Marlin-Tevo-Tarantula/Marlin/ubl.h
2017-11-23 22:30:22 -06:00

350 lines
15 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H
#include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "Marlin.h"
#include "planner.h"
#include "math.h"
#include "vector_3.h"
#include "configuration_store.h"
#define UBL_VERSION "1.01"
#define UBL_OK false
#define UBL_ERR true
#define USE_NOZZLE_AS_REFERENCE 0
#define USE_PROBE_AS_REFERENCE 1
// ubl_motion.cpp
void debug_current_and_destination(const char * const title);
// ubl_G29.cpp
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
// External references
char *ftostr43sign(const float&, char);
void home_all_axes();
extern uint8_t ubl_cnt;
///////////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
void lcd_quick_feedback();
#endif
#define MESH_X_DIST (float(MESH_MAX_X - (MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
#define MESH_Y_DIST (float(MESH_MAX_Y - (MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
class unified_bed_leveling {
private:
static int g29_verbose_level,
g29_phase_value,
g29_repetition_cnt,
g29_storage_slot,
g29_map_type;
static bool g29_c_flag, g29_x_flag, g29_y_flag;
static float g29_x_pos, g29_y_pos,
g29_card_thickness,
g29_constant;
#if HAS_BED_PROBE
static int g29_grid_size;
#endif
static float measure_point_with_encoder();
static float measure_business_card_thickness(float);
static bool g29_parameter_parsing();
static void find_mean_mesh_height();
static void shift_mesh_height();
static void probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
static void g29_what_command();
static void g29_eeprom_dump();
static void g29_compare_current_mesh_to_stored_mesh();
static void fine_tune_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map);
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
static void smart_fill_mesh();
public:
static void echo_name();
static void report_state();
static void save_ubl_active_state_and_disable();
static void restore_ubl_active_state_and_leave();
static void display_map(const int);
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16]);
static mesh_index_pair find_furthest_invalid_mesh_point();
static void reset();
static void invalidate();
static void set_all_mesh_points_to_value(const float);
static bool sanity_check();
static void G29() _O0; // O0 for no optimization
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
static int8_t storage_slot;
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
MESH_MIN_X + 0 * (MESH_X_DIST), MESH_MIN_X + 1 * (MESH_X_DIST),
MESH_MIN_X + 2 * (MESH_X_DIST), MESH_MIN_X + 3 * (MESH_X_DIST),
MESH_MIN_X + 4 * (MESH_X_DIST), MESH_MIN_X + 5 * (MESH_X_DIST),
MESH_MIN_X + 6 * (MESH_X_DIST), MESH_MIN_X + 7 * (MESH_X_DIST),
MESH_MIN_X + 8 * (MESH_X_DIST), MESH_MIN_X + 9 * (MESH_X_DIST),
MESH_MIN_X + 10 * (MESH_X_DIST), MESH_MIN_X + 11 * (MESH_X_DIST),
MESH_MIN_X + 12 * (MESH_X_DIST), MESH_MIN_X + 13 * (MESH_X_DIST),
MESH_MIN_X + 14 * (MESH_X_DIST), MESH_MIN_X + 15 * (MESH_X_DIST)
};
constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
MESH_MIN_Y + 0 * (MESH_Y_DIST), MESH_MIN_Y + 1 * (MESH_Y_DIST),
MESH_MIN_Y + 2 * (MESH_Y_DIST), MESH_MIN_Y + 3 * (MESH_Y_DIST),
MESH_MIN_Y + 4 * (MESH_Y_DIST), MESH_MIN_Y + 5 * (MESH_Y_DIST),
MESH_MIN_Y + 6 * (MESH_Y_DIST), MESH_MIN_Y + 7 * (MESH_Y_DIST),
MESH_MIN_Y + 8 * (MESH_Y_DIST), MESH_MIN_Y + 9 * (MESH_Y_DIST),
MESH_MIN_Y + 10 * (MESH_Y_DIST), MESH_MIN_Y + 11 * (MESH_Y_DIST),
MESH_MIN_Y + 12 * (MESH_Y_DIST), MESH_MIN_Y + 13 * (MESH_Y_DIST),
MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
};
#if ENABLED(ULTIPANEL)
static bool lcd_map_control;
#endif
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
unified_bed_leveling();
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
static int8_t get_cell_index_x(const float &x) {
const int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
}
static int8_t find_closest_y_index(const float &y) {
const int8_t py = (y - (MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
}
/**
* z2 --|
* z0 | |
* | | + (z2-z1)
* z1 | | |
* ---+-------------+--------+-- --|
* a1 a0 a2
* |<---delta_a---------->|
*
* calc_z0 is the basis for all the Mesh Based correction. It is used to
* find the expected Z Height at a position between two known Z-Height locations.
*
* It is fairly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
}
/**
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
*/
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &rx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(rx0=", rx0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
return NAN;
}
const float xratio = (rx0 - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi];
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
}
//
// See comments above for z_correction_for_x_on_horizontal_mesh_line
//
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ry0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 2)) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ry0=", ry0);
SERIAL_ECHOPAIR(", xi=", xi);
SERIAL_ECHOPAIR(", y1_i=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
return NAN;
}
const float yratio = (ry0 - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i];
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
}
/**
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
static float get_z_correction(const float &rx0, const float &ry0) {
const int8_t cx = get_cell_index_x(rx0),
cy = get_cell_index_y(ry0);
if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 2)) {
SERIAL_ECHOPAIR("? in get_z_correction(rx0=", rx0);
SERIAL_ECHOPAIR(", ry0=", ry0);
SERIAL_CHAR(')');
SERIAL_EOL();
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return NAN;
}
const float z1 = calc_z0(rx0,
mesh_index_to_xpos(cx), z_values[cx][cy],
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
const float z2 = calc_z0(rx0,
mesh_index_to_xpos(cx), z_values[cx][cy + 1],
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
float z0 = calc_z0(ry0,
mesh_index_to_ypos(cy), z1,
mesh_index_to_ypos(cy + 1), z2);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR(" raw get_z_correction(", rx0);
SERIAL_CHAR(',');
SERIAL_ECHO(ry0);
SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_ECHO_F(z0, 6);
SERIAL_EOL();
}
#endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in ubl.z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", rx0);
SERIAL_CHAR(',');
SERIAL_ECHO(ry0);
SERIAL_CHAR(')');
SERIAL_EOL();
}
#endif
}
return z0;
}
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : MESH_MIN_X + i * (MESH_X_DIST);
}
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : MESH_MIN_Y + i * (MESH_Y_DIST);
}
static bool prepare_segmented_line_to(const float rtarget[XYZE], const float &feedrate);
static void line_to_destination_cartesian(const float &fr, uint8_t e);
#define _CMPZ(a,b) (z_values[a][b] == z_values[a][b+1])
#define CMPZ(a) (_CMPZ(a, 0) && _CMPZ(a, 1))
#define ZZER(a) (z_values[a][0] == 0)
FORCE_INLINE bool mesh_is_valid() {
return !(
( CMPZ(0) && CMPZ(1) && CMPZ(2) // adjacent z values all equal?
&& ZZER(0) && ZZER(1) && ZZER(2) // all zero at the edge?
)
|| isnan(z_values[0][0])
);
}
}; // class unified_bed_leveling
extern unified_bed_leveling ubl;
FORCE_INLINE void gcode_G29() { ubl.G29(); }
#endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H