569 lines
17 KiB
C++
569 lines
17 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* MarlinSerial.cpp - Hardware serial library for Wiring
|
|
* Copyright (c) 2006 Nicholas Zambetti. All right reserved.
|
|
*
|
|
* Modified 23 November 2006 by David A. Mellis
|
|
* Modified 28 September 2010 by Mark Sproul
|
|
* Modified 14 February 2016 by Andreas Hardtung (added tx buffer)
|
|
* Modified 01 October 2017 by Eduardo José Tagle (added XON/XOFF)
|
|
*/
|
|
|
|
// Disable HardwareSerial.cpp to support chips without a UART (Attiny, etc.)
|
|
|
|
#include "MarlinConfig.h"
|
|
|
|
#if !(defined(__AVR__) && defined(USBCON)) && (defined(UBRRH) || defined(UBRR0H) || defined(UBRR1H) || defined(UBRR2H) || defined(UBRR3H))
|
|
|
|
#include "MarlinSerial.h"
|
|
#include "Marlin.h"
|
|
|
|
struct ring_buffer_r {
|
|
unsigned char buffer[RX_BUFFER_SIZE];
|
|
volatile ring_buffer_pos_t head, tail;
|
|
};
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
struct ring_buffer_t {
|
|
unsigned char buffer[TX_BUFFER_SIZE];
|
|
volatile uint8_t head, tail;
|
|
};
|
|
#endif
|
|
|
|
#if UART_PRESENT(SERIAL_PORT)
|
|
ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
|
|
#if TX_BUFFER_SIZE > 0
|
|
ring_buffer_t tx_buffer = { { 0 }, 0, 0 };
|
|
static bool _written;
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
constexpr uint8_t XON_XOFF_CHAR_SENT = 0x80; // XON / XOFF Character was sent
|
|
constexpr uint8_t XON_XOFF_CHAR_MASK = 0x1F; // XON / XOFF character to send
|
|
// XON / XOFF character definitions
|
|
constexpr uint8_t XON_CHAR = 17;
|
|
constexpr uint8_t XOFF_CHAR = 19;
|
|
uint8_t xon_xoff_state = XON_XOFF_CHAR_SENT | XON_CHAR;
|
|
#endif
|
|
|
|
void clear_command_queue();
|
|
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
uint8_t rx_dropped_bytes = 0;
|
|
#endif
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
ring_buffer_pos_t rx_max_enqueued = 0;
|
|
#endif
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
#include "emergency_parser.h"
|
|
#endif
|
|
|
|
FORCE_INLINE void store_rxd_char() {
|
|
const ring_buffer_pos_t h = rx_buffer.head,
|
|
i = (ring_buffer_pos_t)(h + 1) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
// If the character is to be stored at the index just before the tail
|
|
// (such that the head would advance to the current tail), the buffer is
|
|
// critical, so don't write the character or advance the head.
|
|
const char c = M_UDRx;
|
|
if (i != rx_buffer.tail) {
|
|
rx_buffer.buffer[h] = c;
|
|
rx_buffer.head = i;
|
|
}
|
|
else {
|
|
#if ENABLED(SERIAL_STATS_DROPPED_RX)
|
|
if (!++rx_dropped_bytes) ++rx_dropped_bytes;
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
|
|
// calculate count of bytes stored into the RX buffer
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
// Keep track of the maximum count of enqueued bytes
|
|
NOLESS(rx_max_enqueued, rx_count);
|
|
#endif
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
|
|
// for high speed transfers, we can use XON/XOFF protocol to do
|
|
// software handshake and avoid overruns.
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
|
|
|
|
// calculate count of bytes stored into the RX buffer
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
|
|
// if we are above 12.5% of RX buffer capacity, send XOFF before
|
|
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
|
|
// let the host react and stop sending bytes. This translates to 13mS
|
|
// propagation time.
|
|
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
|
|
// If TX interrupts are disabled and data register is empty,
|
|
// just write the byte to the data register and be done. This
|
|
// shortcut helps significantly improve the effective datarate
|
|
// at high (>500kbit/s) bitrates, where interrupt overhead
|
|
// becomes a slowdown.
|
|
if (!TEST(M_UCSRxB, M_UDRIEx) && TEST(M_UCSRxA, M_UDREx)) {
|
|
// Send an XOFF character
|
|
M_UDRx = XOFF_CHAR;
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
// location". This makes sure flush() won't return until the bytes
|
|
// actually got written
|
|
SBI(M_UCSRxA, M_TXCx);
|
|
// And remember it was sent
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
}
|
|
else {
|
|
// TX interrupts disabled, but buffer still not empty ... or
|
|
// TX interrupts enabled. Reenable TX ints and schedule XOFF
|
|
// character to be sent
|
|
#if TX_BUFFER_SIZE > 0
|
|
SBI(M_UCSRxB, M_UDRIEx);
|
|
xon_xoff_state = XOFF_CHAR;
|
|
#else
|
|
// We are not using TX interrupts, we will have to send this manually
|
|
while (!TEST(M_UCSRxA, M_UDREx)) {/* nada */}
|
|
M_UDRx = XOFF_CHAR;
|
|
// And remember we already sent it
|
|
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
#endif // SERIAL_XON_XOFF
|
|
|
|
#if ENABLED(EMERGENCY_PARSER)
|
|
emergency_parser.update(c);
|
|
#endif
|
|
}
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
|
|
FORCE_INLINE void _tx_udr_empty_irq(void) {
|
|
// If interrupts are enabled, there must be more data in the output
|
|
// buffer.
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
// Do a priority insertion of an XON/XOFF char, if needed.
|
|
const uint8_t state = xon_xoff_state;
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
M_UDRx = state & XON_XOFF_CHAR_MASK;
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
}
|
|
else
|
|
#endif
|
|
{ // Send the next byte
|
|
const uint8_t t = tx_buffer.tail, c = tx_buffer.buffer[t];
|
|
tx_buffer.tail = (t + 1) & (TX_BUFFER_SIZE - 1);
|
|
M_UDRx = c;
|
|
}
|
|
|
|
// clear the TXC bit -- "can be cleared by writing a one to its bit
|
|
// location". This makes sure flush() won't return until the bytes
|
|
// actually got written
|
|
SBI(M_UCSRxA, M_TXCx);
|
|
|
|
// Disable interrupts if the buffer is empty
|
|
if (tx_buffer.head == tx_buffer.tail)
|
|
CBI(M_UCSRxB, M_UDRIEx);
|
|
}
|
|
|
|
#ifdef M_USARTx_UDRE_vect
|
|
ISR(M_USARTx_UDRE_vect) { _tx_udr_empty_irq(); }
|
|
#endif
|
|
|
|
#endif // TX_BUFFER_SIZE
|
|
|
|
#ifdef M_USARTx_RX_vect
|
|
ISR(M_USARTx_RX_vect) { store_rxd_char(); }
|
|
#endif
|
|
|
|
// Public Methods
|
|
|
|
void MarlinSerial::begin(const long baud) {
|
|
uint16_t baud_setting;
|
|
bool useU2X = true;
|
|
|
|
#if F_CPU == 16000000UL && SERIAL_PORT == 0
|
|
// Hard-coded exception for compatibility with the bootloader shipped
|
|
// with the Duemilanove and previous boards, and the firmware on the
|
|
// 8U2 on the Uno and Mega 2560.
|
|
if (baud == 57600) useU2X = false;
|
|
#endif
|
|
|
|
if (useU2X) {
|
|
M_UCSRxA = _BV(M_U2Xx);
|
|
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
|
}
|
|
else {
|
|
M_UCSRxA = 0;
|
|
baud_setting = (F_CPU / 8 / baud - 1) / 2;
|
|
}
|
|
|
|
// assign the baud_setting, a.k.a. ubbr (USART Baud Rate Register)
|
|
M_UBRRxH = baud_setting >> 8;
|
|
M_UBRRxL = baud_setting;
|
|
|
|
SBI(M_UCSRxB, M_RXENx);
|
|
SBI(M_UCSRxB, M_TXENx);
|
|
SBI(M_UCSRxB, M_RXCIEx);
|
|
#if TX_BUFFER_SIZE > 0
|
|
CBI(M_UCSRxB, M_UDRIEx);
|
|
_written = false;
|
|
#endif
|
|
}
|
|
|
|
void MarlinSerial::end() {
|
|
CBI(M_UCSRxB, M_RXENx);
|
|
CBI(M_UCSRxB, M_TXENx);
|
|
CBI(M_UCSRxB, M_RXCIEx);
|
|
CBI(M_UCSRxB, M_UDRIEx);
|
|
}
|
|
|
|
void MarlinSerial::checkRx(void) {
|
|
if (TEST(M_UCSRxA, M_RXCx)) {
|
|
CRITICAL_SECTION_START;
|
|
store_rxd_char();
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
}
|
|
|
|
int MarlinSerial::peek(void) {
|
|
CRITICAL_SECTION_START;
|
|
const int v = rx_buffer.head == rx_buffer.tail ? -1 : rx_buffer.buffer[rx_buffer.tail];
|
|
CRITICAL_SECTION_END;
|
|
return v;
|
|
}
|
|
|
|
int MarlinSerial::read(void) {
|
|
int v;
|
|
CRITICAL_SECTION_START;
|
|
const ring_buffer_pos_t t = rx_buffer.tail;
|
|
if (rx_buffer.head == t)
|
|
v = -1;
|
|
else {
|
|
v = rx_buffer.buffer[t];
|
|
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
// Get count of bytes in the RX buffer
|
|
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
|
|
// When below 10% of RX buffer capacity, send XON before
|
|
// running out of RX buffer bytes
|
|
if (rx_count < (RX_BUFFER_SIZE) / 10) {
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
CRITICAL_SECTION_END; // End critical section before returning!
|
|
writeNoHandshake(XON_CHAR);
|
|
return v;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
CRITICAL_SECTION_END;
|
|
return v;
|
|
}
|
|
|
|
ring_buffer_pos_t MarlinSerial::available(void) {
|
|
CRITICAL_SECTION_START;
|
|
const ring_buffer_pos_t h = rx_buffer.head, t = rx_buffer.tail;
|
|
CRITICAL_SECTION_END;
|
|
return (ring_buffer_pos_t)(RX_BUFFER_SIZE + h - t) & (RX_BUFFER_SIZE - 1);
|
|
}
|
|
|
|
void MarlinSerial::flush(void) {
|
|
// Don't change this order of operations. If the RX interrupt occurs between
|
|
// reading rx_buffer_head and updating rx_buffer_tail, the previous rx_buffer_head
|
|
// may be written to rx_buffer_tail, making the buffer appear full rather than empty.
|
|
CRITICAL_SECTION_START;
|
|
rx_buffer.head = rx_buffer.tail = 0;
|
|
clear_command_queue();
|
|
CRITICAL_SECTION_END;
|
|
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
|
|
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
|
|
writeNoHandshake(XON_CHAR);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if TX_BUFFER_SIZE > 0
|
|
uint8_t MarlinSerial::availableForWrite(void) {
|
|
CRITICAL_SECTION_START;
|
|
const uint8_t h = tx_buffer.head, t = tx_buffer.tail;
|
|
CRITICAL_SECTION_END;
|
|
return (uint8_t)(TX_BUFFER_SIZE + h - t) & (TX_BUFFER_SIZE - 1);
|
|
}
|
|
|
|
void MarlinSerial::write(const uint8_t c) {
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
const uint8_t state = xon_xoff_state;
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
// Send 2 chars: XON/XOFF, then a user-specified char
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
}
|
|
#endif
|
|
writeNoHandshake(c);
|
|
}
|
|
|
|
void MarlinSerial::writeNoHandshake(const uint8_t c) {
|
|
_written = true;
|
|
CRITICAL_SECTION_START;
|
|
bool emty = (tx_buffer.head == tx_buffer.tail);
|
|
CRITICAL_SECTION_END;
|
|
|
|
// If the buffer and the data register is empty, just write the byte
|
|
// to the data register and be done. This shortcut helps
|
|
// significantly improve the effective datarate at high (>
|
|
// 500kbit/s) bitrates, where interrupt overhead becomes a slowdown.
|
|
if (emty && TEST(M_UCSRxA, M_UDREx)) {
|
|
CRITICAL_SECTION_START;
|
|
M_UDRx = c;
|
|
SBI(M_UCSRxA, M_TXCx);
|
|
CRITICAL_SECTION_END;
|
|
return;
|
|
}
|
|
const uint8_t i = (tx_buffer.head + 1) & (TX_BUFFER_SIZE - 1);
|
|
|
|
// If the output buffer is full, there's nothing for it other than to
|
|
// wait for the interrupt handler to empty it a bit
|
|
while (i == tx_buffer.tail) {
|
|
if (!TEST(SREG, SREG_I)) {
|
|
// Interrupts are disabled, so we'll have to poll the data
|
|
// register empty flag ourselves. If it is set, pretend an
|
|
// interrupt has happened and call the handler to free up
|
|
// space for us.
|
|
if (TEST(M_UCSRxA, M_UDREx))
|
|
_tx_udr_empty_irq();
|
|
}
|
|
else {
|
|
// nop, the interrupt handler will free up space for us
|
|
}
|
|
}
|
|
|
|
tx_buffer.buffer[tx_buffer.head] = c;
|
|
{ CRITICAL_SECTION_START;
|
|
tx_buffer.head = i;
|
|
SBI(M_UCSRxB, M_UDRIEx);
|
|
CRITICAL_SECTION_END;
|
|
}
|
|
return;
|
|
}
|
|
|
|
void MarlinSerial::flushTX(void) {
|
|
// TX
|
|
// If we have never written a byte, no need to flush. This special
|
|
// case is needed since there is no way to force the TXC (transmit
|
|
// complete) bit to 1 during initialization
|
|
if (!_written)
|
|
return;
|
|
|
|
while (TEST(M_UCSRxB, M_UDRIEx) || !TEST(M_UCSRxA, M_TXCx)) {
|
|
if (!TEST(SREG, SREG_I) && TEST(M_UCSRxB, M_UDRIEx))
|
|
// Interrupts are globally disabled, but the DR empty
|
|
// interrupt should be enabled, so poll the DR empty flag to
|
|
// prevent deadlock
|
|
if (TEST(M_UCSRxA, M_UDREx))
|
|
_tx_udr_empty_irq();
|
|
}
|
|
// If we get here, nothing is queued anymore (DRIE is disabled) and
|
|
// the hardware finished tranmission (TXC is set).
|
|
}
|
|
|
|
#else // TX_BUFFER_SIZE == 0
|
|
|
|
void MarlinSerial::write(const uint8_t c) {
|
|
#if ENABLED(SERIAL_XON_XOFF)
|
|
// Do a priority insertion of an XON/XOFF char, if needed.
|
|
const uint8_t state = xon_xoff_state;
|
|
if (!(state & XON_XOFF_CHAR_SENT)) {
|
|
writeNoHandshake(state & XON_XOFF_CHAR_MASK);
|
|
xon_xoff_state = state | XON_XOFF_CHAR_SENT;
|
|
}
|
|
#endif
|
|
writeNoHandshake(c);
|
|
}
|
|
|
|
void MarlinSerial::writeNoHandshake(uint8_t c) {
|
|
while (!TEST(M_UCSRxA, M_UDREx)) {/* nada */}
|
|
M_UDRx = c;
|
|
}
|
|
|
|
#endif // TX_BUFFER_SIZE == 0
|
|
|
|
/**
|
|
* Imports from print.h
|
|
*/
|
|
|
|
void MarlinSerial::print(char c, int base) {
|
|
print((long)c, base);
|
|
}
|
|
|
|
void MarlinSerial::print(unsigned char b, int base) {
|
|
print((unsigned long)b, base);
|
|
}
|
|
|
|
void MarlinSerial::print(int n, int base) {
|
|
print((long)n, base);
|
|
}
|
|
|
|
void MarlinSerial::print(unsigned int n, int base) {
|
|
print((unsigned long)n, base);
|
|
}
|
|
|
|
void MarlinSerial::print(long n, int base) {
|
|
if (base == 0)
|
|
write(n);
|
|
else if (base == 10) {
|
|
if (n < 0) {
|
|
print('-');
|
|
n = -n;
|
|
}
|
|
printNumber(n, 10);
|
|
}
|
|
else
|
|
printNumber(n, base);
|
|
}
|
|
|
|
void MarlinSerial::print(unsigned long n, int base) {
|
|
if (base == 0) write(n);
|
|
else printNumber(n, base);
|
|
}
|
|
|
|
void MarlinSerial::print(double n, int digits) {
|
|
printFloat(n, digits);
|
|
}
|
|
|
|
void MarlinSerial::println(void) {
|
|
print('\r');
|
|
print('\n');
|
|
}
|
|
|
|
void MarlinSerial::println(const String& s) {
|
|
print(s);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(const char c[]) {
|
|
print(c);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(char c, int base) {
|
|
print(c, base);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(unsigned char b, int base) {
|
|
print(b, base);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(int n, int base) {
|
|
print(n, base);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(unsigned int n, int base) {
|
|
print(n, base);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(long n, int base) {
|
|
print(n, base);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(unsigned long n, int base) {
|
|
print(n, base);
|
|
println();
|
|
}
|
|
|
|
void MarlinSerial::println(double n, int digits) {
|
|
print(n, digits);
|
|
println();
|
|
}
|
|
|
|
// Private Methods
|
|
|
|
void MarlinSerial::printNumber(unsigned long n, uint8_t base) {
|
|
if (n) {
|
|
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
|
|
int8_t i = 0;
|
|
while (n) {
|
|
buf[i++] = n % base;
|
|
n /= base;
|
|
}
|
|
while (i--)
|
|
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
|
|
}
|
|
else
|
|
print('0');
|
|
}
|
|
|
|
void MarlinSerial::printFloat(double number, uint8_t digits) {
|
|
// Handle negative numbers
|
|
if (number < 0.0) {
|
|
print('-');
|
|
number = -number;
|
|
}
|
|
|
|
// Round correctly so that print(1.999, 2) prints as "2.00"
|
|
double rounding = 0.5;
|
|
for (uint8_t i = 0; i < digits; ++i)
|
|
rounding *= 0.1;
|
|
|
|
number += rounding;
|
|
|
|
// Extract the integer part of the number and print it
|
|
unsigned long int_part = (unsigned long)number;
|
|
double remainder = number - (double)int_part;
|
|
print(int_part);
|
|
|
|
// Print the decimal point, but only if there are digits beyond
|
|
if (digits) {
|
|
print('.');
|
|
// Extract digits from the remainder one at a time
|
|
while (digits--) {
|
|
remainder *= 10.0;
|
|
int toPrint = int(remainder);
|
|
print(toPrint);
|
|
remainder -= toPrint;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Preinstantiate
|
|
MarlinSerial customizedSerial;
|
|
|
|
#endif // !(__AVR__ && USBCON) && (UBRRH || UBRR0H || UBRR1H || UBRR2H || UBRR3H)
|
|
|
|
// For AT90USB targets use the UART for BT interfacing
|
|
#if defined(__AVR__) && defined(USBCON) && ENABLED(BLUETOOTH)
|
|
HardwareSerial bluetoothSerial;
|
|
#endif
|