Marlin-Tevo-Tarantula/Marlin/planner.h
AnHardt d0e24e0876 Adaptive screen updates for all kinds of displays
The target here is to update the screens of graphical and char base
displays as fast as possible, without draining the planner buffer too much.

For that measure the time it takes to draw and transfer one
(partial) screen to the display. Build a max. value from that.
Because ther can be large differences, depending on how much the display
updates are interrupted, the max value is decreased by one ms/s. This way
it can shrink again.
On the other side we keep track on how much time it takes to empty the
planner buffer.
Now we draw the next (partial) display update only then, when we do not
drain the planner buffer to much. We draw only when the time in the
buffer is two times larger than a update takes, or the buffer is empty anyway.

When we have begun to draw a screen we do not wait until the next 100ms
time slot comes. We draw the next partial screen as fast as possible, but
give the system a chance to refill the buffers a bit.

When we see, during drawing a screen, the screen contend has changed,
we stop the current draw and begin to draw the new content from the top.
2016-12-13 18:44:34 +01:00

477 lines
16 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* planner.h
*
* Buffer movement commands and manage the acceleration profile plan
*
* Derived from Grbl
* Copyright (c) 2009-2011 Simen Svale Skogsrud
*/
#ifndef PLANNER_H
#define PLANNER_H
#include "types.h"
#include "enum.h"
#include "Marlin.h"
#if HAS_ABL
#include "vector_3.h"
#endif
enum BlockFlagBit {
// Recalculate trapezoids on entry junction. For optimization.
BLOCK_BIT_RECALCULATE,
// Nominal speed always reached.
// i.e., The segment is long enough, so the nominal speed is reachable if accelerating
// from a safe speed (in consideration of jerking from zero speed).
BLOCK_BIT_NOMINAL_LENGTH,
// Start from a halt at the start of this block, respecting the maximum allowed jerk.
BLOCK_BIT_START_FROM_FULL_HALT,
// The block is busy
BLOCK_BIT_BUSY
};
enum BlockFlag {
BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY)
};
/**
* struct block_t
*
* A single entry in the planner buffer.
* Tracks linear movement over multiple axes.
*
* The "nominal" values are as-specified by gcode, and
* may never actually be reached due to acceleration limits.
*/
typedef struct {
uint8_t flag; // Block flags (See BlockFlag enum above)
unsigned char active_extruder; // The extruder to move (if E move)
// Fields used by the Bresenham algorithm for tracing the line
int32_t steps[NUM_AXIS]; // Step count along each axis
uint32_t step_event_count; // The number of step events required to complete this block
#if ENABLED(MIXING_EXTRUDER)
uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
#endif
int32_t accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after, // The index of the step event on which to start decelerating
acceleration_rate; // The acceleration rate used for acceleration calculation
uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
// Advance extrusion
#if ENABLED(LIN_ADVANCE)
bool use_advance_lead;
uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
#elif ENABLED(ADVANCE)
int32_t advance_rate;
volatile int32_t initial_advance;
volatile int32_t final_advance;
float advance;
#endif
// Fields used by the motion planner to manage acceleration
float nominal_speed, // The nominal speed for this block in mm/sec
entry_speed, // Entry speed at previous-current junction in mm/sec
max_entry_speed, // Maximum allowable junction entry speed in mm/sec
millimeters, // The total travel of this block in mm
acceleration; // acceleration mm/sec^2
// Settings for the trapezoid generator
uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
initial_rate, // The jerk-adjusted step rate at start of block
final_rate, // The minimal rate at exit
acceleration_steps_per_s2; // acceleration steps/sec^2
#if FAN_COUNT > 0
uint16_t fan_speed[FAN_COUNT];
#endif
#if ENABLED(BARICUDA)
uint32_t valve_pressure, e_to_p_pressure;
#endif
uint32_t segment_time;
} block_t;
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
class Planner {
public:
/**
* A ring buffer of moves described in steps
*/
static block_t block_buffer[BLOCK_BUFFER_SIZE];
static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
block_buffer_tail;
#if ENABLED(DISTINCT_E_FACTORS)
static uint8_t last_extruder; // Respond to extruder change
#endif
static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
axis_steps_per_mm[XYZE_N],
steps_to_mm[XYZE_N];
static unsigned long max_acceleration_steps_per_s2[XYZE_N],
max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
static millis_t min_segment_time;
static float min_feedrate_mm_s,
acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
max_jerk[XYZE], // The largest speed change requiring no acceleration
min_travel_feedrate_mm_s;
#if HAS_ABL
static bool abl_enabled; // Flag that bed leveling is enabled
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
#endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static float z_fade_height, inverse_z_fade_height;
#endif
private:
/**
* The current position of the tool in absolute steps
* Recalculated if any axis_steps_per_mm are changed by gcode
*/
static long position[NUM_AXIS];
/**
* Speed of previous path line segment
*/
static float previous_speed[NUM_AXIS];
/**
* Nominal speed of previous path line segment
*/
static float previous_nominal_speed;
/**
* Limit where 64bit math is necessary for acceleration calculation
*/
static uint32_t cutoff_long;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER)
/**
* Counters to manage disabling inactive extruders
*/
static uint8_t g_uc_extruder_last_move[EXTRUDERS];
#endif // DISABLE_INACTIVE_EXTRUDER
#ifdef XY_FREQUENCY_LIMIT
// Used for the frequency limit
#define MAX_FREQ_TIME long(1000000.0/XY_FREQUENCY_LIMIT)
// Old direction bits. Used for speed calculations
static unsigned char old_direction_bits;
// Segment times (in µs). Used for speed calculations
static long axis_segment_time[2][3];
#endif
#if ENABLED(LIN_ADVANCE)
static float position_float[NUM_AXIS];
static float extruder_advance_k;
#endif
#if ENABLED(ULTRA_LCD)
volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
#endif
public:
/**
* Instance Methods
*/
Planner();
void init();
/**
* Static (class) Methods
*/
static void reset_acceleration_rates();
static void refresh_positioning();
// Manage fans, paste pressure, etc.
static void check_axes_activity();
/**
* Number of moves currently in the planner
*/
static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
#if PLANNER_LEVELING
#define ARG_X float lx
#define ARG_Y float ly
#define ARG_Z float lz
/**
* Apply leveling to transform a cartesian position
* as it will be given to the planner and steppers.
*/
static void apply_leveling(float &lx, float &ly, float &lz);
static void apply_leveling(float logical[XYZ]) { apply_leveling(logical[X_AXIS], logical[Y_AXIS], logical[Z_AXIS]); }
static void unapply_leveling(float logical[XYZ]);
#else
#define ARG_X const float &lx
#define ARG_Y const float &ly
#define ARG_Z const float &lz
#endif
#if ENABLED(LIN_ADVANCE)
void advance_M905(const float &k);
#endif
/**
* Planner::_buffer_line
*
* Add a new direct linear movement to the buffer.
*
* Leveling and kinematics should be applied ahead of this.
*
* a,b,c,e - target position in mm or degrees
* fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder
*/
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
/**
* Add a new linear movement to the buffer.
* The target is NOT translated to delta/scara
*
* Leveling will be applied to input on cartesians.
* Kinematic machines should call buffer_line_kinematic (for leveled moves).
* (Cartesians may also call buffer_line_kinematic.)
*
* lx,ly,lz,e - target position in mm or degrees
* fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder
*/
static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
#if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling(lx, ly, lz);
#endif
_buffer_line(lx, ly, lz, e, fr_mm_s, extruder);
}
/**
* Add a new linear movement to the buffer.
* The target is cartesian, it's translated to delta/scara if
* needed.
*
* target - x,y,z,e CARTESIAN target in mm
* fr_mm_s - (target) speed of the move (mm/s)
* extruder - target extruder
*/
static FORCE_INLINE void buffer_line_kinematic(const float target[XYZE], const float &fr_mm_s, const uint8_t extruder) {
#if PLANNER_LEVELING
float pos[XYZ] = { target[X_AXIS], target[Y_AXIS], target[Z_AXIS] };
apply_leveling(pos);
#else
const float * const pos = target;
#endif
#if IS_KINEMATIC
inverse_kinematics(pos);
_buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], target[E_AXIS], fr_mm_s, extruder);
#else
_buffer_line(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], target[E_AXIS], fr_mm_s, extruder);
#endif
}
/**
* Set the planner.position and individual stepper positions.
* Used by G92, G28, G29, and other procedures.
*
* Multiplies by axis_steps_per_mm[] and does necessary conversion
* for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
*
* Clears previous speed values.
*/
static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
#if PLANNER_LEVELING && IS_CARTESIAN
apply_leveling(lx, ly, lz);
#endif
_set_position_mm(lx, ly, lz, e);
}
static void set_position_mm_kinematic(const float position[NUM_AXIS]);
static void set_position_mm(const AxisEnum axis, const float &v);
static FORCE_INLINE void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
static FORCE_INLINE void set_e_position_mm(const float &e) {
set_position_mm(AxisEnum(E_AXIS
#if ENABLED(DISTINCT_E_FACTORS)
+ active_extruder
#endif
), e);
}
/**
* Sync from the stepper positions. (e.g., after an interrupted move)
*/
static void sync_from_steppers();
/**
* Does the buffer have any blocks queued?
*/
static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
/**
* "Discards" the block and "releases" the memory.
* Called when the current block is no longer needed.
*/
static void discard_current_block() {
if (blocks_queued())
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
/**
* The current block. NULL if the buffer is empty.
* This also marks the block as busy.
*/
static block_t* get_current_block() {
if (blocks_queued()) {
block_t* block = &block_buffer[block_buffer_tail];
#if ENABLED(ULTRA_LCD)
block_buffer_runtime_us -= block->segment_time; //We can't be sure how long an active block will take, so don't count it.
#endif
SBI(block->flag, BLOCK_BIT_BUSY);
return block;
}
else {
#if ENABLED(ULTRA_LCD)
clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
#endif
return NULL;
}
}
#if ENABLED(ULTRA_LCD)
static millis_t block_buffer_runtime() {
CRITICAL_SECTION_START
millis_t bbru = block_buffer_runtime_us;
CRITICAL_SECTION_END
return bbru;
}
static void clear_block_buffer_runtime(){
CRITICAL_SECTION_START
block_buffer_runtime_us = 0;
CRITICAL_SECTION_END
}
#endif
#if ENABLED(AUTOTEMP)
static float autotemp_max;
static float autotemp_min;
static float autotemp_factor;
static bool autotemp_enabled;
static void getHighESpeed();
static void autotemp_M104_M109();
#endif
private:
/**
* Get the index of the next / previous block in the ring buffer
*/
static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
/**
* Calculate the distance (not time) it takes to accelerate
* from initial_rate to target_rate using the given acceleration:
*/
static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
}
/**
* Return the point at which you must start braking (at the rate of -'acceleration') if
* you start at 'initial_rate', accelerate (until reaching the point), and want to end at
* 'final_rate' after traveling 'distance'.
*
* This is used to compute the intersection point between acceleration and deceleration
* in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
*/
static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
if (accel == 0) return 0; // accel was 0, set intersection distance to 0
return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
}
/**
* Calculate the maximum allowable speed at this point, in order
* to reach 'target_velocity' using 'acceleration' within a given
* 'distance'.
*/
static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
return sqrt(sq(target_velocity) - 2 * accel * distance);
}
static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
static void reverse_pass_kernel(block_t* const current, const block_t *next);
static void forward_pass_kernel(const block_t *previous, block_t* const current);
static void reverse_pass();
static void forward_pass();
static void recalculate_trapezoids();
static void recalculate();
};
extern Planner planner;
#endif // PLANNER_H