Marlin-Tevo-Tarantula/Marlin/Marlin.h
2015-04-04 03:47:25 -07:00

314 lines
9.2 KiB
C

// Tonokip RepRap firmware rewrite based off of Hydra-mmm firmware.
// License: GPL
#ifndef MARLIN_H
#define MARLIN_H
#define FORCE_INLINE __attribute__((always_inline)) inline
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>
#include <util/delay.h>
#include <avr/pgmspace.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>
#include "fastio.h"
#include "Configuration.h"
#if (ARDUINO >= 100)
#include "Arduino.h"
#else
#include "WProgram.h"
#endif
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
#define RADIANS(d) ((d)*M_PI/180.0)
#define DEGREES(r) ((d)*180.0/M_PI)
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
#ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p) + 0xA0)
#endif
#ifdef AT90USB
#include "HardwareSerial.h"
#endif
#include "MarlinSerial.h"
#ifndef cbi
#define cbi(sfr, bit) (_SFR_BYTE(sfr) &= ~_BV(bit))
#endif
#ifndef sbi
#define sbi(sfr, bit) (_SFR_BYTE(sfr) |= _BV(bit))
#endif
#include "WString.h"
#ifdef AT90USB
#ifdef BTENABLED
#define MYSERIAL bt
#else
#define MYSERIAL Serial
#endif // BTENABLED
#else
#define MYSERIAL MSerial
#endif
#define SERIAL_CHAR(x) MYSERIAL.write(x)
#define SERIAL_EOL SERIAL_CHAR('\n')
#define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x)
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x)
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y)
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x))
#define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x),MYSERIAL.write('\n'); }while(0)
#define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x)),MYSERIAL.write('\n'); }while(0)
extern const char errormagic[] PROGMEM;
extern const char echomagic[] PROGMEM;
#define SERIAL_ERROR_START serialprintPGM(errormagic)
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHO_START serialprintPGM(echomagic)
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHOPAIR(name,value) do{ serial_echopair_P(PSTR(name),(value)); }while(0)
void serial_echopair_P(const char *s_P, float v);
void serial_echopair_P(const char *s_P, double v);
void serial_echopair_P(const char *s_P, unsigned long v);
// Things to write to serial from Program memory. Saves 400 to 2k of RAM.
FORCE_INLINE void serialprintPGM(const char *str) {
char ch;
while ((ch = pgm_read_byte(str))) {
MYSERIAL.write(ch);
str++;
}
}
void get_command();
void process_commands();
void manage_inactivity(bool ignore_stepper_queue=false);
#if defined(DUAL_X_CARRIAGE) && HAS_X_ENABLE && HAS_X2_ENABLE
#define enable_x() do { X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); } while (0)
#define disable_x() do { X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; } while (0)
#elif HAS_X_ENABLE
#define enable_x() X_ENABLE_WRITE( X_ENABLE_ON)
#define disable_x() { X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }
#else
#define enable_x() ;
#define disable_x() ;
#endif
#if HAS_Y_ENABLE
#ifdef Y_DUAL_STEPPER_DRIVERS
#define enable_y() { Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#else
#define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON)
#define disable_y() { Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }
#endif
#else
#define enable_y() ;
#define disable_y() ;
#endif
#if HAS_Z_ENABLE
#ifdef Z_DUAL_STEPPER_DRIVERS
#define enable_z() { Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#else
#define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON)
#define disable_z() { Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }
#endif
#else
#define enable_z() ;
#define disable_z() ;
#endif
#if HAS_E0_ENABLE
#define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e0() /* nothing */
#define disable_e0() /* nothing */
#endif
#if (EXTRUDERS > 1) && HAS_E1_ENABLE
#define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e1() /* nothing */
#define disable_e1() /* nothing */
#endif
#if (EXTRUDERS > 2) && HAS_E2_ENABLE
#define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e2() /* nothing */
#define disable_e2() /* nothing */
#endif
#if (EXTRUDERS > 3) && HAS_E3_ENABLE
#define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e3() /* nothing */
#define disable_e3() /* nothing */
#endif
/**
* The axis order in all axis related arrays is X, Y, Z, E
*/
#define NUM_AXIS 4
/**
* Axis indices as enumerated constants
*
* A_AXIS and B_AXIS are used by COREXY printers
* X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
*/
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
void enable_all_steppers();
void disable_all_steppers();
void FlushSerialRequestResend();
void ClearToSend();
void get_coordinates();
#ifdef DELTA
void calculate_delta(float cartesian[3]);
#ifdef ENABLE_AUTO_BED_LEVELING
extern int delta_grid_spacing[2];
void adjust_delta(float cartesian[3]);
#endif
extern float delta[3];
#endif
#ifdef SCARA
void calculate_delta(float cartesian[3]);
void calculate_SCARA_forward_Transform(float f_scara[3]);
#endif
void reset_bed_level();
void prepare_move();
void kill();
void Stop();
#ifdef FILAMENT_RUNOUT_SENSOR
void filrunout();
#endif
bool IsStopped();
bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
void enquecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]);
void refresh_cmd_timeout();
#ifdef FAST_PWM_FAN
void setPwmFrequency(uint8_t pin, int val);
#endif
#ifndef CRITICAL_SECTION_START
#define CRITICAL_SECTION_START unsigned char _sreg = SREG; cli();
#define CRITICAL_SECTION_END SREG = _sreg;
#endif
extern float homing_feedrate[];
extern bool axis_relative_modes[];
extern int feedmultiply;
extern bool volumetric_enabled;
extern int extruder_multiply[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually
extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder.
extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner
extern float current_position[NUM_AXIS];
extern float home_offset[3];
#ifdef DELTA
extern float endstop_adj[3];
extern float delta_radius;
extern float delta_diagonal_rod;
extern float delta_segments_per_second;
void recalc_delta_settings(float radius, float diagonal_rod);
#elif defined(Z_DUAL_ENDSTOPS)
extern float z_endstop_adj;
#endif
#ifdef SCARA
extern float axis_scaling[3]; // Build size scaling
#endif
extern float min_pos[3];
extern float max_pos[3];
extern bool axis_known_position[3];
#ifdef ENABLE_AUTO_BED_LEVELING
extern float zprobe_zoffset;
#endif
extern int fanSpeed;
#ifdef BARICUDA
extern int ValvePressure;
extern int EtoPPressure;
#endif
#ifdef FAN_SOFT_PWM
extern unsigned char fanSpeedSoftPwm;
#endif
#ifdef FILAMENT_SENSOR
extern float filament_width_nominal; //holds the theoretical filament diameter ie., 3.00 or 1.75
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
extern float filament_width_meas; //holds the filament diameter as accurately measured
extern signed char measurement_delay[]; //ring buffer to delay measurement
extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code
extern float delay_dist; //delay distance counter
extern int meas_delay_cm; //delay distance
#endif
#ifdef FWRETRACT
extern bool autoretract_enabled;
extern bool retracted[EXTRUDERS];
extern float retract_length, retract_length_swap, retract_feedrate, retract_zlift;
extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate;
#endif
extern unsigned long starttime;
extern unsigned long stoptime;
// Handling multiple extruders pins
extern uint8_t active_extruder;
#ifdef DIGIPOT_I2C
extern void digipot_i2c_set_current( int channel, float current );
extern void digipot_i2c_init();
#endif
extern void calculate_volumetric_multipliers();
#endif //MARLIN_H