaining
|
|
* B<int> Block queue space remaining
|
|
*/
|
|
void ok_to_send() {
|
|
refresh_cmd_timeout();
|
|
if (!send_ok[cmd_queue_index_r]) return;
|
|
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
#if ENABLED(ADVANCED_OK)
|
|
char* p = command_queue[cmd_queue_index_r];
|
|
if (*p == 'N') {
|
|
SERIAL_PROTOCOL(' ');
|
|
SERIAL_ECHO(*p++);
|
|
while (NUMERIC_SIGNED(*p))
|
|
SERIAL_ECHO(*p++);
|
|
}
|
|
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
|
|
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
|
|
#endif
|
|
SERIAL_EOL();
|
|
}
|
|
|
|
#if HAS_SOFTWARE_ENDSTOPS
|
|
|
|
/**
|
|
* Constrain the given coordinates to the software endstops.
|
|
*/
|
|
|
|
// NOTE: This makes no sense for delta beds other than Z-axis.
|
|
// For delta the X/Y would need to be clamped at
|
|
// DELTA_PRINTABLE_RADIUS from center of bed, but delta
|
|
// now enforces is_position_reachable for X/Y regardless
|
|
// of HAS_SOFTWARE_ENDSTOPS, so that enforcement would be
|
|
// redundant here.
|
|
|
|
void clamp_to_software_endstops(float target[XYZ]) {
|
|
if (!soft_endstops_enabled) return;
|
|
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
|
|
#if DISABLED(DELTA)
|
|
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
|
|
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
|
|
#endif
|
|
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
|
|
#endif
|
|
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
|
#if DISABLED(DELTA)
|
|
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
|
|
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
|
|
#endif
|
|
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
|
#define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
|
|
#define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
|
|
#define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
|
|
#define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
|
|
#define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
|
|
#else
|
|
#define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
|
|
#define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
|
|
#define ABL_BG_POINTS_X GRID_MAX_POINTS_X
|
|
#define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
|
|
#define ABL_BG_GRID(X,Y) z_values[X][Y]
|
|
#endif
|
|
|
|
// Get the Z adjustment for non-linear bed leveling
|
|
float bilinear_z_offset(const float logical[XYZ]) {
|
|
|
|
static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
|
|
last_x = -999.999, last_y = -999.999;
|
|
|
|
// Whole units for the grid line indices. Constrained within bounds.
|
|
static int8_t gridx, gridy, nextx, nexty,
|
|
last_gridx = -99, last_gridy = -99;
|
|
|
|
// XY relative to the probed area
|
|
const float x = RAW_X_POSITION(logical[X_AXIS]) - bilinear_start[X_AXIS],
|
|
y = RAW_Y_POSITION(logical[Y_AXIS]) - bilinear_start[Y_AXIS];
|
|
|
|
#if ENABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
// Keep using the last grid box
|
|
#define FAR_EDGE_OR_BOX 2
|
|
#else
|
|
// Just use the grid far edge
|
|
#define FAR_EDGE_OR_BOX 1
|
|
#endif
|
|
|
|
if (last_x != x) {
|
|
last_x = x;
|
|
ratio_x = x * ABL_BG_FACTOR(X_AXIS);
|
|
const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
|
|
ratio_x -= gx; // Subtract whole to get the ratio within the grid box
|
|
|
|
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
// Beyond the grid maintain height at grid edges
|
|
NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
|
|
#endif
|
|
|
|
gridx = gx;
|
|
nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
|
|
}
|
|
|
|
if (last_y != y || last_gridx != gridx) {
|
|
|
|
if (last_y != y) {
|
|
last_y = y;
|
|
ratio_y = y * ABL_BG_FACTOR(Y_AXIS);
|
|
const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
|
|
ratio_y -= gy;
|
|
|
|
#if DISABLED(EXTRAPOLATE_BEYOND_GRID)
|
|
// Beyond the grid maintain height at grid edges
|
|
NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
|
|
#endif
|
|
|
|
gridy = gy;
|
|
nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
|
|
}
|
|
|
|
if (last_gridx != gridx || last_gridy != gridy) {
|
|
last_gridx = gridx;
|
|
last_gridy = gridy;
|
|
// Z at the box corners
|
|
z1 = ABL_BG_GRID(gridx, gridy); // left-front
|
|
d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
|
|
z3 = ABL_BG_GRID(nextx, gridy); // right-front
|
|
d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
|
|
}
|
|
|
|
// Bilinear interpolate. Needed since y or gridx has changed.
|
|
L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
|
|
const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
|
|
|
|
D = R - L;
|
|
}
|
|
|
|
const float offset = L + ratio_x * D; // the offset almost always changes
|
|
|
|
/*
|
|
static float last_offset = 0;
|
|
if (FABS(last_offset - offset) > 0.2) {
|
|
SERIAL_ECHOPGM("Sudden Shift at ");
|
|
SERIAL_ECHOPAIR("x=", x);
|
|
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
|
|
SERIAL_ECHOPAIR(" y=", y);
|
|
SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
|
|
SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
|
|
SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
|
|
SERIAL_ECHOPAIR(" z1=", z1);
|
|
SERIAL_ECHOPAIR(" z2=", z2);
|
|
SERIAL_ECHOPAIR(" z3=", z3);
|
|
SERIAL_ECHOLNPAIR(" z4=", z4);
|
|
SERIAL_ECHOPAIR(" L=", L);
|
|
SERIAL_ECHOPAIR(" R=", R);
|
|
SERIAL_ECHOLNPAIR(" offset=", offset);
|
|
}
|
|
last_offset = offset;
|
|
//*/
|
|
|
|
return offset;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
/**
|
|
* Recalculate factors used for delta kinematics whenever
|
|
* settings have been changed (e.g., by M665).
|
|
*/
|
|
void recalc_delta_settings(float radius, float diagonal_rod, float tower_angle_trim[ABC]) {
|
|
const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
|
|
drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
|
|
delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]); // front left tower
|
|
delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + tower_angle_trim[A_AXIS])) * (radius + trt[A_AXIS]);
|
|
delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]); // front right tower
|
|
delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + tower_angle_trim[B_AXIS])) * (radius + trt[B_AXIS]);
|
|
delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]); // back middle tower
|
|
delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + tower_angle_trim[C_AXIS])) * (radius + trt[C_AXIS]);
|
|
delta_diagonal_rod_2_tower[A_AXIS] = sq(diagonal_rod + drt[A_AXIS]);
|
|
delta_diagonal_rod_2_tower[B_AXIS] = sq(diagonal_rod + drt[B_AXIS]);
|
|
delta_diagonal_rod_2_tower[C_AXIS] = sq(diagonal_rod + drt[C_AXIS]);
|
|
}
|
|
|
|
#if ENABLED(DELTA_FAST_SQRT)
|
|
/**
|
|
* Fast inverse sqrt from Quake III Arena
|
|
* See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
|
|
*/
|
|
float Q_rsqrt(float number) {
|
|
long i;
|
|
float x2, y;
|
|
const float threehalfs = 1.5f;
|
|
x2 = number * 0.5f;
|
|
y = number;
|
|
i = * ( long * ) &y; // evil floating point bit level hacking
|
|
i = 0x5F3759DF - ( i >> 1 ); // what the f***?
|
|
y = * ( float * ) &i;
|
|
y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
|
|
// y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
|
|
return y;
|
|
}
|
|
|
|
#define _SQRT(n) (1.0f / Q_rsqrt(n))
|
|
|
|
#else
|
|
|
|
#define _SQRT(n) SQRT(n)
|
|
|
|
#endif
|
|
|
|
/**
|
|
* Delta Inverse Kinematics
|
|
*
|
|
* Calculate the tower positions for a given logical
|
|
* position, storing the result in the delta[] array.
|
|
*
|
|
* This is an expensive calculation, requiring 3 square
|
|
* roots per segmented linear move, and strains the limits
|
|
* of a Mega2560 with a Graphical Display.
|
|
*
|
|
* Suggested optimizations include:
|
|
*
|
|
* - Disable the home_offset (M206) and/or position_shift (G92)
|
|
* features to remove up to 12 float additions.
|
|
*
|
|
* - Use a fast-inverse-sqrt function and add the reciprocal.
|
|
* (see above)
|
|
*/
|
|
|
|
// Macro to obtain the Z position of an individual tower
|
|
#define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
|
|
delta_diagonal_rod_2_tower[T] - HYPOT2( \
|
|
delta_tower[T][X_AXIS] - raw[X_AXIS], \
|
|
delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
|
|
) \
|
|
)
|
|
|
|
#define DELTA_RAW_IK() do { \
|
|
delta[A_AXIS] = DELTA_Z(A_AXIS); \
|
|
delta[B_AXIS] = DELTA_Z(B_AXIS); \
|
|
delta[C_AXIS] = DELTA_Z(C_AXIS); \
|
|
}while(0)
|
|
|
|
#define DELTA_LOGICAL_IK() do { \
|
|
const float raw[XYZ] = { \
|
|
RAW_X_POSITION(logical[X_AXIS]), \
|
|
RAW_Y_POSITION(logical[Y_AXIS]), \
|
|
RAW_Z_POSITION(logical[Z_AXIS]) \
|
|
}; \
|
|
DELTA_RAW_IK(); \
|
|
}while(0)
|
|
|
|
#define DELTA_DEBUG() do { \
|
|
SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
|
|
SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
|
|
SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
|
|
SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
|
|
SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
|
|
SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
|
|
}while(0)
|
|
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
DELTA_LOGICAL_IK();
|
|
// DELTA_DEBUG();
|
|
}
|
|
|
|
/**
|
|
* Calculate the highest Z position where the
|
|
* effector has the full range of XY motion.
|
|
*/
|
|
float delta_safe_distance_from_top() {
|
|
float cartesian[XYZ] = {
|
|
LOGICAL_X_POSITION(0),
|
|
LOGICAL_Y_POSITION(0),
|
|
LOGICAL_Z_POSITION(0)
|
|
};
|
|
inverse_kinematics(cartesian);
|
|
float distance = delta[A_AXIS];
|
|
cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
|
|
inverse_kinematics(cartesian);
|
|
return FABS(distance - delta[A_AXIS]);
|
|
}
|
|
|
|
/**
|
|
* Delta Forward Kinematics
|
|
*
|
|
* See the Wikipedia article "Trilateration"
|
|
* https://en.wikipedia.org/wiki/Trilateration
|
|
*
|
|
* Establish a new coordinate system in the plane of the
|
|
* three carriage points. This system has its origin at
|
|
* tower1, with tower2 on the X axis. Tower3 is in the X-Y
|
|
* plane with a Z component of zero.
|
|
* We will define unit vectors in this coordinate system
|
|
* in our original coordinate system. Then when we calculate
|
|
* the Xnew, Ynew and Znew values, we can translate back into
|
|
* the original system by moving along those unit vectors
|
|
* by the corresponding values.
|
|
*
|
|
* Variable names matched to Marlin, c-version, and avoid the
|
|
* use of any vector library.
|
|
*
|
|
* by Andreas Hardtung 2016-06-07
|
|
* based on a Java function from "Delta Robot Kinematics V3"
|
|
* by Steve Graves
|
|
*
|
|
* The result is stored in the cartes[] array.
|
|
*/
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
|
// Create a vector in old coordinates along x axis of new coordinate
|
|
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
|
|
|
|
// Get the Magnitude of vector.
|
|
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
|
|
|
|
// Create unit vector by dividing by magnitude.
|
|
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
|
|
|
|
// Get the vector from the origin of the new system to the third point.
|
|
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
|
|
|
|
// Use the dot product to find the component of this vector on the X axis.
|
|
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
|
|
|
|
// Create a vector along the x axis that represents the x component of p13.
|
|
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
|
// Subtract the X component from the original vector leaving only Y. We use the
|
|
// variable that will be the unit vector after we scale it.
|
|
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
|
|
|
|
// The magnitude of Y component
|
|
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
|
|
|
|
// Convert to a unit vector
|
|
ey[0] /= j; ey[1] /= j; ey[2] /= j;
|
|
|
|
// The cross product of the unit x and y is the unit z
|
|
// float[] ez = vectorCrossProd(ex, ey);
|
|
float ez[3] = {
|
|
ex[1] * ey[2] - ex[2] * ey[1],
|
|
ex[2] * ey[0] - ex[0] * ey[2],
|
|
ex[0] * ey[1] - ex[1] * ey[0]
|
|
};
|
|
|
|
// We now have the d, i and j values defined in Wikipedia.
|
|
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
|
|
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
|
|
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
|
|
|
|
// Start from the origin of the old coordinates and add vectors in the
|
|
// old coords that represent the Xnew, Ynew and Znew to find the point
|
|
// in the old system.
|
|
cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
|
|
cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
|
|
cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
|
|
}
|
|
|
|
void forward_kinematics_DELTA(float point[ABC]) {
|
|
forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
/**
|
|
* Get the stepper positions in the cartes[] array.
|
|
* Forward kinematics are applied for DELTA and SCARA.
|
|
*
|
|
* The result is in the current coordinate space with
|
|
* leveling applied. The coordinates need to be run through
|
|
* unapply_leveling to obtain the "ideal" coordinates
|
|
* suitable for current_position, etc.
|
|
*/
|
|
void get_cartesian_from_steppers() {
|
|
#if ENABLED(DELTA)
|
|
forward_kinematics_DELTA(
|
|
stepper.get_axis_position_mm(A_AXIS),
|
|
stepper.get_axis_position_mm(B_AXIS),
|
|
stepper.get_axis_position_mm(C_AXIS)
|
|
);
|
|
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
|
|
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
|
|
cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
|
|
#elif IS_SCARA
|
|
forward_kinematics_SCARA(
|
|
stepper.get_axis_position_degrees(A_AXIS),
|
|
stepper.get_axis_position_degrees(B_AXIS)
|
|
);
|
|
cartes[X_AXIS] += LOGICAL_X_POSITION(0);
|
|
cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
|
|
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
#else
|
|
cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
|
|
cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
|
|
cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Set the current_position for an axis based on
|
|
* the stepper positions, removing any leveling that
|
|
* may have been applied.
|
|
*/
|
|
void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
|
get_cartesian_from_steppers();
|
|
#if PLANNER_LEVELING
|
|
planner.unapply_leveling(cartes);
|
|
#endif
|
|
if (axis == ALL_AXES)
|
|
COPY(current_position, cartes);
|
|
else
|
|
current_position[axis] = cartes[axis];
|
|
}
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* Prepare a mesh-leveled linear move in a Cartesian setup,
|
|
* splitting the move where it crosses mesh borders.
|
|
*/
|
|
void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
|
|
int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X)),
|
|
cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y)),
|
|
cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
|
|
cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
|
|
NOMORE(cx1, GRID_MAX_POINTS_X - 2);
|
|
NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
|
|
NOMORE(cx2, GRID_MAX_POINTS_X - 2);
|
|
NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
|
|
|
|
if (cx1 == cx2 && cy1 == cy2) {
|
|
// Start and end on same mesh square
|
|
line_to_destination(fr_mm_s);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
|
|
#define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
|
|
|
|
float normalized_dist, end[XYZE];
|
|
|
|
// Split at the left/front border of the right/top square
|
|
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
|
COPY(end, destination);
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(mbl.index_to_xpos[gcx]);
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
|
destination[Y_AXIS] = MBL_SEGMENT_END(Y);
|
|
CBI(x_splits, gcx);
|
|
}
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
|
COPY(end, destination);
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.index_to_ypos[gcy]);
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
|
destination[X_AXIS] = MBL_SEGMENT_END(X);
|
|
CBI(y_splits, gcy);
|
|
}
|
|
else {
|
|
// Already split on a border
|
|
line_to_destination(fr_mm_s);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
|
|
destination[Z_AXIS] = MBL_SEGMENT_END(Z);
|
|
destination[E_AXIS] = MBL_SEGMENT_END(E);
|
|
|
|
// Do the split and look for more borders
|
|
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
|
// Restore destination from stack
|
|
COPY(destination, end);
|
|
mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
|
|
|
|
#define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
|
|
|
|
/**
|
|
* Prepare a bilinear-leveled linear move on Cartesian,
|
|
* splitting the move where it crosses grid borders.
|
|
*/
|
|
void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
|
|
int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
|
|
cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
|
|
cx2 = CELL_INDEX(X, destination[X_AXIS]),
|
|
cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
|
|
cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
|
|
cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
|
|
cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
|
|
cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
|
|
|
|
if (cx1 == cx2 && cy1 == cy2) {
|
|
// Start and end on same mesh square
|
|
line_to_destination(fr_mm_s);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
|
|
#define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
|
|
|
|
float normalized_dist, end[XYZE];
|
|
|
|
// Split at the left/front border of the right/top square
|
|
const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
|
|
if (cx2 != cx1 && TEST(x_splits, gcx)) {
|
|
COPY(end, destination);
|
|
destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx);
|
|
normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
|
|
destination[Y_AXIS] = LINE_SEGMENT_END(Y);
|
|
CBI(x_splits, gcx);
|
|
}
|
|
else if (cy2 != cy1 && TEST(y_splits, gcy)) {
|
|
COPY(end, destination);
|
|
destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy);
|
|
normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
|
|
destination[X_AXIS] = LINE_SEGMENT_END(X);
|
|
CBI(y_splits, gcy);
|
|
}
|
|
else {
|
|
// Already split on a border
|
|
line_to_destination(fr_mm_s);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
|
|
destination[Z_AXIS] = LINE_SEGMENT_END(Z);
|
|
destination[E_AXIS] = LINE_SEGMENT_END(E);
|
|
|
|
// Do the split and look for more borders
|
|
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
|
|
// Restore destination from stack
|
|
COPY(destination, end);
|
|
bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
#if IS_KINEMATIC && !UBL_DELTA
|
|
|
|
/**
|
|
* Prepare a linear move in a DELTA or SCARA setup.
|
|
*
|
|
* This calls planner.buffer_line several times, adding
|
|
* small incremental moves for DELTA or SCARA.
|
|
*/
|
|
inline bool prepare_kinematic_move_to(float ltarget[XYZE]) {
|
|
|
|
// Get the top feedrate of the move in the XY plane
|
|
const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
// If the move is only in Z/E don't split up the move
|
|
if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
|
|
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
|
return false;
|
|
}
|
|
|
|
// Fail if attempting move outside printable radius
|
|
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
|
|
|
|
// Get the cartesian distances moved in XYZE
|
|
const float difference[XYZE] = {
|
|
ltarget[X_AXIS] - current_position[X_AXIS],
|
|
ltarget[Y_AXIS] - current_position[Y_AXIS],
|
|
ltarget[Z_AXIS] - current_position[Z_AXIS],
|
|
ltarget[E_AXIS] - current_position[E_AXIS]
|
|
};
|
|
|
|
// Get the linear distance in XYZ
|
|
float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
|
|
// If the move is very short, check the E move distance
|
|
if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
|
|
|
|
// No E move either? Game over.
|
|
if (UNEAR_ZERO(cartesian_mm)) return true;
|
|
|
|
// Minimum number of seconds to move the given distance
|
|
const float seconds = cartesian_mm / _feedrate_mm_s;
|
|
|
|
// The number of segments-per-second times the duration
|
|
// gives the number of segments
|
|
uint16_t segments = delta_segments_per_second * seconds;
|
|
|
|
// For SCARA minimum segment size is 0.25mm
|
|
#if IS_SCARA
|
|
NOMORE(segments, cartesian_mm * 4);
|
|
#endif
|
|
|
|
// At least one segment is required
|
|
NOLESS(segments, 1);
|
|
|
|
// The approximate length of each segment
|
|
const float inv_segments = 1.0 / float(segments),
|
|
segment_distance[XYZE] = {
|
|
difference[X_AXIS] * inv_segments,
|
|
difference[Y_AXIS] * inv_segments,
|
|
difference[Z_AXIS] * inv_segments,
|
|
difference[E_AXIS] * inv_segments
|
|
};
|
|
|
|
// SERIAL_ECHOPAIR("mm=", cartesian_mm);
|
|
// SERIAL_ECHOPAIR(" seconds=", seconds);
|
|
// SERIAL_ECHOLNPAIR(" segments=", segments);
|
|
|
|
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
|
|
// SCARA needs to scale the feed rate from mm/s to degrees/s
|
|
const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
|
|
feed_factor = inv_segment_length * _feedrate_mm_s;
|
|
float oldA = stepper.get_axis_position_degrees(A_AXIS),
|
|
oldB = stepper.get_axis_position_degrees(B_AXIS);
|
|
#endif
|
|
|
|
// Get the logical current position as starting point
|
|
float logical[XYZE];
|
|
COPY(logical, current_position);
|
|
|
|
// Drop one segment so the last move is to the exact target.
|
|
// If there's only 1 segment, loops will be skipped entirely.
|
|
--segments;
|
|
|
|
// Calculate and execute the segments
|
|
for (uint16_t s = segments + 1; --s;) {
|
|
LOOP_XYZE(i) logical[i] += segment_distance[i];
|
|
#if ENABLED(DELTA)
|
|
DELTA_LOGICAL_IK(); // Delta can inline its kinematics
|
|
#else
|
|
inverse_kinematics(logical);
|
|
#endif
|
|
|
|
ADJUST_DELTA(logical); // Adjust Z if bed leveling is enabled
|
|
|
|
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
// Use ratio between the length of the move and the larger angle change
|
|
const float adiff = abs(delta[A_AXIS] - oldA),
|
|
bdiff = abs(delta[B_AXIS] - oldB);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
|
|
oldA = delta[A_AXIS];
|
|
oldB = delta[B_AXIS];
|
|
#else
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], _feedrate_mm_s, active_extruder);
|
|
#endif
|
|
}
|
|
|
|
// Since segment_distance is only approximate,
|
|
// the final move must be to the exact destination.
|
|
|
|
#if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
|
|
// For SCARA scale the feed rate from mm/s to degrees/s
|
|
// With segments > 1 length is 1 segment, otherwise total length
|
|
inverse_kinematics(ltarget);
|
|
ADJUST_DELTA(ltarget);
|
|
const float adiff = abs(delta[A_AXIS] - oldA),
|
|
bdiff = abs(delta[B_AXIS] - oldB);
|
|
planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], logical[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
|
|
#else
|
|
planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
|
|
#endif
|
|
|
|
return false;
|
|
}
|
|
|
|
#else // !IS_KINEMATIC || UBL_DELTA
|
|
|
|
/**
|
|
* Prepare a linear move in a Cartesian setup.
|
|
* If Mesh Bed Leveling is enabled, perform a mesh move.
|
|
*
|
|
* Returns true if the caller didn't update current_position.
|
|
*/
|
|
inline bool prepare_move_to_destination_cartesian() {
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
|
|
if (ubl.state.active) { // direct use of ubl.state.active for speed
|
|
ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
|
|
return true;
|
|
}
|
|
else
|
|
line_to_destination(fr_scaled);
|
|
#else
|
|
// Do not use feedrate_percentage for E or Z only moves
|
|
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS])
|
|
line_to_destination();
|
|
else {
|
|
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (mbl.active()) { // direct used of mbl.active() for speed
|
|
mesh_line_to_destination(fr_scaled);
|
|
return true;
|
|
}
|
|
else
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
if (planner.abl_enabled) { // direct use of abl_enabled for speed
|
|
bilinear_line_to_destination(fr_scaled);
|
|
return true;
|
|
}
|
|
else
|
|
#endif
|
|
line_to_destination(fr_scaled);
|
|
}
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
#endif // !IS_KINEMATIC || UBL_DELTA
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
/**
|
|
* Prepare a linear move in a dual X axis setup
|
|
*/
|
|
inline bool prepare_move_to_destination_dualx() {
|
|
if (active_extruder_parked) {
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_FULL_CONTROL_MODE:
|
|
break;
|
|
case DXC_AUTO_PARK_MODE:
|
|
if (current_position[E_AXIS] == destination[E_AXIS]) {
|
|
// This is a travel move (with no extrusion)
|
|
// Skip it, but keep track of the current position
|
|
// (so it can be used as the start of the next non-travel move)
|
|
if (delayed_move_time != 0xFFFFFFFFUL) {
|
|
set_current_to_destination();
|
|
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
|
|
delayed_move_time = millis();
|
|
return true;
|
|
}
|
|
}
|
|
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
|
for (uint8_t i = 0; i < 3; i++)
|
|
planner.buffer_line(
|
|
i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
|
|
i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
|
|
i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
|
|
current_position[E_AXIS],
|
|
i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
|
|
active_extruder
|
|
);
|
|
delayed_move_time = 0;
|
|
active_extruder_parked = false;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
|
|
#endif
|
|
break;
|
|
case DXC_DUPLICATION_MODE:
|
|
if (active_extruder == 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Set planner X", LOGICAL_X_POSITION(inactive_extruder_x_pos));
|
|
SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
|
|
}
|
|
#endif
|
|
// move duplicate extruder into correct duplication position.
|
|
planner.set_position_mm(
|
|
LOGICAL_X_POSITION(inactive_extruder_x_pos),
|
|
current_position[Y_AXIS],
|
|
current_position[Z_AXIS],
|
|
current_position[E_AXIS]
|
|
);
|
|
planner.buffer_line(
|
|
current_position[X_AXIS] + duplicate_extruder_x_offset,
|
|
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
|
|
planner.max_feedrate_mm_s[X_AXIS], 1
|
|
);
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
stepper.synchronize();
|
|
extruder_duplication_enabled = true;
|
|
active_extruder_parked = false;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
|
|
#endif
|
|
}
|
|
else {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
|
|
#endif
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* Prepare a single move and get ready for the next one
|
|
*
|
|
* This may result in several calls to planner.buffer_line to
|
|
* do smaller moves for DELTA, SCARA, mesh moves, etc.
|
|
*/
|
|
void prepare_move_to_destination() {
|
|
clamp_to_software_endstops(destination);
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
|
|
|
if (!DEBUGGING(DRYRUN)) {
|
|
if (destination[E_AXIS] != current_position[E_AXIS]) {
|
|
if (thermalManager.tooColdToExtrude(active_extruder)) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
}
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
if (
|
|
#if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
|
|
ubl.prepare_segmented_line_to(destination, feedrate_mm_s)
|
|
#elif IS_KINEMATIC
|
|
prepare_kinematic_move_to(destination)
|
|
#elif ENABLED(DUAL_X_CARRIAGE)
|
|
prepare_move_to_destination_dualx() || prepare_move_to_destination_cartesian()
|
|
#else
|
|
prepare_move_to_destination_cartesian()
|
|
#endif
|
|
) return;
|
|
|
|
set_current_to_destination();
|
|
}
|
|
|
|
#if ENABLED(ARC_SUPPORT)
|
|
|
|
#if N_ARC_CORRECTION < 1
|
|
#undef N_ARC_CORRECTION
|
|
#define N_ARC_CORRECTION 1
|
|
#endif
|
|
|
|
/**
|
|
* Plan an arc in 2 dimensions
|
|
*
|
|
* The arc is approximated by generating many small linear segments.
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
*/
|
|
void plan_arc(
|
|
float logical[XYZE], // Destination position
|
|
float *offset, // Center of rotation relative to current_position
|
|
uint8_t clockwise // Clockwise?
|
|
) {
|
|
#if ENABLED(CNC_WORKSPACE_PLANES)
|
|
AxisEnum p_axis, q_axis, l_axis;
|
|
switch (workspace_plane) {
|
|
case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
|
|
case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
|
|
case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
|
|
}
|
|
#else
|
|
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
|
|
#endif
|
|
|
|
// Radius vector from center to current location
|
|
float r_P = -offset[0], r_Q = -offset[1];
|
|
|
|
const float radius = HYPOT(r_P, r_Q),
|
|
center_P = current_position[p_axis] - r_P,
|
|
center_Q = current_position[q_axis] - r_Q,
|
|
rt_X = logical[p_axis] - center_P,
|
|
rt_Y = logical[q_axis] - center_Q,
|
|
linear_travel = logical[l_axis] - current_position[l_axis],
|
|
extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
// Make a circle if the angular rotation is 0 and the target is current position
|
|
if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
|
|
angular_travel = RADIANS(360);
|
|
|
|
const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
|
|
if (mm_of_travel < 0.001) return;
|
|
|
|
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
if (segments == 0) segments = 1;
|
|
|
|
/**
|
|
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
* r_T = [cos(phi) -sin(phi);
|
|
* sin(phi) cos(phi)] * r ;
|
|
*
|
|
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
*
|
|
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
* issue for CNC machines with the single precision Arduino calculations.
|
|
*
|
|
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
* This is important when there are successive arc motions.
|
|
*/
|
|
// Vector rotation matrix values
|
|
float arc_target[XYZE];
|
|
const float theta_per_segment = angular_travel / segments,
|
|
linear_per_segment = linear_travel / segments,
|
|
extruder_per_segment = extruder_travel / segments,
|
|
sin_T = theta_per_segment,
|
|
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
|
|
|
// Initialize the linear axis
|
|
arc_target[l_axis] = current_position[l_axis];
|
|
|
|
// Initialize the extruder axis
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
|
|
|
|
millis_t next_idle_ms = millis() + 200UL;
|
|
|
|
#if N_ARC_CORRECTION > 1
|
|
int8_t arc_recalc_count = N_ARC_CORRECTION;
|
|
#endif
|
|
|
|
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
thermalManager.manage_heater();
|
|
if (ELAPSED(millis(), next_idle_ms)) {
|
|
next_idle_ms = millis() + 200UL;
|
|
idle();
|
|
}
|
|
|
|
#if N_ARC_CORRECTION > 1
|
|
if (--arc_recalc_count) {
|
|
// Apply vector rotation matrix to previous r_P / 1
|
|
const float r_new_Y = r_P * sin_T + r_Q * cos_T;
|
|
r_P = r_P * cos_T - r_Q * sin_T;
|
|
r_Q = r_new_Y;
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
#if N_ARC_CORRECTION > 1
|
|
arc_recalc_count = N_ARC_CORRECTION;
|
|
#endif
|
|
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
// For now, compute both at the same time.
|
|
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
|
|
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
|
|
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
|
|
}
|
|
|
|
// Update arc_target location
|
|
arc_target[p_axis] = center_P + r_P;
|
|
arc_target[q_axis] = center_Q + r_Q;
|
|
arc_target[l_axis] += linear_per_segment;
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
|
|
}
|
|
|
|
// Ensure last segment arrives at target location.
|
|
planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
set_current_to_destination();
|
|
} // plan_arc
|
|
|
|
#endif // ARC_SUPPORT
|
|
|
|
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
|
|
|
void plan_cubic_move(const float offset[4]) {
|
|
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
|
|
|
// As far as the parser is concerned, the position is now == destination. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
set_current_to_destination();
|
|
}
|
|
|
|
#endif // BEZIER_CURVE_SUPPORT
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
|
|
void controllerFan() {
|
|
static millis_t lastMotorOn = 0, // Last time a motor was turned on
|
|
nextMotorCheck = 0; // Last time the state was checked
|
|
const millis_t ms = millis();
|
|
if (ELAPSED(ms, nextMotorCheck)) {
|
|
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
|
|
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
|
|
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
|
|
#if E_STEPPERS > 1
|
|
|| E1_ENABLE_READ == E_ENABLE_ON
|
|
#if HAS_X2_ENABLE
|
|
|| X2_ENABLE_READ == X_ENABLE_ON
|
|
#endif
|
|
#if E_STEPPERS > 2
|
|
|| E2_ENABLE_READ == E_ENABLE_ON
|
|
#if E_STEPPERS > 3
|
|
|| E3_ENABLE_READ == E_ENABLE_ON
|
|
#if E_STEPPERS > 4
|
|
|| E4_ENABLE_READ == E_ENABLE_ON
|
|
#endif // E_STEPPERS > 4
|
|
#endif // E_STEPPERS > 3
|
|
#endif // E_STEPPERS > 2
|
|
#endif // E_STEPPERS > 1
|
|
) {
|
|
lastMotorOn = ms; //... set time to NOW so the fan will turn on
|
|
}
|
|
|
|
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
|
|
uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
|
|
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
WRITE(CONTROLLER_FAN_PIN, speed);
|
|
analogWrite(CONTROLLER_FAN_PIN, speed);
|
|
}
|
|
}
|
|
|
|
#endif // USE_CONTROLLER_FAN
|
|
|
|
#if ENABLED(MORGAN_SCARA)
|
|
|
|
/**
|
|
* Morgan SCARA Forward Kinematics. Results in cartes[].
|
|
* Maths and first version by QHARLEY.
|
|
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
*/
|
|
void forward_kinematics_SCARA(const float &a, const float &b) {
|
|
|
|
float a_sin = sin(RADIANS(a)) * L1,
|
|
a_cos = cos(RADIANS(a)) * L1,
|
|
b_sin = sin(RADIANS(b)) * L2,
|
|
b_cos = cos(RADIANS(b)) * L2;
|
|
|
|
cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
|
|
cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
|
|
|
|
/*
|
|
SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
|
|
SERIAL_ECHOPAIR(" b=", b);
|
|
SERIAL_ECHOPAIR(" a_sin=", a_sin);
|
|
SERIAL_ECHOPAIR(" a_cos=", a_cos);
|
|
SERIAL_ECHOPAIR(" b_sin=", b_sin);
|
|
SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
|
|
SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
|
|
SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
|
|
//*/
|
|
}
|
|
|
|
/**
|
|
* Morgan SCARA Inverse Kinematics. Results in delta[].
|
|
*
|
|
* See http://forums.reprap.org/read.php?185,283327
|
|
*
|
|
* Maths and first version by QHARLEY.
|
|
* Integrated into Marlin and slightly restructured by Joachim Cerny.
|
|
*/
|
|
void inverse_kinematics(const float logical[XYZ]) {
|
|
|
|
static float C2, S2, SK1, SK2, THETA, PSI;
|
|
|
|
float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
|
|
sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
|
|
|
|
if (L1 == L2)
|
|
C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
|
|
else
|
|
C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
|
|
|
|
S2 = SQRT(1 - sq(C2));
|
|
|
|
// Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
|
|
SK1 = L1 + L2 * C2;
|
|
|
|
// Rotated Arm2 gives the distance from Arm1 to Arm2
|
|
SK2 = L2 * S2;
|
|
|
|
// Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
|
|
THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
|
|
|
|
// Angle of Arm2
|
|
PSI = ATAN2(S2, C2);
|
|
|
|
delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
|
|
delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
|
|
delta[C_AXIS] = logical[Z_AXIS];
|
|
|
|
/*
|
|
DEBUG_POS("SCARA IK", logical);
|
|
DEBUG_POS("SCARA IK", delta);
|
|
SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
|
|
SERIAL_ECHOPAIR(",", sy);
|
|
SERIAL_ECHOPAIR(" C2=", C2);
|
|
SERIAL_ECHOPAIR(" S2=", S2);
|
|
SERIAL_ECHOPAIR(" Theta=", THETA);
|
|
SERIAL_ECHOLNPAIR(" Phi=", PHI);
|
|
//*/
|
|
}
|
|
|
|
#endif // MORGAN_SCARA
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
|
static bool red_led = false;
|
|
static millis_t next_status_led_update_ms = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
if (ELAPSED(millis(), next_status_led_update_ms)) {
|
|
next_status_led_update_ms += 500; // Update every 0.5s
|
|
float max_temp = 0.0;
|
|
#if HAS_TEMP_BED
|
|
max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
|
|
#endif
|
|
HOTEND_LOOP()
|
|
max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
|
|
const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
|
|
if (new_led != red_led) {
|
|
red_led = new_led;
|
|
#if PIN_EXISTS(STAT_LED_RED)
|
|
WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
|
|
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
|
|
#endif
|
|
#else
|
|
WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
void handle_filament_runout() {
|
|
if (!filament_ran_out) {
|
|
filament_ran_out = true;
|
|
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
|
|
stepper.synchronize();
|
|
}
|
|
}
|
|
|
|
#endif // FILAMENT_RUNOUT_SENSOR
|
|
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
|
|
void setPwmFrequency(uint8_t pin, int val) {
|
|
val &= 0x07;
|
|
switch (digitalPinToTimer(pin)) {
|
|
#ifdef TCCR0A
|
|
#if !AVR_AT90USB1286_FAMILY
|
|
case TIMER0A:
|
|
#endif
|
|
case TIMER0B:
|
|
//_SET_CS(0, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR1A
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
//_SET_CS(1, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR2
|
|
case TIMER2:
|
|
case TIMER2:
|
|
_SET_CS(2, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR2A
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
_SET_CS(2, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR3A
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
_SET_CS(3, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR4A
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
_SET_CS(4, val);
|
|
break;
|
|
#endif
|
|
#ifdef TCCR5A
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
_SET_CS(5, val);
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // FAST_PWM_FAN
|
|
|
|
float calculate_volumetric_multiplier(const float diameter) {
|
|
if (!volumetric_enabled || diameter == 0) return 1.0;
|
|
return 1.0 / (M_PI * sq(diameter * 0.5));
|
|
}
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
}
|
|
|
|
void enable_all_steppers() {
|
|
enable_X();
|
|
enable_Y();
|
|
enable_Z();
|
|
enable_E0();
|
|
enable_E1();
|
|
enable_E2();
|
|
enable_E3();
|
|
enable_E4();
|
|
}
|
|
|
|
void disable_e_steppers() {
|
|
disable_E0();
|
|
disable_E1();
|
|
disable_E2();
|
|
disable_E3();
|
|
disable_E4();
|
|
}
|
|
|
|
void disable_all_steppers() {
|
|
disable_X();
|
|
disable_Y();
|
|
disable_Z();
|
|
disable_e_steppers();
|
|
}
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
|
|
void automatic_current_control(TMC2130Stepper &st, String axisID) {
|
|
// Check otpw even if we don't use automatic control. Allows for flag inspection.
|
|
const bool is_otpw = st.checkOT();
|
|
|
|
// Report if a warning was triggered
|
|
static bool previous_otpw = false;
|
|
if (is_otpw && !previous_otpw) {
|
|
char timestamp[10];
|
|
duration_t elapsed = print_job_timer.duration();
|
|
const bool has_days = (elapsed.value > 60*60*24L);
|
|
(void)elapsed.toDigital(timestamp, has_days);
|
|
SERIAL_ECHO(timestamp);
|
|
SERIAL_ECHOPGM(": ");
|
|
SERIAL_ECHO(axisID);
|
|
SERIAL_ECHOLNPGM(" driver overtemperature warning!");
|
|
}
|
|
previous_otpw = is_otpw;
|
|
|
|
#if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
|
|
// Return if user has not enabled current control start with M906 S1.
|
|
if (!auto_current_control) return;
|
|
|
|
/**
|
|
* Decrease current if is_otpw is true.
|
|
* Bail out if driver is disabled.
|
|
* Increase current if OTPW has not been triggered yet.
|
|
*/
|
|
uint16_t current = st.getCurrent();
|
|
if (is_otpw) {
|
|
st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
|
|
#if ENABLED(REPORT_CURRENT_CHANGE)
|
|
SERIAL_ECHO(axisID);
|
|
SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
|
|
#endif
|
|
}
|
|
|
|
else if (!st.isEnabled())
|
|
return;
|
|
|
|
else if (!is_otpw && !st.getOTPW()) {
|
|
current += CURRENT_STEP;
|
|
if (current <= AUTO_ADJUST_MAX) {
|
|
st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
|
|
#if ENABLED(REPORT_CURRENT_CHANGE)
|
|
SERIAL_ECHO(axisID);
|
|
SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
|
|
#endif
|
|
}
|
|
}
|
|
SERIAL_EOL();
|
|
#endif
|
|
}
|
|
|
|
void checkOverTemp() {
|
|
static millis_t next_cOT = 0;
|
|
if (ELAPSED(millis(), next_cOT)) {
|
|
next_cOT = millis() + 5000;
|
|
#if ENABLED(X_IS_TMC2130)
|
|
automatic_current_control(stepperX, "X");
|
|
#endif
|
|
#if ENABLED(Y_IS_TMC2130)
|
|
automatic_current_control(stepperY, "Y");
|
|
#endif
|
|
#if ENABLED(Z_IS_TMC2130)
|
|
automatic_current_control(stepperZ, "Z");
|
|
#endif
|
|
#if ENABLED(X2_IS_TMC2130)
|
|
automatic_current_control(stepperX2, "X2");
|
|
#endif
|
|
#if ENABLED(Y2_IS_TMC2130)
|
|
automatic_current_control(stepperY2, "Y2");
|
|
#endif
|
|
#if ENABLED(Z2_IS_TMC2130)
|
|
automatic_current_control(stepperZ2, "Z2");
|
|
#endif
|
|
#if ENABLED(E0_IS_TMC2130)
|
|
automatic_current_control(stepperE0, "E0");
|
|
#endif
|
|
#if ENABLED(E1_IS_TMC2130)
|
|
automatic_current_control(stepperE1, "E1");
|
|
#endif
|
|
#if ENABLED(E2_IS_TMC2130)
|
|
automatic_current_control(stepperE2, "E2");
|
|
#endif
|
|
#if ENABLED(E3_IS_TMC2130)
|
|
automatic_current_control(stepperE3, "E3");
|
|
#endif
|
|
#if ENABLED(E4_IS_TMC2130)
|
|
automatic_current_control(stepperE4, "E4");
|
|
#endif
|
|
#if ENABLED(E4_IS_TMC2130)
|
|
automatic_current_control(stepperE4);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // HAVE_TMC2130
|
|
|
|
/**
|
|
* Manage several activities:
|
|
* - Check for Filament Runout
|
|
* - Keep the command buffer full
|
|
* - Check for maximum inactive time between commands
|
|
* - Check for maximum inactive time between stepper commands
|
|
* - Check if pin CHDK needs to go LOW
|
|
* - Check for KILL button held down
|
|
* - Check for HOME button held down
|
|
* - Check if cooling fan needs to be switched on
|
|
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
|
*/
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
|
|
handle_filament_runout();
|
|
#endif
|
|
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
const millis_t ms = millis();
|
|
|
|
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
|
|
kill(PSTR(MSG_KILLED));
|
|
}
|
|
|
|
// Prevent steppers timing-out in the middle of M600
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
|
|
#define MOVE_AWAY_TEST !move_away_flag
|
|
#else
|
|
#define MOVE_AWAY_TEST true
|
|
#endif
|
|
|
|
if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
|
|
&& !ignore_stepper_queue && !planner.blocks_queued()) {
|
|
#if ENABLED(DISABLE_INACTIVE_X)
|
|
disable_X();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_Y)
|
|
disable_Y();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_Z)
|
|
disable_Z();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_E)
|
|
disable_e_steppers();
|
|
#endif
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
|
|
ubl_lcd_map_control = defer_return_to_status = false;
|
|
#endif
|
|
}
|
|
|
|
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_KILL
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 750;
|
|
if (!READ(KILL_PIN))
|
|
killCount++;
|
|
else if (killCount > 0)
|
|
killCount--;
|
|
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if (killCount >= KILL_DELAY) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
|
|
kill(PSTR(MSG_KILLED));
|
|
}
|
|
#endif
|
|
|
|
#if HAS_HOME
|
|
// Check to see if we have to home, use poor man's debouncer
|
|
// ---------------------------------------------------------
|
|
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
const int HOME_DEBOUNCE_DELAY = 2500;
|
|
if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
|
|
if (!homeDebounceCount) {
|
|
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
LCD_MESSAGEPGM(MSG_AUTO_HOME);
|
|
}
|
|
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
homeDebounceCount++;
|
|
else
|
|
homeDebounceCount = 0;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
|
|
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
|
|
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
|
|
&& thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
const bool oldstatus = E0_ENABLE_READ;
|
|
enable_E0();
|
|
#else // !SWITCHING_EXTRUDER
|
|
bool oldstatus;
|
|
switch (active_extruder) {
|
|
default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
|
|
#if E_STEPPERS > 1
|
|
case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
|
|
#if E_STEPPERS > 2
|
|
case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
|
|
#if E_STEPPERS > 3
|
|
case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
|
|
#if E_STEPPERS > 4
|
|
case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
|
|
#endif // E_STEPPERS > 4
|
|
#endif // E_STEPPERS > 3
|
|
#endif // E_STEPPERS > 2
|
|
#endif // E_STEPPERS > 1
|
|
}
|
|
#endif // !SWITCHING_EXTRUDER
|
|
|
|
previous_cmd_ms = ms; // refresh_cmd_timeout()
|
|
|
|
const float olde = current_position[E_AXIS];
|
|
current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
|
|
planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
|
|
current_position[E_AXIS] = olde;
|
|
planner.set_e_position_mm(olde);
|
|
stepper.synchronize();
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
E0_ENABLE_WRITE(oldstatus);
|
|
#else
|
|
switch (active_extruder) {
|
|
case 0: E0_ENABLE_WRITE(oldstatus); break;
|
|
#if E_STEPPERS > 1
|
|
case 1: E1_ENABLE_WRITE(oldstatus); break;
|
|
#if E_STEPPERS > 2
|
|
case 2: E2_ENABLE_WRITE(oldstatus); break;
|
|
#if E_STEPPERS > 3
|
|
case 3: E3_ENABLE_WRITE(oldstatus); break;
|
|
#if E_STEPPERS > 4
|
|
case 4: E4_ENABLE_WRITE(oldstatus); break;
|
|
#endif // E_STEPPERS > 4
|
|
#endif // E_STEPPERS > 3
|
|
#endif // E_STEPPERS > 2
|
|
#endif // E_STEPPERS > 1
|
|
}
|
|
#endif // !SWITCHING_EXTRUDER
|
|
}
|
|
#endif // EXTRUDER_RUNOUT_PREVENT
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
// handle delayed move timeout
|
|
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
|
|
// travel moves have been received so enact them
|
|
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
set_destination_to_current();
|
|
prepare_move_to_destination();
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
handle_status_leds();
|
|
#endif
|
|
|
|
#if ENABLED(HAVE_TMC2130)
|
|
checkOverTemp();
|
|
#endif
|
|
|
|
planner.check_axes_activity();
|
|
}
|
|
|
|
/**
|
|
* Standard idle routine keeps the machine alive
|
|
*/
|
|
void idle(
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
bool no_stepper_sleep/*=false*/
|
|
#endif
|
|
) {
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
Max7219_idle_tasks();
|
|
#endif // MAX7219_DEBUG
|
|
|
|
lcd_update();
|
|
|
|
host_keepalive();
|
|
|
|
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
|
auto_report_temperatures();
|
|
#endif
|
|
|
|
manage_inactivity(
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
no_stepper_sleep
|
|
#endif
|
|
);
|
|
|
|
thermalManager.manage_heater();
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
print_job_timer.tick();
|
|
#endif
|
|
|
|
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
|
buzzer.tick();
|
|
#endif
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
if (planner.blocks_queued() &&
|
|
( (blockBufferIndexRef != planner.block_buffer_head) ||
|
|
((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
|
|
blockBufferIndexRef = planner.block_buffer_head;
|
|
I2CPEM.update();
|
|
lastUpdateMillis = millis();
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Kill all activity and lock the machine.
|
|
* After this the machine will need to be reset.
|
|
*/
|
|
void kill(const char* lcd_msg) {
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
|
|
thermalManager.disable_all_heaters();
|
|
disable_all_steppers();
|
|
|
|
#if ENABLED(ULTRA_LCD)
|
|
kill_screen(lcd_msg);
|
|
#else
|
|
UNUSED(lcd_msg);
|
|
#endif
|
|
|
|
_delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
|
|
cli(); // Stop interrupts
|
|
|
|
_delay_ms(250); //Wait to ensure all interrupts routines stopped
|
|
thermalManager.disable_all_heaters(); //turn off heaters again
|
|
|
|
#ifdef ACTION_ON_KILL
|
|
SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
SET_INPUT(PS_ON_PIN);
|
|
#endif
|
|
|
|
suicide();
|
|
while (1) {
|
|
#if ENABLED(USE_WATCHDOG)
|
|
watchdog_reset();
|
|
#endif
|
|
} // Wait for reset
|
|
}
|
|
|
|
/**
|
|
* Turn off heaters and stop the print in progress
|
|
* After a stop the machine may be resumed with M999
|
|
*/
|
|
void stop() {
|
|
thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
|
|
|
|
#if ENABLED(PROBING_FANS_OFF)
|
|
if (fans_paused) fans_pause(false); // put things back the way they were
|
|
#endif
|
|
|
|
if (IsRunning()) {
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START();
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
safe_delay(350); // allow enough time for messages to get out before stopping
|
|
Running = false;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Marlin entry-point: Set up before the program loop
|
|
* - Set up the kill pin, filament runout, power hold
|
|
* - Start the serial port
|
|
* - Print startup messages and diagnostics
|
|
* - Get EEPROM or default settings
|
|
* - Initialize managers for:
|
|
* • temperature
|
|
* • planner
|
|
* • watchdog
|
|
* • stepper
|
|
* • photo pin
|
|
* • servos
|
|
* • LCD controller
|
|
* • Digipot I2C
|
|
* • Z probe sled
|
|
* • status LEDs
|
|
*/
|
|
void setup() {
|
|
|
|
#if ENABLED(MAX7219_DEBUG)
|
|
Max7219_init();
|
|
#endif
|
|
|
|
#ifdef DISABLE_JTAG
|
|
// Disable JTAG on AT90USB chips to free up pins for IO
|
|
MCUCR = 0x80;
|
|
MCUCR = 0x80;
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
setup_filrunoutpin();
|
|
#endif
|
|
|
|
setup_killpin();
|
|
|
|
setup_powerhold();
|
|
|
|
#if HAS_STEPPER_RESET
|
|
disableStepperDrivers();
|
|
#endif
|
|
|
|
MYSERIAL.begin(BAUDRATE);
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START();
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
MCUSR = 0;
|
|
|
|
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
|
|
SERIAL_EOL();
|
|
|
|
#if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
|
|
SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOLNPGM("Compiled: " __DATE__);
|
|
#endif
|
|
|
|
SERIAL_ECHO_START();
|
|
SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
|
|
SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
|
// Send "ok" after commands by default
|
|
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
|
|
|
|
// Load data from EEPROM if available (or use defaults)
|
|
// This also updates variables in the planner, elsewhere
|
|
(void)settings.load();
|
|
|
|
#if HAS_M206_COMMAND
|
|
// Initialize current position based on home_offset
|
|
COPY(current_position, home_offset);
|
|
#else
|
|
ZERO(current_position);
|
|
#endif
|
|
|
|
// Vital to init stepper/planner equivalent for current_position
|
|
SYNC_PLAN_POSITION_KINEMATIC();
|
|
|
|
thermalManager.init(); // Initialize temperature loop
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
watchdog_init();
|
|
#endif
|
|
|
|
stepper.init(); // Initialize stepper, this enables interrupts!
|
|
servo_init();
|
|
|
|
#if HAS_PHOTOGRAPH
|
|
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
|
|
#if HAS_CASE_LIGHT
|
|
case_light_on = CASE_LIGHT_DEFAULT_ON;
|
|
case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
|
|
update_case_light();
|
|
#endif
|
|
|
|
#if ENABLED(SPINDLE_LASER_ENABLE)
|
|
OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
|
|
#if SPINDLE_DIR_CHANGE
|
|
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
|
|
#endif
|
|
#if ENABLED(SPINDLE_LASER_PWM)
|
|
SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
|
|
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
endstops.enable_z_probe(false);
|
|
#endif
|
|
|
|
#if ENABLED(USE_CONTROLLER_FAN)
|
|
SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
#if HAS_STEPPER_RESET
|
|
enableStepperDrivers();
|
|
#endif
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
digipot_i2c_init();
|
|
#endif
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
dac_init();
|
|
#endif
|
|
|
|
#if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
|
|
OUT_WRITE(SOL1_PIN, LOW); // turn it off
|
|
#endif
|
|
|
|
#if HAS_HOME
|
|
SET_INPUT_PULLUP(HOME_PIN);
|
|
#endif
|
|
|
|
#if PIN_EXISTS(STAT_LED_RED)
|
|
OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
|
|
#endif
|
|
|
|
#if PIN_EXISTS(STAT_LED_BLUE)
|
|
OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
|
|
#endif
|
|
|
|
#if ENABLED(NEOPIXEL_RGBW_LED)
|
|
SET_OUTPUT(NEOPIXEL_PIN);
|
|
setup_neopixel();
|
|
#endif
|
|
|
|
#if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
|
|
SET_OUTPUT(RGB_LED_R_PIN);
|
|
SET_OUTPUT(RGB_LED_G_PIN);
|
|
SET_OUTPUT(RGB_LED_B_PIN);
|
|
#if ENABLED(RGBW_LED)
|
|
SET_OUTPUT(RGB_LED_W_PIN);
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(MK2_MULTIPLEXER)
|
|
SET_OUTPUT(E_MUX0_PIN);
|
|
SET_OUTPUT(E_MUX1_PIN);
|
|
SET_OUTPUT(E_MUX2_PIN);
|
|
#endif
|
|
|
|
#if HAS_FANMUX
|
|
fanmux_init();
|
|
#endif
|
|
|
|
lcd_init();
|
|
|
|
#ifndef CUSTOM_BOOTSCREEN_TIMEOUT
|
|
#define CUSTOM_BOOTSCREEN_TIMEOUT 2500
|
|
#endif
|
|
|
|
#if ENABLED(SHOW_BOOTSCREEN)
|
|
#if ENABLED(DOGLCD) // On DOGM the first bootscreen is already drawn
|
|
#if ENABLED(SHOW_CUSTOM_BOOTSCREEN)
|
|
safe_delay(CUSTOM_BOOTSCREEN_TIMEOUT); // Custom boot screen pause
|
|
lcd_bootscreen(); // Show Marlin boot screen
|
|
#endif
|
|
safe_delay(BOOTSCREEN_TIMEOUT); // Pause
|
|
#elif ENABLED(ULTRA_LCD)
|
|
lcd_bootscreen();
|
|
#if DISABLED(SDSUPPORT)
|
|
lcd_init();
|
|
#endif
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
|
// Initialize mixing to 100% color 1
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
|
|
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
|
|
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
|
mixing_virtual_tool_mix[t][i] = mixing_factor[i];
|
|
#endif
|
|
|
|
#if ENABLED(BLTOUCH)
|
|
// Make sure any BLTouch error condition is cleared
|
|
bltouch_command(BLTOUCH_RESET);
|
|
set_bltouch_deployed(true);
|
|
set_bltouch_deployed(false);
|
|
#endif
|
|
|
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
|
I2CPEM.init();
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
|
i2c.onReceive(i2c_on_receive);
|
|
i2c.onRequest(i2c_on_request);
|
|
#endif
|
|
|
|
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
|
setup_endstop_interrupts();
|
|
#endif
|
|
|
|
#if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
|
|
move_extruder_servo(0); // Initialize extruder servo
|
|
#endif
|
|
|
|
#if ENABLED(SWITCHING_NOZZLE)
|
|
move_nozzle_servo(0); // Initialize nozzle servo
|
|
#endif
|
|
|
|
#if ENABLED(PARKING_EXTRUDER)
|
|
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
|
pe_activate_magnet(0);
|
|
pe_activate_magnet(1);
|
|
#else
|
|
pe_deactivate_magnet(0);
|
|
pe_deactivate_magnet(1);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* The main Marlin program loop
|
|
*
|
|
* - Save or log commands to SD
|
|
* - Process available commands (if not saving)
|
|
* - Call heater manager
|
|
* - Call inactivity manager
|
|
* - Call endstop manager
|
|
* - Call LCD update
|
|
*/
|
|
void loop() {
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
card.checkautostart(false);
|
|
#endif
|
|
|
|
if (commands_in_queue) {
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
if (card.saving) {
|
|
char* command = command_queue[cmd_queue_index_r];
|
|
if (strstr_P(command, PSTR("M29"))) {
|
|
// M29 closes the file
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
|
ok_to_send();
|
|
}
|
|
else {
|
|
// Write the string from the read buffer to SD
|
|
card.write_command(command);
|
|
if (card.logging)
|
|
process_next_command(); // The card is saving because it's logging
|
|
else
|
|
ok_to_send();
|
|
}
|
|
}
|
|
else
|
|
process_next_command();
|
|
|
|
#else
|
|
|
|
process_next_command();
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
// The queue may be reset by a command handler or by code invoked by idle() within a handler
|
|
if (commands_in_queue) {
|
|
--commands_in_queue;
|
|
if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
|
|
}
|
|
}
|
|
endstops.report_state();
|
|
idle();
|
|
}
|
|
|