/**
* Marlin 3D Printer Firmware
* Copyright (c) 2022 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*
*/
#pragma once
#define CONFIG_EXAMPLES_DIR "Longer/LK5"
/**
* Configuration.h
*
* Basic settings such as:
*
* - Type of electronics
* - Type of temperature sensor
* - Printer geometry
* - Endstop configuration
* - LCD controller
* - Extra features
*
* Advanced settings can be found in Configuration_adv.h
*/
#define CONFIGURATION_H_VERSION 02010300
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
/**
* Here are some useful links to help get your machine configured and calibrated:
*
* Example Configs: https://github.com/MarlinFirmware/Configurations/branches/all
*
* Průša Calculator: https://blog.prusa3d.com/calculator_3416/
*
* Calibration Guides: https://reprap.org/wiki/Calibration
* https://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
* https://web.archive.org/web/20220907014303/sites.google.com/site/repraplogphase/calibration-of-your-reprap
* https://youtu.be/wAL9d7FgInk
* https://teachingtechyt.github.io/calibration.html
*
* Calibration Objects: https://www.thingiverse.com/thing:5573
* https://www.thingiverse.com/thing:1278865
*/
// @section info
// Author info of this build printed to the host during boot and M115
#define STRING_CONFIG_H_AUTHOR "(Longer3D, Hobi, tpruvot, Dust)" // Original author or contributor.
//#define CUSTOM_VERSION_FILE Version.h // Path from the root directory (no quotes)
// @section machine
// Choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_LONGER3D_LKx_PRO
#define LONGER_LK5 // Specify standard wiring for the LK5
#endif
// @section serial
/**
* Select the serial port on the board to use for communication with the host.
* This allows the connection of wireless adapters (for instance) to non-default port pins.
* Serial port -1 is the USB emulated serial port, if available.
* Note: The first serial port (-1 or 0) will always be used by the Arduino bootloader.
*
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
*/
#define SERIAL_PORT 0
/**
* Serial Port Baud Rate
* This is the default communication speed for all serial ports.
* Set the baud rate defaults for additional serial ports below.
*
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
* You may try up to 1000000 to speed up SD file transfer.
*
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000]
*/
#define BAUDRATE 115200
//#define BAUD_RATE_GCODE // Enable G-code M575 to set the baud rate
/**
* Select a secondary serial port on the board to use for communication with the host.
* Currently Ethernet (-2) is only supported on Teensy 4.1 boards.
* :[-2, -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
*/
//#define SERIAL_PORT_2 -1
//#define BAUDRATE_2 250000 // :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] Enable to override BAUDRATE
/**
* Select a third serial port on the board to use for communication with the host.
* Currently supported for AVR, DUE, SAMD51, LPC1768/9, STM32/STM32F1/HC32, and Teensy 4.x
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
*/
//#define SERIAL_PORT_3 1
//#define BAUDRATE_3 250000 // :[2400, 9600, 19200, 38400, 57600, 115200, 250000, 500000, 1000000] Enable to override BAUDRATE
/**
* Select a serial port to communicate with RS485 protocol
* :[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
*/
//#define RS485_SERIAL_PORT 1
#ifdef RS485_SERIAL_PORT
//#define M485_PROTOCOL 1 // Check your host for protocol compatibility
//#define RS485_BUS_BUFFER_SIZE 128
#endif
// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH
// Name displayed in the LCD "Ready" message and Info menu
#define CUSTOM_MACHINE_NAME "Longer3D LK5"
// Printer's unique ID, used by some programs to differentiate between machines.
// Choose your own or use a service like https://www.uuidgenerator.net/version4
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// @section stepper drivers
/**
* Stepper Drivers
*
* These settings allow Marlin to tune stepper driver timing and enable advanced options for
* stepper drivers that support them. You may also override timing options in Configuration_adv.h.
*
* Use TMC2208/TMC2208_STANDALONE for TMC2225 drivers and TMC2209/TMC2209_STANDALONE for TMC2226 drivers.
*
* Options: A4988, A5984, DRV8825, LV8729, TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC2660, TMC2660_STANDALONE, TMC5130, TMC5130_STANDALONE,
* TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/
#define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988
#define Z_DRIVER_TYPE A4988
//#define X2_DRIVER_TYPE A4988
//#define Y2_DRIVER_TYPE A4988
//#define Z2_DRIVER_TYPE A4988
//#define Z3_DRIVER_TYPE A4988
//#define Z4_DRIVER_TYPE A4988
//#define I_DRIVER_TYPE A4988
//#define J_DRIVER_TYPE A4988
//#define K_DRIVER_TYPE A4988
//#define U_DRIVER_TYPE A4988
//#define V_DRIVER_TYPE A4988
//#define W_DRIVER_TYPE A4988
#define E0_DRIVER_TYPE A4988
//#define E1_DRIVER_TYPE A4988
//#define E2_DRIVER_TYPE A4988
//#define E3_DRIVER_TYPE A4988
//#define E4_DRIVER_TYPE A4988
//#define E5_DRIVER_TYPE A4988
//#define E6_DRIVER_TYPE A4988
//#define E7_DRIVER_TYPE A4988
/**
* Additional Axis Settings
*
* Define AXISn_ROTATES for all axes that rotate or pivot.
* Rotational axis coordinates are expressed in degrees.
*
* AXISn_NAME defines the letter used to refer to the axis in (most) G-code commands.
* By convention the names and roles are typically:
* 'A' : Rotational axis parallel to X
* 'B' : Rotational axis parallel to Y
* 'C' : Rotational axis parallel to Z
* 'U' : Secondary linear axis parallel to X
* 'V' : Secondary linear axis parallel to Y
* 'W' : Secondary linear axis parallel to Z
*
* Regardless of these settings the axes are internally named I, J, K, U, V, W.
*/
#ifdef I_DRIVER_TYPE
#define AXIS4_NAME 'A' // :['A', 'B', 'C', 'U', 'V', 'W']
#define AXIS4_ROTATES
#endif
#ifdef J_DRIVER_TYPE
#define AXIS5_NAME 'B' // :['B', 'C', 'U', 'V', 'W']
#define AXIS5_ROTATES
#endif
#ifdef K_DRIVER_TYPE
#define AXIS6_NAME 'C' // :['C', 'U', 'V', 'W']
#define AXIS6_ROTATES
#endif
#ifdef U_DRIVER_TYPE
#define AXIS7_NAME 'U' // :['U', 'V', 'W']
//#define AXIS7_ROTATES
#endif
#ifdef V_DRIVER_TYPE
#define AXIS8_NAME 'V' // :['V', 'W']
//#define AXIS8_ROTATES
#endif
#ifdef W_DRIVER_TYPE
#define AXIS9_NAME 'W' // :['W']
//#define AXIS9_ROTATES
#endif
// @section extruder
// This defines the number of extruders
// :[0, 1, 2, 3, 4, 5, 6, 7, 8]
#define EXTRUDERS 1
// Generally expected filament diameter (1.75, 2.85, 3.0, ...). Used for Volumetric, Filament Width Sensor, etc.
#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75
// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE
// Save and restore temperature and fan speed on tool-change.
// Set standby for the unselected tool with M104/106/109 T...
#if ENABLED(SINGLENOZZLE)
//#define SINGLENOZZLE_STANDBY_TEMP
//#define SINGLENOZZLE_STANDBY_FAN
#endif
// A dual extruder that uses a single stepper motor
//#define SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_EXTRUDER)
#define SWITCHING_EXTRUDER_SERVO_NR 0
#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1[, E2, E3]
#if EXTRUDERS > 3
#define SWITCHING_EXTRUDER_E23_SERVO_NR 1
#endif
#endif
// Switch extruders by bumping the toolhead. Requires EVENT_GCODE_TOOLCHANGE_#.
//#define MECHANICAL_SWITCHING_EXTRUDER
/**
* A dual-nozzle that uses a servomotor to raise/lower one (or both) of the nozzles.
* Can be combined with SWITCHING_EXTRUDER.
*/
//#define SWITCHING_NOZZLE
#if ENABLED(SWITCHING_NOZZLE)
#define SWITCHING_NOZZLE_SERVO_NR 0
//#define SWITCHING_NOZZLE_E1_SERVO_NR 1 // If two servos are used, the index of the second
#define SWITCHING_NOZZLE_SERVO_ANGLES { 0, 90 } // A pair of angles for { E0, E1 }.
// For Dual Servo use two pairs: { { lower, raise }, { lower, raise } }
#define SWITCHING_NOZZLE_SERVO_DWELL 2500 // Dwell time to wait for servo to make physical move
#endif
// Switch nozzles by bumping the toolhead. Requires EVENT_GCODE_TOOLCHANGE_#.
//#define MECHANICAL_SWITCHING_NOZZLE
/**
* Two separate X-carriages with extruders that connect to a moving part
* via a solenoid docking mechanism. Requires SOL1_PIN and SOL2_PIN.
*/
//#define PARKING_EXTRUDER
/**
* Two separate X-carriages with extruders that connect to a moving part
* via a magnetic docking mechanism using movements and no solenoid
*
* project : https://www.thingiverse.com/thing:3080893
* movements : https://youtu.be/0xCEiG9VS3k
* https://youtu.be/Bqbcs0CU2FE
*/
//#define MAGNETIC_PARKING_EXTRUDER
#if ANY(PARKING_EXTRUDER, MAGNETIC_PARKING_EXTRUDER)
#define PARKING_EXTRUDER_PARKING_X { -78, 184 } // X positions for parking the extruders
#define PARKING_EXTRUDER_GRAB_DISTANCE 1 // (mm) Distance to move beyond the parking point to grab the extruder
#if ENABLED(PARKING_EXTRUDER)
#define PARKING_EXTRUDER_SOLENOIDS_INVERT // If enabled, the solenoid is NOT magnetized with applied voltage
#define PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE LOW // LOW or HIGH pin signal energizes the coil
#define PARKING_EXTRUDER_SOLENOIDS_DELAY 250 // (ms) Delay for magnetic field. No delay if 0 or not defined.
//#define MANUAL_SOLENOID_CONTROL // Manual control of docking solenoids with M380 S / M381
#elif ENABLED(MAGNETIC_PARKING_EXTRUDER)
#define MPE_FAST_SPEED 9000 // (mm/min) Speed for travel before last distance point
#define MPE_SLOW_SPEED 4500 // (mm/min) Speed for last distance travel to park and couple
#define MPE_TRAVEL_DISTANCE 10 // (mm) Last distance point
#define MPE_COMPENSATION 0 // Offset Compensation -1 , 0 , 1 (multiplier) only for coupling
#endif
#endif
/**
* Switching Toolhead
*
* Support for swappable and dockable toolheads, such as
* the E3D Tool Changer. Toolheads are locked with a servo.
*/
//#define SWITCHING_TOOLHEAD
/**
* Magnetic Switching Toolhead
*
* Support swappable and dockable toolheads with a magnetic
* docking mechanism using movement and no servo.
*/
//#define MAGNETIC_SWITCHING_TOOLHEAD
/**
* Electromagnetic Switching Toolhead
*
* Parking for CoreXY / HBot kinematics.
* Toolheads are parked at one edge and held with an electromagnet.
* Supports more than 2 Toolheads. See https://youtu.be/JolbsAKTKf4
*/
//#define ELECTROMAGNETIC_SWITCHING_TOOLHEAD
#if ANY(SWITCHING_TOOLHEAD, MAGNETIC_SWITCHING_TOOLHEAD, ELECTROMAGNETIC_SWITCHING_TOOLHEAD)
#define SWITCHING_TOOLHEAD_Y_POS 235 // (mm) Y position of the toolhead dock
#define SWITCHING_TOOLHEAD_Y_SECURITY 10 // (mm) Security distance Y axis
#define SWITCHING_TOOLHEAD_Y_CLEAR 60 // (mm) Minimum distance from dock for unobstructed X axis
#define SWITCHING_TOOLHEAD_X_POS { 215, 0 } // (mm) X positions for parking the extruders
#if ENABLED(SWITCHING_TOOLHEAD)
#define SWITCHING_TOOLHEAD_SERVO_NR 2 // Index of the servo connector
#define SWITCHING_TOOLHEAD_SERVO_ANGLES { 0, 180 } // (degrees) Angles for Lock, Unlock
#elif ENABLED(MAGNETIC_SWITCHING_TOOLHEAD)
#define SWITCHING_TOOLHEAD_Y_RELEASE 5 // (mm) Security distance Y axis
#define SWITCHING_TOOLHEAD_X_SECURITY { 90, 150 } // (mm) Security distance X axis (T0,T1)
//#define PRIME_BEFORE_REMOVE // Prime the nozzle before release from the dock
#if ENABLED(PRIME_BEFORE_REMOVE)
#define SWITCHING_TOOLHEAD_PRIME_MM 20 // (mm) Extruder prime length
#define SWITCHING_TOOLHEAD_RETRACT_MM 10 // (mm) Retract after priming length
#define SWITCHING_TOOLHEAD_PRIME_FEEDRATE 300 // (mm/min) Extruder prime feedrate
#define SWITCHING_TOOLHEAD_RETRACT_FEEDRATE 2400 // (mm/min) Extruder retract feedrate
#endif
#elif ENABLED(ELECTROMAGNETIC_SWITCHING_TOOLHEAD)
#define SWITCHING_TOOLHEAD_Z_HOP 2 // (mm) Z raise for switching
#endif
#endif
/**
* "Mixing Extruder"
* - Adds G-codes M163 and M164 to set and "commit" the current mix factors.
* - Extends the stepping routines to move multiple steppers in proportion to the mix.
* - Optional support for Repetier Firmware's 'M164 S' supporting virtual tools.
* - This implementation supports up to two mixing extruders.
* - Enable DIRECT_MIXING_IN_G1 for M165 and mixing in G1 (from Pia Taubert's reference implementation).
*/
//#define MIXING_EXTRUDER
#if ENABLED(MIXING_EXTRUDER)
#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder
#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164
//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands
//#define GRADIENT_MIX // Support for gradient mixing with M166 and LCD
//#define MIXING_PRESETS // Assign 8 default V-tool presets for 2 or 3 MIXING_STEPPERS
#if ENABLED(GRADIENT_MIX)
//#define GRADIENT_VTOOL // Add M166 T to use a V-tool index as a Gradient alias
#endif
#endif
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X { 0.0, 20.00 } // (mm) relative X-offset for each nozzle
//#define HOTEND_OFFSET_Y { 0.0, 5.00 } // (mm) relative Y-offset for each nozzle
//#define HOTEND_OFFSET_Z { 0.0, 0.00 } // (mm) relative Z-offset for each nozzle
// @section multi-material
/**
* Multi-Material Unit
* Set to one of these predefined models:
*
* PRUSA_MMU1 : Průša MMU1 (The "multiplexer" version)
* PRUSA_MMU2 : Průša MMU2
* PRUSA_MMU2S : Průša MMU2S (Requires MK3S extruder with motion sensor, EXTRUDERS = 5)
* PRUSA_MMU3 : Průša MMU3 (Requires MK3S extruder with motion sensor and MMU firmware version 3.x.x, EXTRUDERS = 5)
* EXTENDABLE_EMU_MMU2 : MMU with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware)
* EXTENDABLE_EMU_MMU2S : MMUS with configurable number of filaments (ERCF, SMuFF or similar with Průša MMU2 compatible firmware)
*
* Requires NOZZLE_PARK_FEATURE to park print head in case MMU unit fails.
* See additional options in Configuration_adv.h.
* :["PRUSA_MMU1", "PRUSA_MMU2", "PRUSA_MMU2S", "PRUSA_MMU3", "EXTENDABLE_EMU_MMU2", "EXTENDABLE_EMU_MMU2S"]
*/
//#define MMU_MODEL PRUSA_MMU3
// @section psu control
/**
* Power Supply Control
*
* Enable and connect the power supply to the PS_ON_PIN.
* Specify whether the power supply is active HIGH or active LOW.
*/
//#define PSU_CONTROL
#define PSU_NAME "360W 24V/15A"
#if ENABLED(PSU_CONTROL)
//#define MKS_PWC // Using the MKS PWC add-on
//#define PS_OFF_CONFIRM // Confirm dialog when power off
//#define PS_OFF_SOUND // Beep 1s when power off
#define PSU_ACTIVE_STATE LOW // Set 'LOW' for ATX, 'HIGH' for X-Box
//#define PSU_DEFAULT_OFF // Keep power off until enabled directly with M80
//#define PSU_POWERUP_DELAY 250 // (ms) Delay for the PSU to warm up to full power
//#define LED_POWEROFF_TIMEOUT 10000 // (ms) Turn off LEDs after power-off, with this amount of delay
//#define PSU_OFF_REDUNDANT // Second pin for redundant power control
//#define PSU_OFF_REDUNDANT_INVERTED // Redundant pin state is the inverse of PSU_ACTIVE_STATE
//#define PS_ON1_PIN 6 // Redundant pin required to enable power in combination with PS_ON_PIN
//#define PS_ON_EDM_PIN 8 // External Device Monitoring pins for external power control relay feedback. Fault on mismatch.
//#define PS_ON1_EDM_PIN 9
#define PS_EDM_RESPONSE 250 // (ms) Time to allow for relay action
//#define POWER_OFF_TIMER // Enable M81 D to power off after a delay
//#define POWER_OFF_WAIT_FOR_COOLDOWN // Enable M81 S to power off only after cooldown
//#define PSU_POWERUP_GCODE "M355 S1" // G-code to run after power-on (e.g., case light on)
//#define PSU_POWEROFF_GCODE "M355 S0" // G-code to run before power-off (e.g., case light off)
//#define AUTO_POWER_CONTROL // Enable automatic control of the PS_ON pin
#if ENABLED(AUTO_POWER_CONTROL)
#define AUTO_POWER_FANS // Turn on PSU for fans
#define AUTO_POWER_E_FANS // Turn on PSU for E Fans
#define AUTO_POWER_CONTROLLERFAN // Turn on PSU for Controller Fan
#define AUTO_POWER_CHAMBER_FAN // Turn on PSU for Chamber Fan
#define AUTO_POWER_COOLER_FAN // Turn on PSU for Cooler Fan
#define AUTO_POWER_SPINDLE_LASER // Turn on PSU for Spindle/Laser
#define POWER_TIMEOUT 30 // (s) Turn off power if the machine is idle for this duration
//#define POWER_OFF_DELAY 60 // (s) Delay of poweroff after M81 command. Useful to let fans run for extra time.
#endif
#if ANY(AUTO_POWER_CONTROL, POWER_OFF_WAIT_FOR_COOLDOWN)
//#define AUTO_POWER_E_TEMP 50 // (°C) PSU on if any extruder is over this temperature
//#define AUTO_POWER_CHAMBER_TEMP 30 // (°C) PSU on if the chamber is over this temperature
//#define AUTO_POWER_COOLER_TEMP 26 // (°C) PSU on if the cooler is over this temperature
#endif
#endif
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
// @section temperature
/**
* Temperature Sensors:
*
* NORMAL IS 4.7kΩ PULLUP! Hotend sensors can use 1kΩ pullup with correct resistor and table.
*
* ================================================================
* Analog Thermistors - 4.7kΩ pullup - Normal
* ================================================================
* 1 : 100kΩ EPCOS - Best choice for EPCOS thermistors
* 331 : 100kΩ Same as #1, but 3.3V scaled for MEGA
* 332 : 100kΩ Same as #1, but 3.3V scaled for DUE
* 2 : 200kΩ ATC Semitec 204GT-2
* 202 : 200kΩ Copymaster 3D
* 3 : ???Ω Mendel-parts thermistor
* 4 : 10kΩ Generic Thermistor !! DO NOT use for a hotend - it gives bad resolution at high temp. !!
* 5 : 100kΩ ATC Semitec 104GT-2/104NT-4-R025H42G - Used in ParCan, J-Head, and E3D, SliceEngineering 300°C
* 501 : 100kΩ Zonestar - Tronxy X3A
* 502 : 100kΩ Zonestar - used by hot bed in Zonestar Průša P802M
* 503 : 100kΩ Zonestar (Z8XM2) Heated Bed thermistor
* 504 : 100kΩ Zonestar P802QR2 (Part# QWG-104F-B3950) Hotend Thermistor
* 505 : 100kΩ Zonestar P802QR2 (Part# QWG-104F-3950) Bed Thermistor
* 512 : 100kΩ RPW-Ultra hotend
* 6 : 100kΩ EPCOS - Not as accurate as table #1 (created using a fluke thermocouple)
* 7 : 100kΩ Honeywell 135-104LAG-J01
* 71 : 100kΩ Honeywell 135-104LAF-J01
* 8 : 100kΩ Vishay 0603 SMD NTCS0603E3104FXT
* 9 : 100kΩ GE Sensing AL03006-58.2K-97-G1
* 10 : 100kΩ RS PRO 198-961
* 11 : 100kΩ Keenovo AC silicone mats, most Wanhao i3 machines - beta 3950, 1%
* 12 : 100kΩ Vishay 0603 SMD NTCS0603E3104FXT (#8) - calibrated for Makibox hot bed
* 13 : 100kΩ Hisens up to 300°C - for "Simple ONE" & "All In ONE" hotend - beta 3950, 1%
* 14 : 100kΩ (R25), 4092K (beta25), 4.7kΩ pull-up, bed thermistor as used in Ender-5 S1
* 15 : 100kΩ Calibrated for JGAurora A5 hotend
* 17 : 100kΩ Dagoma NTC white thermistor
* 18 : 200kΩ ATC Semitec 204GT-2 Dagoma.Fr - MKS_Base_DKU001327
* 22 : 100kΩ GTM32 Pro vB - hotend - 4.7kΩ pullup to 3.3V and 220Ω to analog input
* 23 : 100kΩ GTM32 Pro vB - bed - 4.7kΩ pullup to 3.3v and 220Ω to analog input
* 30 : 100kΩ Kis3d Silicone heating mat 200W/300W with 6mm precision cast plate (EN AW 5083) NTC100K - beta 3950
* 60 : 100kΩ Maker's Tool Works Kapton Bed Thermistor - beta 3950
* 61 : 100kΩ Formbot/Vivedino 350°C Thermistor - beta 3950
* 66 : 4.7MΩ Dyze Design / Trianglelab T-D500 500°C High Temperature Thermistor
* 67 : 500kΩ SliceEngineering 450°C Thermistor
* 68 : PT100 Smplifier board from Dyze Design
* 70 : 100kΩ bq Hephestos 2
* 75 : 100kΩ Generic Silicon Heat Pad with NTC100K MGB18-104F39050L32
* 666 : 200kΩ Einstart S custom thermistor with 10k pullup.
* 2000 : 100kΩ Ultimachine Rambo TDK NTCG104LH104KT1 NTC100K motherboard Thermistor
*
* ================================================================
* Analog Thermistors - 1kΩ pullup
* Atypical, and requires changing out the 4.7kΩ pullup for 1kΩ.
* (but gives greater accuracy and more stable PID)
* ================================================================
* 51 : 100kΩ EPCOS (1kΩ pullup)
* 52 : 200kΩ ATC Semitec 204GT-2 (1kΩ pullup)
* 55 : 100kΩ ATC Semitec 104GT-2 - Used in ParCan & J-Head (1kΩ pullup)
*
* ================================================================
* Analog Thermistors - 10kΩ pullup - Atypical
* ================================================================
* 99 : 100kΩ Found on some Wanhao i3 machines with a 10kΩ pull-up resistor
*
* ================================================================
* Analog RTDs (Pt100/Pt1000)
* ================================================================
* 110 : Pt100 with 1kΩ pullup (atypical)
* 147 : Pt100 with 4.7kΩ pullup
* 1010 : Pt1000 with 1kΩ pullup (atypical)
* 1022 : Pt1000 with 2.2kΩ pullup
* 1047 : Pt1000 with 4.7kΩ pullup (E3D)
* 20 : Pt100 with circuit in the Ultimainboard V2.x with mainboard ADC reference voltage = INA826 amplifier-board supply voltage.
* NOTE: (1) Must use an ADC input with no pullup. (2) Some INA826 amplifiers are unreliable at 3.3V so consider using sensor 147, 110, or 21.
* 21 : Pt100 with circuit in the Ultimainboard V2.x with 3.3v ADC reference voltage (STM32, LPC176x....) and 5V INA826 amplifier board supply.
* NOTE: ADC pins are not 5V tolerant. Not recommended because it's possible to damage the CPU by going over 500°C.
* 201 : Pt100 with circuit in Overlord, similar to Ultimainboard V2.x
*
* ================================================================
* SPI RTD/Thermocouple Boards
* ================================================================
* -5 : MAX31865 with Pt100/Pt1000, 2, 3, or 4-wire (only for sensors 0-2 and bed)
* NOTE: You must uncomment/set the MAX31865_*_OHMS_n defines below.
* -3 : MAX31855 with Thermocouple, -200°C to +700°C (only for sensors 0-2 and bed)
* -2 : MAX6675 with Thermocouple, 0°C to +700°C (only for sensors 0-2 and bed)
*
* NOTE: Ensure TEMP_n_CS_PIN is set in your pins file for each TEMP_SENSOR_n using an SPI Thermocouple. By default,
* Hardware SPI on the default serial bus is used. If you have also set TEMP_n_SCK_PIN and TEMP_n_MISO_PIN,
* Software SPI will be used on those ports instead. You can force Hardware SPI on the default bus in the
* Configuration_adv.h file. At this time, separate Hardware SPI buses for sensors are not supported.
*
* ================================================================
* Analog Thermocouple Boards
* ================================================================
* -4 : AD8495 with Thermocouple
* -1 : AD595 with Thermocouple
*
* ================================================================
* SoC internal sensor
* ================================================================
* 100 : SoC internal sensor
*
* ================================================================
* Custom/Dummy/Other Thermal Sensors
* ================================================================
* 0 : not used
* 1000 : Custom - Specify parameters in Configuration_adv.h
*
* !!! Use these for Testing or Development purposes. NEVER for production machine. !!!
* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
*/
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_4 0
#define TEMP_SENSOR_5 0
#define TEMP_SENSOR_6 0
#define TEMP_SENSOR_7 0
#define TEMP_SENSOR_BED 1
#define TEMP_SENSOR_PROBE 0
#define TEMP_SENSOR_CHAMBER 0
#define TEMP_SENSOR_COOLER 0
#define TEMP_SENSOR_BOARD 0
#define TEMP_SENSOR_SOC 0
#define TEMP_SENSOR_REDUNDANT 0
// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE 25
#define DUMMY_THERMISTOR_999_VALUE 100
// Resistor values when using MAX31865 sensors (-5) on TEMP_SENSOR_0 / 1
#if TEMP_SENSOR_IS_MAX_TC(0)
#define MAX31865_SENSOR_OHMS_0 100 // (Ω) Typically 100 or 1000 (PT100 or PT1000)
#define MAX31865_CALIBRATION_OHMS_0 430 // (Ω) Typically 430 for Adafruit PT100; 4300 for Adafruit PT1000
#endif
#if TEMP_SENSOR_IS_MAX_TC(1)
#define MAX31865_SENSOR_OHMS_1 100
#define MAX31865_CALIBRATION_OHMS_1 430
#endif
#if TEMP_SENSOR_IS_MAX_TC(2)
#define MAX31865_SENSOR_OHMS_2 100
#define MAX31865_CALIBRATION_OHMS_2 430
#endif
#if TEMP_SENSOR_IS_MAX_TC(BED)
#define MAX31865_SENSOR_OHMS_BED 100
#define MAX31865_CALIBRATION_OHMS_BED 430
#endif
#if HAS_E_TEMP_SENSOR
#define TEMP_RESIDENCY_TIME 10 // (seconds) Time to wait for hotend to "settle" in M109
#define TEMP_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#endif
#if TEMP_SENSOR_BED
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds) Time to wait for bed to "settle" in M190
#define TEMP_BED_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_BED_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#endif
#if TEMP_SENSOR_CHAMBER
#define TEMP_CHAMBER_RESIDENCY_TIME 10 // (seconds) Time to wait for chamber to "settle" in M191
#define TEMP_CHAMBER_WINDOW 1 // (°C) Temperature proximity for the "temperature reached" timer
#define TEMP_CHAMBER_HYSTERESIS 3 // (°C) Temperature proximity considered "close enough" to the target
#endif
/**
* Redundant Temperature Sensor (TEMP_SENSOR_REDUNDANT)
*
* Use a temp sensor as a redundant sensor for another reading. Select an unused temperature sensor, and another
* sensor you'd like it to be redundant for. If the two thermistors differ by TEMP_SENSOR_REDUNDANT_MAX_DIFF (°C),
* the print will be aborted. Whichever sensor is selected will have its normal functions disabled; i.e. selecting
* the Bed sensor (-1) will disable bed heating/monitoring.
*
* For selecting source/target use: COOLER, PROBE, BOARD, CHAMBER, BED, E0, E1, E2, E3, E4, E5, E6, E7
*/
#if TEMP_SENSOR_REDUNDANT
#define TEMP_SENSOR_REDUNDANT_SOURCE E1 // The sensor that will provide the redundant reading.
#define TEMP_SENSOR_REDUNDANT_TARGET E0 // The sensor that we are providing a redundant reading for.
#define TEMP_SENSOR_REDUNDANT_MAX_DIFF 10 // (°C) Temperature difference that will trigger a print abort.
#endif
// Below this temperature the heater will be switched off
// because it probably indicates a broken thermistor wire.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define HEATER_4_MINTEMP 5
#define HEATER_5_MINTEMP 5
#define HEATER_6_MINTEMP 5
#define HEATER_7_MINTEMP 5
#define BED_MINTEMP 5
#define CHAMBER_MINTEMP 5
// Above this temperature the heater will be switched off.
// This can protect components from overheating, but NOT from shorts and failures.
// (Use MINTEMP for thermistor short/failure protection.)
#define HEATER_0_MAXTEMP 260
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define HEATER_4_MAXTEMP 275
#define HEATER_5_MAXTEMP 275
#define HEATER_6_MAXTEMP 275
#define HEATER_7_MAXTEMP 275
#define BED_MAXTEMP 110
#define CHAMBER_MAXTEMP 60
/**
* Thermal Overshoot
* During heatup (and printing) the temperature can often "overshoot" the target by many degrees
* (especially before PID tuning). Setting the target temperature too close to MAXTEMP guarantees
* a MAXTEMP shutdown! Use these values to forbid temperatures being set too close to MAXTEMP.
*/
#define HOTEND_OVERSHOOT 15 // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT
#define BED_OVERSHOOT 10 // (°C) Forbid temperatures over MAXTEMP - OVERSHOOT
#define COOLER_OVERSHOOT 2 // (°C) Forbid temperatures closer than OVERSHOOT
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// @section hotend temp
/**
* Temperature Control
*
* (NONE) : Bang-bang heating
* PIDTEMP : PID temperature control (~4.1K)
* MPCTEMP : Predictive Model temperature control. (~1.8K without auto-tune)
*/
#define PIDTEMP // See the PID Tuning Guide at https://reprap.org/wiki/PID_Tuning
//#define MPCTEMP // See https://marlinfw.org/docs/features/model_predictive_control.html
#define PID_MAX 255 // Limit hotend current while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#define PID_K1 0.95 // Smoothing factor within any PID loop
#if ENABLED(PIDTEMP)
//#define PID_DEBUG // Print PID debug data to the serial port. Use 'M303 D' to toggle activation.
//#define PID_PARAMS_PER_HOTEND // Use separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with G-code: M301 E[extruder number, 0-2]
#if ENABLED(PID_PARAMS_PER_HOTEND)
// Specify up to one value per hotend here, according to your setup.
// If there are fewer values, the last one applies to the remaining hotends.
#define DEFAULT_Kp_LIST { 22.20, 22.20 }
#define DEFAULT_Ki_LIST { 1.08, 1.08 }
#define DEFAULT_Kd_LIST { 114.00, 114.00 }
#else
#define DEFAULT_Kp 17.22
#define DEFAULT_Ki 1.00
#define DEFAULT_Kd 74.22
#endif
#else
#define BANG_MAX 255 // Limit hotend current while in bang-bang mode; 255=full current
#endif
/**
* Model Predictive Control for hotend
*
* Use a physical model of the hotend to control temperature. When configured correctly this gives
* better responsiveness and stability than PID and removes the need for PID_EXTRUSION_SCALING
* and PID_FAN_SCALING. Enable MPC_AUTOTUNE and use M306 T to autotune the model.
* @section mpc temp
*/
#if ENABLED(MPCTEMP)
#define MPC_AUTOTUNE // Include a method to do MPC auto-tuning (~6.3K bytes of flash)
#if ENABLED(MPC_AUTOTUNE)
//#define MPC_AUTOTUNE_DEBUG // Enable MPC debug logging (~870 bytes of flash)
#endif
//#define MPC_EDIT_MENU // Add MPC editing to the "Advanced Settings" menu. (~1.3K bytes of flash)
//#define MPC_AUTOTUNE_MENU // Add MPC auto-tuning to the "Advanced Settings" menu. (~350 bytes of flash)
#define MPC_MAX 255 // (0..255) Current to nozzle while MPC is active.
#define MPC_HEATER_POWER { 40.0f } // (W) Heat cartridge powers.
#define MPC_INCLUDE_FAN // Model the fan speed?
// Measured physical constants from M306
#define MPC_BLOCK_HEAT_CAPACITY { 16.7f } // (J/K) Heat block heat capacities.
#define MPC_SENSOR_RESPONSIVENESS { 0.22f } // (K/s per ∆K) Rate of change of sensor temperature from heat block.
#define MPC_AMBIENT_XFER_COEFF { 0.068f } // (W/K) Heat transfer coefficients from heat block to room air with fan off.
#if ENABLED(MPC_INCLUDE_FAN)
#define MPC_AMBIENT_XFER_COEFF_FAN255 { 0.097f } // (W/K) Heat transfer coefficients from heat block to room air with fan on full.
#endif
// For one fan and multiple hotends MPC needs to know how to apply the fan cooling effect.
#if ENABLED(MPC_INCLUDE_FAN)
//#define MPC_FAN_0_ALL_HOTENDS
//#define MPC_FAN_0_ACTIVE_HOTEND
#endif
// Filament Heat Capacity (joules/kelvin/mm)
// Set at runtime with M306 H
#define FILAMENT_HEAT_CAPACITY_PERMM { 5.6e-3f } // 0.0056 J/K/mm for 1.75mm PLA (0.0149 J/K/mm for 2.85mm PLA).
// 0.0036 J/K/mm for 1.75mm PETG (0.0094 J/K/mm for 2.85mm PETG).
// 0.00515 J/K/mm for 1.75mm ABS (0.0137 J/K/mm for 2.85mm ABS).
// 0.00522 J/K/mm for 1.75mm Nylon (0.0138 J/K/mm for 2.85mm Nylon).
// Advanced options
#define MPC_SMOOTHING_FACTOR 0.5f // (0.0...1.0) Noisy temperature sensors may need a lower value for stabilization.
#define MPC_MIN_AMBIENT_CHANGE 1.0f // (K/s) Modeled ambient temperature rate of change, when correcting model inaccuracies.
#define MPC_STEADYSTATE 0.5f // (K/s) Temperature change rate for steady state logic to be enforced.
#define MPC_TUNING_POS { X_CENTER, Y_CENTER, 1.0f } // (mm) M306 Autotuning position, ideally bed center at first layer height.
#define MPC_TUNING_END_Z 10.0f // (mm) M306 Autotuning final Z position.
#endif
//===========================================================================
//====================== PID > Bed Temperature Control ======================
//===========================================================================
// @section bed temp
/**
* Max Bed Power
* Applies to all forms of bed control (PID, bang-bang, and bang-bang with hysteresis).
* When set to any value below 255, enables a form of PWM to the bed that acts like a divider
* so don't use it unless you are OK with PWM on your bed. (See the comment on enabling PIDTEMPBED)
*/
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
/**
* PID Bed Heating
*
* The PID frequency will be the same as the extruder PWM.
* If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
* which is fine for driving a square wave into a resistive load and does not significantly
* impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W
* heater. If your configuration is significantly different than this and you don't understand
* the issues involved, don't use bed PID until someone else verifies that your hardware works.
*
* With this option disabled, bang-bang will be used. BED_LIMIT_SWITCHING enables hysteresis.
*/
#define PIDTEMPBED
#if ENABLED(PIDTEMPBED)
//#define MIN_BED_POWER 0
//#define PID_BED_DEBUG // Print Bed PID debug data to the serial port.
// 120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
// from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 841.68
#define DEFAULT_bedKi 152.12
#define DEFAULT_bedKd 1164.25
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#else
//#define BED_LIMIT_SWITCHING // Keep the bed temperature within BED_HYSTERESIS of the target
#endif
/**
* Peltier Bed - Heating and Cooling
*
* A Peltier device transfers heat from one side to the other in proportion to the amount of
* current flowing through the device and the direction of current flow. So the same device
* can both heat and cool.
*
* When "cooling" in addition to rejecting the heat transferred from the hot side to the cold
* side, the dissipated power (voltage * current) must also be rejected. Be sure to set up a
* fan that can be powered in sync with the Peltier unit.
*
* This feature is only set up to run in bang-bang mode because Peltiers don't handle PWM
* well without filter circuitry.
*
* Since existing 3D printers are made to handle relatively high current for the heated bed,
* we can use the heated bed power pins to control the Peltier power using the same G-codes
* as the heated bed (M140, M190, etc.).
*
* A second GPIO pin is required to control current direction.
* Two configurations are possible: Relay and H-Bridge
*
* (At this time only relay is supported. H-bridge requires 4 MOS switches configured in H-Bridge.)
*
* Power is handled by the bang-bang control loop: 0 or 255.
* Cooling applications are more common than heating, so the pin states are commonly:
* LOW = Heating = Relay Energized
* HIGH = Cooling = Relay in "Normal" state
*/
//#define PELTIER_BED
#if ENABLED(PELTIER_BED)
#define PELTIER_DIR_PIN -1 // Relay control pin for Peltier
#define PELTIER_DIR_HEAT_STATE LOW // The relay pin state that causes the Peltier to heat
#endif
// Add 'M190 R T' for more gradual M190 R bed cooling.
//#define BED_ANNEALING_GCODE
//===========================================================================
//==================== PID > Chamber Temperature Control ====================
//===========================================================================
/**
* PID Chamber Heating
*
* If this option is enabled set PID constants below.
* If this option is disabled, bang-bang will be used and CHAMBER_LIMIT_SWITCHING will enable
* hysteresis.
*
* The PID frequency will be the same as the extruder PWM.
* If PID_dT is the default, and correct for the hardware/configuration, that means 7.689Hz,
* which is fine for driving a square wave into a resistive load and does not significantly
* impact FET heating. This also works fine on a Fotek SSR-10DA Solid State Relay into a 200W
* heater. If your configuration is significantly different than this and you don't understand
* the issues involved, don't use chamber PID until someone else verifies that your hardware works.
* @section chamber temp
*/
//#define PIDTEMPCHAMBER
//#define CHAMBER_LIMIT_SWITCHING
/**
* Max Chamber Power
* Applies to all forms of chamber control (PID, bang-bang, and bang-bang with hysteresis).
* When set to any value below 255, enables a form of PWM to the chamber heater that acts like a divider
* so don't use it unless you are OK with PWM on your heater. (See the comment on enabling PIDTEMPCHAMBER)
*/
#define MAX_CHAMBER_POWER 255 // limits duty cycle to chamber heater; 255=full current
#if ENABLED(PIDTEMPCHAMBER)
#define MIN_CHAMBER_POWER 0
//#define PID_CHAMBER_DEBUG // Print Chamber PID debug data to the serial port.
// Lasko "MyHeat Personal Heater" (200w) modified with a Fotek SSR-10DA to control only the heating element
// and placed inside the small Creality printer enclosure tent.
//
#define DEFAULT_chamberKp 37.04
#define DEFAULT_chamberKi 1.40
#define DEFAULT_chamberKd 655.17
// M309 P37.04 I1.04 D655.17
// FIND YOUR OWN: "M303 E-2 C8 S50" to run autotune on the chamber at 50 degreesC for 8 cycles.
#endif // PIDTEMPCHAMBER
// @section pid temp
#if ANY(PIDTEMP, PIDTEMPBED, PIDTEMPCHAMBER)
//#define PID_OPENLOOP // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
//#define PID_EDIT_MENU // Add PID editing to the "Advanced Settings" menu. (~700 bytes of flash)
//#define PID_AUTOTUNE_MENU // Add PID auto-tuning to the "Advanced Settings" menu. (~250 bytes of flash)
#endif
// @section safety
/**
* Prevent extrusion if the temperature is below EXTRUDE_MINTEMP.
* Add M302 to set the minimum extrusion temperature and/or turn
* cold extrusion prevention on and off.
*
* *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***
*/
#define PREVENT_COLD_EXTRUSION
#define EXTRUDE_MINTEMP 170
/**
* Prevent a single extrusion longer than EXTRUDE_MAXLENGTH.
* Note: For Bowden Extruders make this large enough to allow load/unload.
*/
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH 600
//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================
/**
* Thermal Protection provides additional protection to your printer from damage
* and fire. Marlin always includes safe min and max temperature ranges which
* protect against a broken or disconnected thermistor wire.
*
* The issue: If a thermistor falls out, it will report the much lower
* temperature of the air in the room, and the the firmware will keep
* the heater on.
*
* If you get "Thermal Runaway" or "Heating failed" errors the
* details can be tuned in Configuration_adv.h
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
#define THERMAL_PROTECTION_CHAMBER // Enable thermal protection for the heated chamber
#define THERMAL_PROTECTION_COOLER // Enable thermal protection for the laser cooling
//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================
// @section kinematics
// Enable one of the options below for CoreXY, CoreXZ, or CoreYZ kinematics,
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY
//
// MarkForged Kinematics
// See https://reprap.org/forum/read.php?152,504042
//
//#define MARKFORGED_XY
//#define MARKFORGED_YX
#if ANY(MARKFORGED_XY, MARKFORGED_YX)
//#define MARKFORGED_INVERSE // Enable for an inverted Markforged kinematics belt path
#endif
// Enable for a belt style printer with endless "Z" motion
//#define BELTPRINTER
// Articulated robot (arm). Joints are directly mapped to axes with no kinematics.
//#define ARTICULATED_ROBOT_ARM
// For a hot wire cutter with parallel horizontal axes (X, I) where the heights of the two wire
// ends are controlled by parallel axes (Y, J). Joints are directly mapped to axes (no kinematics).
//#define FOAMCUTTER_XYUV
// @section polargraph
// Enable for Polargraph Kinematics
//#define POLARGRAPH
#if ENABLED(POLARGRAPH)
#define POLARGRAPH_MAX_BELT_LEN 1035.0 // (mm) Belt length at full extension. Override with M665 H.
#define DEFAULT_SEGMENTS_PER_SECOND 5 // Move segmentation based on duration
#define PEN_UP_DOWN_MENU // Add "Pen Up" and "Pen Down" to the MarlinUI menu
#endif
// @section delta
// Enable for DELTA kinematics and configure below
//#define DELTA
#if ENABLED(DELTA)
// Make delta curves from many straight lines (linear interpolation).
// This is a trade-off between visible corners (not enough segments)
// and processor overload (too many expensive sqrt calls).
#define DEFAULT_SEGMENTS_PER_SECOND 200
// After homing move down to a height where XY movement is unconstrained
//#define DELTA_HOME_TO_SAFE_ZONE
// Delta calibration menu
// Add three-point calibration to the MarlinUI menu.
// See http://minow.blogspot.com/index.html#4918805519571907051
//#define DELTA_CALIBRATION_MENU
// G33 Delta Auto-Calibration. Enable EEPROM_SETTINGS to store results.
//#define DELTA_AUTO_CALIBRATION
#if ENABLED(DELTA_AUTO_CALIBRATION)
// Default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
#endif
#if ANY(DELTA_AUTO_CALIBRATION, DELTA_CALIBRATION_MENU)
// Step size for paper-test probing
#define PROBE_MANUALLY_STEP 0.05 // (mm)
#endif
// Print surface diameter/2 minus unreachable space (avoid collisions with vertical towers).
#define PRINTABLE_RADIUS 140.0 // (mm)
// Maximum reachable area
#define DELTA_MAX_RADIUS 140.0 // (mm)
// Center-to-center distance of the holes in the diagonal push rods.
#define DELTA_DIAGONAL_ROD 250.0 // (mm)
// Distance between bed and nozzle Z home position
#define DELTA_HEIGHT 250.00 // (mm) Get this value from G33 auto calibrate
#define DELTA_ENDSTOP_ADJ { 0.0, 0.0, 0.0 } // (mm) Get these values from G33 auto calibrate
// Horizontal distance bridged by diagonal push rods when effector is centered.
#define DELTA_RADIUS 124.0 // (mm) Get this value from G33 auto calibrate
// Trim adjustments for individual towers
// tower angle corrections for X and Y tower / rotate XYZ so Z tower angle = 0
// measured in degrees anticlockwise looking from above the printer
#define DELTA_TOWER_ANGLE_TRIM { 0.0, 0.0, 0.0 } // (mm) Get these values from G33 auto calibrate
// Delta radius and diagonal rod adjustments
//#define DELTA_RADIUS_TRIM_TOWER { 0.0, 0.0, 0.0 } // (mm)
//#define DELTA_DIAGONAL_ROD_TRIM_TOWER { 0.0, 0.0, 0.0 } // (mm)
#endif
// @section scara
/**
* MORGAN_SCARA was developed by QHARLEY in South Africa in 2012-2013.
* Implemented and slightly reworked by JCERNY in June, 2014.
*
* Mostly Printed SCARA is an open source design by Tyler Williams. See:
* https://www.thingiverse.com/thing:2487048
* https://www.thingiverse.com/thing:1241491
*/
//#define MORGAN_SCARA
//#define MP_SCARA
#if ANY(MORGAN_SCARA, MP_SCARA)
// If movement is choppy try lowering this value
#define DEFAULT_SEGMENTS_PER_SECOND 200
// Length of inner and outer support arms. Measure arm lengths precisely.
#define SCARA_LINKAGE_1 150 // (mm)
#define SCARA_LINKAGE_2 150 // (mm)
// SCARA tower offset (position of Tower relative to bed zero position)
// This needs to be reasonably accurate as it defines the printbed position in the SCARA space.
#define SCARA_OFFSET_X 100 // (mm)
#define SCARA_OFFSET_Y -56 // (mm)
#if ENABLED(MORGAN_SCARA)
//#define DEBUG_SCARA_KINEMATICS
#define FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// Radius around the center where the arm cannot reach
#define MIDDLE_DEAD_ZONE_R 0 // (mm)
#elif ENABLED(MP_SCARA)
#define SCARA_OFFSET_THETA1 12 // degrees
#define SCARA_OFFSET_THETA2 131 // degrees
#endif
#endif
// @section tpara
// Enable for TPARA kinematics and configure below
//#define AXEL_TPARA
#if ENABLED(AXEL_TPARA)
#define DEBUG_TPARA_KINEMATICS
#define DEFAULT_SEGMENTS_PER_SECOND 200
// Length of inner and outer support arms. Measure arm lengths precisely.
#define TPARA_LINKAGE_1 120 // (mm)
#define TPARA_LINKAGE_2 120 // (mm)
// TPARA tower offset (position of Tower relative to bed zero position)
// This needs to be reasonably accurate as it defines the printbed position in the TPARA space.
#define TPARA_OFFSET_X 0 // (mm)
#define TPARA_OFFSET_Y 0 // (mm)
#define TPARA_OFFSET_Z 0 // (mm)
#define FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
// Radius around the center where the arm cannot reach
#define MIDDLE_DEAD_ZONE_R 0 // (mm)
#endif
// @section polar
/**
* POLAR Kinematics
* developed by Kadir ilkimen for PolarBear CNC and babyBear
* https://github.com/kadirilkimen/Polar-Bear-Cnc-Machine
* https://github.com/kadirilkimen/babyBear-3D-printer
*
* A polar machine can have different configurations.
* This kinematics is only compatible with the following configuration:
* X : Independent linear
* Y or B : Polar
* Z : Independent linear
*
* For example, PolarBear has CoreXZ plus Polar Y or B.
*
* Motion problem for Polar axis near center / origin:
*
* 3D printing:
* Movements very close to the center of the polar axis take more time than others.
* This brief delay results in more material deposition due to the pressure in the nozzle.
*
* Current Kinematics and feedrate scaling deals with this by making the movement as fast
* as possible. It works for slow movements but doesn't work well with fast ones. A more
* complicated extrusion compensation must be implemented.
*
* Ideally, it should estimate that a long rotation near the center is ahead and will cause
* unwanted deposition. Therefore it can compensate the extrusion beforehand.
*
* Laser cutting:
* Same thing would be a problem for laser engraving too. As it spends time rotating at the
* center point, more likely it will burn more material than it should. Therefore similar
* compensation would be implemented for laser-cutting operations.
*
* Milling:
* This shouldn't be a problem for cutting/milling operations.
*/
//#define POLAR
#if ENABLED(POLAR)
#define DEFAULT_SEGMENTS_PER_SECOND 180 // If movement is choppy try lowering this value
#define PRINTABLE_RADIUS 82.0f // (mm) Maximum travel of X axis
// Movements fall inside POLAR_FAST_RADIUS are assigned the highest possible feedrate
// to compensate unwanted deposition related to the near-origin motion problem.
#define POLAR_FAST_RADIUS 3.0f // (mm)
// Radius which is unreachable by the tool.
// Needed if the tool is not perfectly aligned to the center of the polar axis.
#define POLAR_CENTER_OFFSET 0.0f // (mm)
#define FEEDRATE_SCALING // Convert XY feedrate from mm/s to degrees/s on the fly
#endif
//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================
// @section endstops
// Enable pullup for all endstops to prevent a floating state
#define ENDSTOPPULLUPS
#if DISABLED(ENDSTOPPULLUPS)
// Disable ENDSTOPPULLUPS to set pullups individually
//#define ENDSTOPPULLUP_XMIN
//#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
//#define ENDSTOPPULLUP_IMIN
//#define ENDSTOPPULLUP_JMIN
//#define ENDSTOPPULLUP_KMIN
//#define ENDSTOPPULLUP_UMIN
//#define ENDSTOPPULLUP_VMIN
//#define ENDSTOPPULLUP_WMIN
//#define ENDSTOPPULLUP_XMAX
//#define ENDSTOPPULLUP_YMAX
//#define ENDSTOPPULLUP_ZMAX
//#define ENDSTOPPULLUP_IMAX
//#define ENDSTOPPULLUP_JMAX
//#define ENDSTOPPULLUP_KMAX
//#define ENDSTOPPULLUP_UMAX
//#define ENDSTOPPULLUP_VMAX
//#define ENDSTOPPULLUP_WMAX
//#define ENDSTOPPULLUP_ZMIN_PROBE
#endif
// Enable pulldown for all endstops to prevent a floating state
//#define ENDSTOPPULLDOWNS
#if DISABLED(ENDSTOPPULLDOWNS)
// Disable ENDSTOPPULLDOWNS to set pulldowns individually
//#define ENDSTOPPULLDOWN_XMIN
//#define ENDSTOPPULLDOWN_YMIN
//#define ENDSTOPPULLDOWN_ZMIN
//#define ENDSTOPPULLDOWN_IMIN
//#define ENDSTOPPULLDOWN_JMIN
//#define ENDSTOPPULLDOWN_KMIN
//#define ENDSTOPPULLDOWN_UMIN
//#define ENDSTOPPULLDOWN_VMIN
//#define ENDSTOPPULLDOWN_WMIN
//#define ENDSTOPPULLDOWN_XMAX
//#define ENDSTOPPULLDOWN_YMAX
//#define ENDSTOPPULLDOWN_ZMAX
//#define ENDSTOPPULLDOWN_IMAX
//#define ENDSTOPPULLDOWN_JMAX
//#define ENDSTOPPULLDOWN_KMAX
//#define ENDSTOPPULLDOWN_UMAX
//#define ENDSTOPPULLDOWN_VMAX
//#define ENDSTOPPULLDOWN_WMAX
//#define ENDSTOPPULLDOWN_ZMIN_PROBE
#endif
/**
* Endstop "Hit" State
* Set to the state (HIGH or LOW) that applies to each endstop.
*/
#define X_MIN_ENDSTOP_HIT_STATE LOW
#define X_MAX_ENDSTOP_HIT_STATE LOW
#define Y_MIN_ENDSTOP_HIT_STATE LOW
#define Y_MAX_ENDSTOP_HIT_STATE LOW
#define Z_MIN_ENDSTOP_HIT_STATE LOW
#define Z_MAX_ENDSTOP_HIT_STATE LOW
#define I_MIN_ENDSTOP_HIT_STATE HIGH
#define I_MAX_ENDSTOP_HIT_STATE HIGH
#define J_MIN_ENDSTOP_HIT_STATE HIGH
#define J_MAX_ENDSTOP_HIT_STATE HIGH
#define K_MIN_ENDSTOP_HIT_STATE HIGH
#define K_MAX_ENDSTOP_HIT_STATE HIGH
#define U_MIN_ENDSTOP_HIT_STATE HIGH
#define U_MAX_ENDSTOP_HIT_STATE HIGH
#define V_MIN_ENDSTOP_HIT_STATE HIGH
#define V_MAX_ENDSTOP_HIT_STATE HIGH
#define W_MIN_ENDSTOP_HIT_STATE HIGH
#define W_MAX_ENDSTOP_HIT_STATE HIGH
#define Z_MIN_PROBE_ENDSTOP_HIT_STATE HIGH
// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.
//#define ENDSTOP_INTERRUPTS_FEATURE
/**
* Endstop Noise Threshold
*
* Enable if your probe or endstops falsely trigger due to noise.
*
* - Higher values may affect repeatability or accuracy of some bed probes.
* - To fix noise install a 100nF ceramic capacitor in parallel with the switch.
* - This feature is not required for common micro-switches mounted on PCBs
* based on the Makerbot design, which already have the 100nF capacitor.
*
* :[2,3,4,5,6,7]
*/
//#define ENDSTOP_NOISE_THRESHOLD 2
// Check for stuck or disconnected endstops during homing moves.
//#define DETECT_BROKEN_ENDSTOP
//=============================================================================
//============================== Movement Settings ============================
//=============================================================================
// @section motion
/**
* Default Settings
*
* These settings can be reset by M502
*
* Note that if EEPROM is enabled, saved values will override these.
*/
/**
* With this option each E stepper can have its own factors for the
* following movement settings. If fewer factors are given than the
* total number of extruders, the last value applies to the rest.
*/
//#define DISTINCT_E_FACTORS
/**
* Default Axis Steps Per Unit (linear=steps/mm, rotational=steps/°)
* Override with M92 (when enabled below)
* X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 400, 98 }
/**
* Enable support for M92. Disable to save at least ~530 bytes of flash.
*/
#define EDITABLE_STEPS_PER_UNIT
/**
* Default Max Feed Rate (linear=mm/s, rotational=°/s)
* Override with M203
* X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_MAX_FEEDRATE { 200, 200, 5, 25 }
#define LIMITED_MAX_FR_EDITING // Limit edit via M203 or LCD to DEFAULT_MAX_FEEDRATE * 2
#if ENABLED(LIMITED_MAX_FR_EDITING)
#define MAX_FEEDRATE_EDIT_VALUES { 250, 250, 200, 50 } // ...or, set your own edit limits
#endif
/**
* Default Max Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2))
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z [, I [, J [, K...]]], E0 [, E1[, E2...]]
*/
#define DEFAULT_MAX_ACCELERATION { 200, 200, 100, 3000 }
#define LIMITED_MAX_ACCEL_EDITING // Limit edit via M201 or LCD to DEFAULT_MAX_ACCELERATION * 2
#if ENABLED(LIMITED_MAX_ACCEL_EDITING)
#define MAX_ACCEL_EDIT_VALUES { 600, 600, 400, 6000 } // ...or, set your own edit limits
#endif
/**
* Default Acceleration (speed change with time) (linear=mm/(s^2), rotational=°/(s^2))
* Override with M204
*
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
*/
#define DEFAULT_ACCELERATION 200 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 500 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 200 // X, Y, Z acceleration for travel (non printing) moves
/**
* Default Jerk limits (mm/s)
* Override with M205 X Y Z . . . E
*
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
*/
#define CLASSIC_JERK
#if ENABLED(CLASSIC_JERK)
#define DEFAULT_XJERK 10.0
#define DEFAULT_YJERK 10.0
#define DEFAULT_ZJERK 0.4
#define DEFAULT_EJERK 5.0
//#define DEFAULT_IJERK 0.3
//#define DEFAULT_JJERK 0.3
//#define DEFAULT_KJERK 0.3
//#define DEFAULT_UJERK 0.3
//#define DEFAULT_VJERK 0.3
//#define DEFAULT_WJERK 0.3
//#define TRAVEL_EXTRA_XYJERK 0.0 // Additional jerk allowance for all travel moves
#define LIMITED_JERK_EDITING // Limit edit via M205 or LCD to DEFAULT_aJERK * 2
#if ENABLED(LIMITED_JERK_EDITING)
#define MAX_JERK_EDIT_VALUES { 20, 20, 0.6, 10 } // ...or, set your own edit limits
#endif
#endif
/**
* Junction Deviation Factor
*
* See:
* https://reprap.org/forum/read.php?1,739819
* https://blog.kyneticcnc.com/2018/10/computing-junction-deviation-for-marlin.html
*/
#if DISABLED(CLASSIC_JERK)
#define JUNCTION_DEVIATION_MM 0.013 // (mm) Distance from real junction edge
#define JD_HANDLE_SMALL_SEGMENTS // Use curvature estimation instead of just the junction angle
// for small segments (< 1mm) with large junction angles (> 135°).
#endif
/**
* S-Curve Acceleration
*
* This option eliminates vibration during printing by fitting a Bézier
* curve to move acceleration, producing much smoother direction changes.
*
* See https://github.com/synthetos/TinyG/wiki/Jerk-Controlled-Motion-Explained
*/
//#define S_CURVE_ACCELERATION
//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================
// @section probes
//
// See https://marlinfw.org/docs/configuration/probes.html
//
/**
* Enable this option for a probe connected to the Z-MIN pin.
* The probe replaces the Z-MIN endstop and is used for Z homing.
* (Automatically enables USE_PROBE_FOR_Z_HOMING.)
*/
//#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN
// Force the use of the probe for Z-axis homing
//#define USE_PROBE_FOR_Z_HOMING
/**
* Z_MIN_PROBE_PIN
*
* Override this pin only if the probe cannot be connected to
* the default Z_MIN_PROBE_PIN for the selected MOTHERBOARD.
*
* - The simplest option is to use a free endstop connector.
* - Use 5V for powered (usually inductive) sensors.
*
* - For simple switches...
* - Normally-closed (NC) also connect to GND.
* - Normally-open (NO) also connect to 5V.
*/
//#define Z_MIN_PROBE_PIN -1
/**
* Probe Type
*
* Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
* Activate one of these to use Auto Bed Leveling below.
*/
/**
* The "Manual Probe" provides a means to do "Auto" Bed Leveling without a probe.
* Use G29 repeatedly, adjusting the Z height at each point with movement commands
* or (with LCD_BED_LEVELING) the LCD controller.
*/
//#define PROBE_MANUALLY
/**
* A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
* (e.g., an inductive probe or a nozzle-based probe-switch.)
*/
//#define FIX_MOUNTED_PROBE
/**
* Use the nozzle as the probe, as with a conductive
* nozzle system or a piezo-electric smart effector.
*/
//#define NOZZLE_AS_PROBE
/**
* Z Servo Probe, such as an endstop switch on a rotating arm.
*/
//#define Z_PROBE_SERVO_NR 0
#ifdef Z_PROBE_SERVO_NR
//#define Z_SERVO_ANGLES { 70, 0 } // Z Servo Deploy and Stow angles
//#define Z_SERVO_MEASURE_ANGLE 45 // Use if the servo must move to a "free" position for measuring after deploy
//#define Z_SERVO_INTERMEDIATE_STOW // Stow the probe between points
//#define Z_SERVO_DEACTIVATE_AFTER_STOW // Deactivate the servo when probe is stowed
#endif
/**
* The BLTouch probe uses a Hall effect sensor and emulates a servo.
*/
//#define BLTOUCH
/**
* MagLev V4 probe by MDD
*
* This probe is deployed and activated by powering a built-in electromagnet.
*/
//#define MAGLEV4
#if ENABLED(MAGLEV4)
//#define MAGLEV_TRIGGER_PIN 11 // Set to the connected digital output
#define MAGLEV_TRIGGER_DELAY 15 // Changing this risks overheating the coil
#endif
/**
* Touch-MI Probe by hotends.fr
*
* This probe is deployed and activated by moving the X-axis to a magnet at the edge of the bed.
* By default, the magnet is assumed to be on the left and activated by a home. If the magnet is
* on the right, enable and set TOUCH_MI_DEPLOY_XPOS to the deploy position.
*
* Also requires: BABYSTEPPING, BABYSTEP_ZPROBE_OFFSET, Z_SAFE_HOMING,
* and a minimum Z_CLEARANCE_FOR_HOMING of 10.
*/
//#define TOUCH_MI_PROBE
#if ENABLED(TOUCH_MI_PROBE)
#define TOUCH_MI_RETRACT_Z 0.5 // Height at which the probe retracts
//#define TOUCH_MI_DEPLOY_XPOS (X_MAX_BED + 2) // For a magnet on the right side of the bed
//#define TOUCH_MI_MANUAL_DEPLOY // For manual deploy (LCD menu)
#endif
/**
* Bed Distance Sensor
*
* Measures the distance from bed to nozzle with accuracy of 0.01mm.
* For information about this sensor https://github.com/markniu/Bed_Distance_sensor
* Uses I2C port, so it requires I2C library markyue/Panda_SoftMasterI2C.
*/
//#define BD_SENSOR
#if ENABLED(BD_SENSOR)
//#define BD_SENSOR_PROBE_NO_STOP // Probe bed without stopping at each probe point
#endif
/**
* BIQU MicroProbe
*
* A lightweight, solenoid-driven probe.
* For information about this sensor https://github.com/bigtreetech/MicroProbe
*
* Also requires PROBE_ENABLE_DISABLE
* With FT_MOTION requires ENDSTOP_INTERRUPTS_FEATURE
*/
//#define BIQU_MICROPROBE_V1 // Triggers HIGH
//#define BIQU_MICROPROBE_V2 // Triggers LOW
// A probe that is deployed and stowed with a solenoid pin (SOL1_PIN)
//#define SOLENOID_PROBE
// A sled-mounted probe like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
// A probe deployed by moving the x-axis, such as the Wilson II's rack-and-pinion probe designed by Marty Rice.
//#define RACK_AND_PINION_PROBE
#if ENABLED(RACK_AND_PINION_PROBE)
#define Z_PROBE_DEPLOY_X X_MIN_POS
#define Z_PROBE_RETRACT_X X_MAX_POS
#endif
/**
* Magnetically Mounted Probe
* For probes such as Euclid, Klicky, Klackender, etc.
*/
//#define MAG_MOUNTED_PROBE
#if ENABLED(MAG_MOUNTED_PROBE)
#define PROBE_DEPLOY_FEEDRATE (133*60) // (mm/min) Probe deploy speed
#define PROBE_STOW_FEEDRATE (133*60) // (mm/min) Probe stow speed
#define MAG_MOUNTED_DEPLOY_1 { PROBE_DEPLOY_FEEDRATE, { 245, 114, 30 } } // Move to side Dock & Attach probe
#define MAG_MOUNTED_DEPLOY_2 { PROBE_DEPLOY_FEEDRATE, { 210, 114, 30 } } // Move probe off dock
#define MAG_MOUNTED_DEPLOY_3 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#define MAG_MOUNTED_DEPLOY_4 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#define MAG_MOUNTED_DEPLOY_5 { PROBE_DEPLOY_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#define MAG_MOUNTED_STOW_1 { PROBE_STOW_FEEDRATE, { 245, 114, 20 } } // Move to dock
#define MAG_MOUNTED_STOW_2 { PROBE_STOW_FEEDRATE, { 245, 114, 0 } } // Place probe beside remover
#define MAG_MOUNTED_STOW_3 { PROBE_STOW_FEEDRATE, { 230, 114, 0 } } // Side move to remove probe
#define MAG_MOUNTED_STOW_4 { PROBE_STOW_FEEDRATE, { 210, 114, 20 } } // Side move to remove probe
#define MAG_MOUNTED_STOW_5 { PROBE_STOW_FEEDRATE, { 0, 0, 0 } } // Extra move if needed
#endif
// Duet Smart Effector (for delta printers) - https://docs.duet3d.com/en/Duet3D_hardware/Accessories/Smart_Effector
// When the pin is defined you can use M672 to set/reset the probe sensitivity.
//#define DUET_SMART_EFFECTOR
#if ENABLED(DUET_SMART_EFFECTOR)
#define SMART_EFFECTOR_MOD_PIN -1 // Connect a GPIO pin to the Smart Effector MOD pin
#endif
/**
* Use StallGuard2 to probe the bed with the nozzle.
* Requires stallGuard-capable Trinamic stepper drivers.
* CAUTION: This can damage machines with Z lead screws.
* Take extreme care when setting up this feature.
*/
//#define SENSORLESS_PROBING
/**
* Allen key retractable z-probe as seen on many Kossel delta printers - https://reprap.org/wiki/Kossel#Autolevel_probe
* Deploys by touching z-axis belt. Retracts by pushing the probe down.
*/
//#define Z_PROBE_ALLEN_KEY
#if ENABLED(Z_PROBE_ALLEN_KEY)
// 2 or 3 sets of coordinates for deploying and retracting the spring loaded touch probe on G29,
// if servo actuated touch probe is not defined. Uncomment as appropriate for your printer/probe.
#define Z_PROBE_ALLEN_KEY_DEPLOY_1 { 30.0, PRINTABLE_RADIUS, 100.0 }
#define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_DEPLOY_2 { 0.0, PRINTABLE_RADIUS, 100.0 }
#define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE (XY_PROBE_FEEDRATE)/10
#define Z_PROBE_ALLEN_KEY_DEPLOY_3 { 0.0, (PRINTABLE_RADIUS) * 0.75, 100.0 }
#define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_1 { -64.0, 56.0, 23.0 } // Move the probe into position
#define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_2 { -64.0, 56.0, 3.0 } // Push it down
#define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE (XY_PROBE_FEEDRATE)/10
#define Z_PROBE_ALLEN_KEY_STOW_3 { -64.0, 56.0, 50.0 } // Move it up to clear
#define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE XY_PROBE_FEEDRATE
#define Z_PROBE_ALLEN_KEY_STOW_4 { 0.0, 0.0, 50.0 }
#define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE XY_PROBE_FEEDRATE
#endif // Z_PROBE_ALLEN_KEY
/**
* Nozzle-to-Probe offsets { X, Y, Z }
*
* X and Y offset
* Use a caliper or ruler to measure the distance from the tip of
* the Nozzle to the center-point of the Probe in the X and Y axes.
*
* Z offset
* - For the Z offset use your best known value and adjust at runtime.
* - Common probes trigger below the nozzle and have negative values for Z offset.
* - Probes triggering above the nozzle height are uncommon but do exist. When using
* probes such as this, carefully set Z_CLEARANCE_DEPLOY_PROBE and Z_CLEARANCE_BETWEEN_PROBES
* to avoid collisions during probing.
*
* Tune and Adjust
* - Probe Offsets can be tuned at runtime with 'M851', LCD menus, babystepping, etc.
* - PROBE_OFFSET_WIZARD (Configuration_adv.h) can be used for setting the Z offset.
*
* Assuming the typical work area orientation:
* - Probe to RIGHT of the Nozzle has a Positive X offset
* - Probe to LEFT of the Nozzle has a Negative X offset
* - Probe in BACK of the Nozzle has a Positive Y offset
* - Probe in FRONT of the Nozzle has a Negative Y offset
*
* Some examples:
* #define NOZZLE_TO_PROBE_OFFSET { 10, 10, -1 } // Example "1"
* #define NOZZLE_TO_PROBE_OFFSET {-10, 5, -1 } // Example "2"
* #define NOZZLE_TO_PROBE_OFFSET { 5, -5, -1 } // Example "3"
* #define NOZZLE_TO_PROBE_OFFSET {-15,-10, -1 } // Example "4"
*
* +-- BACK ---+
* | [+] |
* L | 1 | R <-- Example "1" (right+, back+)
* E | 2 | I <-- Example "2" ( left-, back+)
* F |[-] N [+]| G <-- Nozzle
* T | 3 | H <-- Example "3" (right+, front-)
* | 4 | T <-- Example "4" ( left-, front-)
* | [-] |
* O-- FRONT --+
*/
#define NOZZLE_TO_PROBE_OFFSET { -35, -6, -0.5 }
// Enable and set to use a specific tool for probing. Disable to allow any tool.
#define PROBING_TOOL 0
#ifdef PROBING_TOOL
//#define PROBE_TOOLCHANGE_NO_MOVE // Suppress motion on probe tool-change
#endif
// Most probes should stay away from the edges of the bed, but
// with NOZZLE_AS_PROBE this can be negative for a wider probing area.
#define PROBING_MARGIN 10
// X and Y axis travel speed between probes.
// Leave undefined to use the average of the current XY homing feedrate.
#define XY_PROBE_FEEDRATE 8000 // (mm/min)
// Feedrate for the first approach when double-probing (MULTIPLE_PROBING == 2)
#define Z_PROBE_FEEDRATE_FAST (4*60) // (mm/min)
// Feedrate for the "accurate" probe of each point
#define Z_PROBE_FEEDRATE_SLOW (Z_PROBE_FEEDRATE_FAST / 2) // (mm/min)
/**
* Probe Activation Switch
* A switch indicating proper deployment, or an optical
* switch triggered when the carriage is near the bed.
*/
//#define PROBE_ACTIVATION_SWITCH
#if ENABLED(PROBE_ACTIVATION_SWITCH)
#define PROBE_ACTIVATION_SWITCH_STATE LOW // State indicating probe is active
//#define PROBE_ACTIVATION_SWITCH_PIN PC6 // Override default pin
#endif
/**
* Tare Probe (determine zero-point) prior to each probe.
* Useful for a strain gauge or piezo sensor that needs to factor out
* elements such as cables pulling on the carriage.
*/
//#define PROBE_TARE
#if ENABLED(PROBE_TARE)
#define PROBE_TARE_TIME 200 // (ms) Time to hold tare pin
#define PROBE_TARE_DELAY 200 // (ms) Delay after tare before
#define PROBE_TARE_STATE HIGH // State to write pin for tare
//#define PROBE_TARE_PIN PA5 // Override default pin
//#define PROBE_TARE_MENU // Display a menu item to tare the probe
#if ENABLED(PROBE_ACTIVATION_SWITCH)
//#define PROBE_TARE_ONLY_WHILE_INACTIVE // Fail to tare/probe if PROBE_ACTIVATION_SWITCH is active
#endif
#endif
/**
* Probe Enable / Disable
* The probe only provides a triggered signal when enabled.
*/
//#define PROBE_ENABLE_DISABLE
#if ENABLED(PROBE_ENABLE_DISABLE)
//#define PROBE_ENABLE_PIN -1 // Override the default pin here
#endif
/**
* Multiple Probing
*
* You may get improved results by probing 2 or more times.
* With EXTRA_PROBING the more atypical reading(s) will be disregarded.
*
* A total of 2 does fast/slow probes with a weighted average.
* A total of 3 or more adds more slow probes, taking the average.
*/
//#define MULTIPLE_PROBING 2
//#define EXTRA_PROBING 1
/**
* Z probes require clearance when deploying, stowing, and moving between
* probe points to avoid hitting the bed and other hardware.
* Servo-mounted probes require extra space for the arm to rotate.
* Inductive probes need space to keep from triggering early.
*
* Use these settings to specify the distance (mm) to raise the probe (or
* lower the bed). The values set here apply over and above any (negative)
* probe Z Offset set with NOZZLE_TO_PROBE_OFFSET, M851, or the LCD.
* Only integer values >= 1 are valid here.
*
* Example: 'M851 Z-5' with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: 'M851 Z+1' with a CLEARANCE of 2 => 2mm from bed to nozzle.
*/
#define Z_CLEARANCE_DEPLOY_PROBE 10 // (mm) Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 5 // (mm) Z Clearance between probe points
#define Z_CLEARANCE_MULTI_PROBE 5 // (mm) Z Clearance between multiple probes
#define Z_PROBE_ERROR_TOLERANCE 3 // (mm) Tolerance for early trigger (<= -probe.offset.z + ZPET)
//#define Z_AFTER_PROBING 5 // (mm) Z position after probing is done
#define Z_PROBE_LOW_POINT -2 // (mm) Farthest distance below the trigger-point to go before stopping
// For M851 provide ranges for adjusting the X, Y, and Z probe offsets
//#define PROBE_OFFSET_XMIN -50 // (mm)
//#define PROBE_OFFSET_XMAX 50 // (mm)
//#define PROBE_OFFSET_YMIN -50 // (mm)
//#define PROBE_OFFSET_YMAX 50 // (mm)
//#define PROBE_OFFSET_ZMIN -20 // (mm)
//#define PROBE_OFFSET_ZMAX 20 // (mm)
// Enable the M48 repeatability test to test probe accuracy
//#define Z_MIN_PROBE_REPEATABILITY_TEST
// Before deploy/stow pause for user confirmation
//#define PAUSE_BEFORE_DEPLOY_STOW
#if ENABLED(PAUSE_BEFORE_DEPLOY_STOW)
//#define PAUSE_PROBE_DEPLOY_WHEN_TRIGGERED // For Manual Deploy Allenkey Probe
#endif
/**
* Enable one or more of the following if probing seems unreliable.
* Heaters and/or fans can be disabled during probing to minimize electrical
* noise. A delay can also be added to allow noise and vibration to settle.
* These options are most useful for the BLTouch probe, but may also improve
* readings with inductive probes and piezo sensors.
*/
//#define PROBING_HEATERS_OFF // Turn heaters off when probing
#if ENABLED(PROBING_HEATERS_OFF)
//#define WAIT_FOR_BED_HEATER // Wait for bed to heat back up between probes (to improve accuracy)
//#define WAIT_FOR_HOTEND // Wait for hotend to heat back up between probes (to improve accuracy & prevent cold extrude)
#endif
//#define PROBING_FANS_OFF // Turn fans off when probing
//#define PROBING_ESTEPPERS_OFF // Turn all extruder steppers off when probing
//#define PROBING_STEPPERS_OFF // Turn all steppers off (unless needed to hold position) when probing (including extruders)
//#define DELAY_BEFORE_PROBING 200 // (ms) To prevent vibrations from triggering piezo sensors
// Require minimum nozzle and/or bed temperature for probing
//#define PREHEAT_BEFORE_PROBING
#if ENABLED(PREHEAT_BEFORE_PROBING)
#define PROBING_NOZZLE_TEMP 120 // (°C) Only applies to E0 at this time
#define PROBING_BED_TEMP 50
#endif
// @section stepper drivers
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :['LOW', 'HIGH']
#define X_ENABLE_ON LOW
#define Y_ENABLE_ON LOW
#define Z_ENABLE_ON LOW
#define E_ENABLE_ON LOW // For all extruders
//#define I_ENABLE_ON LOW
//#define J_ENABLE_ON LOW
//#define K_ENABLE_ON LOW
//#define U_ENABLE_ON LOW
//#define V_ENABLE_ON LOW
//#define W_ENABLE_ON LOW
// Disable axis steppers immediately when they're not being stepped.
// WARNING: When motors turn off there is a chance of losing position accuracy!
//#define DISABLE_X
//#define DISABLE_Y
//#define DISABLE_Z
//#define DISABLE_I
//#define DISABLE_J
//#define DISABLE_K
//#define DISABLE_U
//#define DISABLE_V
//#define DISABLE_W
// Turn off the display blinking that warns about possible accuracy reduction
//#define DISABLE_REDUCED_ACCURACY_WARNING
// @section extruder
//#define DISABLE_E // Disable the extruder when not stepping
#define DISABLE_OTHER_EXTRUDERS // Keep only the active extruder enabled
// @section motion
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false
#define INVERT_Y_DIR true
#define INVERT_Z_DIR false
//#define INVERT_I_DIR false
//#define INVERT_J_DIR false
//#define INVERT_K_DIR false
//#define INVERT_U_DIR false
//#define INVERT_V_DIR false
//#define INVERT_W_DIR false
// @section extruder
// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR true
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
#define INVERT_E4_DIR false
#define INVERT_E5_DIR false
#define INVERT_E6_DIR false
#define INVERT_E7_DIR false
// @section homing
//#define NO_MOTION_BEFORE_HOMING // Inhibit movement until all axes have been homed. Also enable HOME_AFTER_DEACTIVATE for extra safety.
//#define HOME_AFTER_DEACTIVATE // Require rehoming after steppers are deactivated. Also enable NO_MOTION_BEFORE_HOMING for extra safety.
/**
* Set Z_IDLE_HEIGHT if the Z-Axis moves on its own when steppers are disabled.
* - Use a low value (i.e., Z_MIN_POS) if the nozzle falls down to the bed.
* - Use a large value (i.e., Z_MAX_POS) if the bed falls down, away from the nozzle.
*/
//#define Z_IDLE_HEIGHT Z_HOME_POS
//#define Z_CLEARANCE_FOR_HOMING 4 // (mm) Minimal Z height before homing (G28) for Z clearance above the bed, clamps, ...
// You'll need this much clearance above Z_MAX_POS to avoid grinding.
//#define Z_AFTER_HOMING 10 // (mm) Height to move to after homing (if Z was homed)
//#define XY_AFTER_HOMING { 10, 10 } // (mm) Move to an XY position after homing (and raising Z)
//#define EVENT_GCODE_AFTER_HOMING "M300 P440 S200" // Commands to run after G28 (and move to XY_AFTER_HOMING)
// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
//#define I_HOME_DIR -1
//#define J_HOME_DIR -1
//#define K_HOME_DIR -1
//#define U_HOME_DIR -1
//#define V_HOME_DIR -1
//#define W_HOME_DIR -1
/**
* Safety Stops
* If an axis has endstops on both ends the one specified above is used for
* homing, while the other can be used for things like SD_ABORT_ON_ENDSTOP_HIT.
*/
//#define X_SAFETY_STOP
//#define Y_SAFETY_STOP
//#define Z_SAFETY_STOP
//#define I_SAFETY_STOP
//#define J_SAFETY_STOP
//#define K_SAFETY_STOP
//#define U_SAFETY_STOP
//#define V_SAFETY_STOP
//#define W_SAFETY_STOP
// @section geometry
// The size of the printable area
#define X_BED_SIZE 300
#define Y_BED_SIZE 300
// Travel limits (linear=mm, rotational=°) after homing, corresponding to endstop positions.
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS X_BED_SIZE
#define Y_MAX_POS Y_BED_SIZE
#define Z_MAX_POS 400
//#define I_MIN_POS 0
//#define I_MAX_POS 50
//#define J_MIN_POS 0
//#define J_MAX_POS 50
//#define K_MIN_POS 0
//#define K_MAX_POS 50
//#define U_MIN_POS 0
//#define U_MAX_POS 50
//#define V_MIN_POS 0
//#define V_MAX_POS 50
//#define W_MIN_POS 0
//#define W_MAX_POS 50
/**
* Software Endstops
*
* - Prevent moves outside the set machine bounds.
* - Individual axes can be disabled, if desired.
* - X and Y only apply to Cartesian robots.
* - Use 'M211' to set software endstops on/off or report current state
*/
// Min software endstops constrain movement within minimum coordinate bounds
#define MIN_SOFTWARE_ENDSTOPS
#if ENABLED(MIN_SOFTWARE_ENDSTOPS)
#define MIN_SOFTWARE_ENDSTOP_X
#define MIN_SOFTWARE_ENDSTOP_Y
#define MIN_SOFTWARE_ENDSTOP_Z
#define MIN_SOFTWARE_ENDSTOP_I
#define MIN_SOFTWARE_ENDSTOP_J
#define MIN_SOFTWARE_ENDSTOP_K
#define MIN_SOFTWARE_ENDSTOP_U
#define MIN_SOFTWARE_ENDSTOP_V
#define MIN_SOFTWARE_ENDSTOP_W
#endif
// Max software endstops constrain movement within maximum coordinate bounds
#define MAX_SOFTWARE_ENDSTOPS
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
#define MAX_SOFTWARE_ENDSTOP_X
#define MAX_SOFTWARE_ENDSTOP_Y
#define MAX_SOFTWARE_ENDSTOP_Z
#define MAX_SOFTWARE_ENDSTOP_I
#define MAX_SOFTWARE_ENDSTOP_J
#define MAX_SOFTWARE_ENDSTOP_K
#define MAX_SOFTWARE_ENDSTOP_U
#define MAX_SOFTWARE_ENDSTOP_V
#define MAX_SOFTWARE_ENDSTOP_W
#endif
#if ANY(MIN_SOFTWARE_ENDSTOPS, MAX_SOFTWARE_ENDSTOPS)
//#define SOFT_ENDSTOPS_MENU_ITEM // Enable/Disable software endstops from the LCD
#endif
/**
* @section filament runout sensors
*
* Filament Runout Sensors
* Mechanical or opto endstops are used to check for the presence of filament.
*
* IMPORTANT: Runout will only trigger if Marlin is aware that a print job is running.
* Marlin knows a print job is running when:
* 1. Running a print job from media started with M24.
* 2. The Print Job Timer has been started with M75.
* 3. The heaters were turned on and PRINTJOB_TIMER_AUTOSTART is enabled.
*
* RAMPS-based boards use SERVO3_PIN for the first runout sensor.
* For other boards you may need to define FIL_RUNOUT_PIN, FIL_RUNOUT2_PIN, etc.
*/
#define FILAMENT_RUNOUT_SENSOR
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#define FIL_RUNOUT_ENABLED_DEFAULT true // Enable the sensor on startup. Override with M412 followed by M500.
#define NUM_RUNOUT_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_RUNOUT#_PIN for each.
#define FIL_RUNOUT_STATE LOW // Pin state indicating that filament is NOT present.
#define FIL_RUNOUT_PULLUP // Use internal pullup for filament runout pins.
//#define FIL_RUNOUT_PULLDOWN // Use internal pulldown for filament runout pins.
//#define WATCH_ALL_RUNOUT_SENSORS // Execute runout script on any triggering sensor, not only for the active extruder.
// This is automatically enabled for MIXING_EXTRUDERs.
// Override individually if the runout sensors vary
//#define FIL_RUNOUT1_STATE LOW
//#define FIL_RUNOUT1_PULLUP
//#define FIL_RUNOUT1_PULLDOWN
//#define FIL_RUNOUT2_STATE LOW
//#define FIL_RUNOUT2_PULLUP
//#define FIL_RUNOUT2_PULLDOWN
//#define FIL_RUNOUT3_STATE LOW
//#define FIL_RUNOUT3_PULLUP
//#define FIL_RUNOUT3_PULLDOWN
//#define FIL_RUNOUT4_STATE LOW
//#define FIL_RUNOUT4_PULLUP
//#define FIL_RUNOUT4_PULLDOWN
//#define FIL_RUNOUT5_STATE LOW
//#define FIL_RUNOUT5_PULLUP
//#define FIL_RUNOUT5_PULLDOWN
//#define FIL_RUNOUT6_STATE LOW
//#define FIL_RUNOUT6_PULLUP
//#define FIL_RUNOUT6_PULLDOWN
//#define FIL_RUNOUT7_STATE LOW
//#define FIL_RUNOUT7_PULLUP
//#define FIL_RUNOUT7_PULLDOWN
//#define FIL_RUNOUT8_STATE LOW
//#define FIL_RUNOUT8_PULLUP
//#define FIL_RUNOUT8_PULLDOWN
// Commands to execute on filament runout.
// With multiple runout sensors use the %c placeholder for the current tool in commands (e.g., "M600 T%c")
// NOTE: After 'M412 H1' the host handles filament runout and this script does not apply.
#define FILAMENT_RUNOUT_SCRIPT "M25 P\nM24"
// After a runout is detected, continue printing this length of filament
// before executing the runout script. Useful for a sensor at the end of
// a feed tube. Requires 4 bytes SRAM per sensor, plus 4 bytes overhead.
//#define FILAMENT_RUNOUT_DISTANCE_MM 25
#ifdef FILAMENT_RUNOUT_DISTANCE_MM
// Enable this option to use an encoder disc that toggles the runout pin
// as the filament moves. (Be sure to set FILAMENT_RUNOUT_DISTANCE_MM
// large enough to avoid false positives.)
//#define FILAMENT_MOTION_SENSOR
#if ENABLED(FILAMENT_MOTION_SENSOR)
//#define FILAMENT_SWITCH_AND_MOTION
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
#define NUM_MOTION_SENSORS 1 // Number of sensors, up to one per extruder. Define a FIL_MOTION#_PIN for each.
//#define FIL_MOTION1_PIN -1
// Override individually if the motion sensors vary
//#define FIL_MOTION1_STATE LOW
//#define FIL_MOTION1_PULLUP
//#define FIL_MOTION1_PULLDOWN
//#define FIL_MOTION2_STATE LOW
//#define FIL_MOTION2_PULLUP
//#define FIL_MOTION2_PULLDOWN
//#define FIL_MOTION3_STATE LOW
//#define FIL_MOTION3_PULLUP
//#define FIL_MOTION3_PULLDOWN
//#define FIL_MOTION4_STATE LOW
//#define FIL_MOTION4_PULLUP
//#define FIL_MOTION4_PULLDOWN
//#define FIL_MOTION5_STATE LOW
//#define FIL_MOTION5_PULLUP
//#define FIL_MOTION5_PULLDOWN
//#define FIL_MOTION6_STATE LOW
//#define FIL_MOTION6_PULLUP
//#define FIL_MOTION6_PULLDOWN
//#define FIL_MOTION7_STATE LOW
//#define FIL_MOTION7_PULLUP
//#define FIL_MOTION7_PULLDOWN
//#define FIL_MOTION8_STATE LOW
//#define FIL_MOTION8_PULLUP
//#define FIL_MOTION8_PULLDOWN
#endif
#endif // FILAMENT_MOTION_SENSOR
#endif // FILAMENT_RUNOUT_DISTANCE_MM
#endif // FILAMENT_RUNOUT_SENSOR
//===========================================================================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section calibrate
/**
* Choose one of the options below to enable G29 Bed Leveling. The parameters
* and behavior of G29 will change depending on your selection.
*
* If using a Probe for Z Homing, enable Z_SAFE_HOMING also!
*
* - AUTO_BED_LEVELING_3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed.
*
* - AUTO_BED_LEVELING_LINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed.
*
* - AUTO_BED_LEVELING_BILINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - AUTO_BED_LEVELING_UBL (Unified Bed Leveling)
* A comprehensive bed leveling system combining the features and benefits
* of other systems. UBL also includes integrated Mesh Generation, Mesh
* Validation and Mesh Editing systems.
*
* - MESH_BED_LEVELING
* Probe a grid manually
* The result is a mesh, suitable for large or uneven beds. (See BILINEAR.)
* For machines without a probe, Mesh Bed Leveling provides a method to perform
* leveling in steps so you can manually adjust the Z height at each grid-point.
* With an LCD controller the process is guided step-by-step.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define AUTO_BED_LEVELING_UBL
//#define MESH_BED_LEVELING
/**
* Commands to execute at the start of G29 probing,
* after switching to the PROBING_TOOL.
*/
//#define EVENT_GCODE_BEFORE_G29 "M300 P440 S200"
/**
* Commands to execute at the end of G29 probing.
* Useful to retract or move the Z probe out of the way.
*/
//#define EVENT_GCODE_AFTER_G29 "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"
/**
* Normally G28 leaves leveling disabled on completion. Enable one of
* these options to restore the prior leveling state or to always enable
* leveling immediately after G28.
*/
//#define RESTORE_LEVELING_AFTER_G28
//#define ENABLE_LEVELING_AFTER_G28
/**
* Auto-leveling needs preheating
*/
//#define PREHEAT_BEFORE_LEVELING
#if ENABLED(PREHEAT_BEFORE_LEVELING)
#define LEVELING_NOZZLE_TEMP 120 // (°C) Only applies to E0 at this time
#define LEVELING_BED_TEMP 50
#endif
/**
* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
* NOTE: Requires a lot of flash!
*/
//#define DEBUG_LEVELING_FEATURE
#if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_UBL, PROBE_MANUALLY)
// Set a height for the start of manual adjustment
#define MANUAL_PROBE_START_Z 0.2 // (mm) Comment out to use the last-measured height
#endif
#if ANY(MESH_BED_LEVELING, AUTO_BED_LEVELING_BILINEAR, AUTO_BED_LEVELING_UBL)
/**
* Gradually reduce leveling correction until a set height is reached,
* at which point movement will be level to the machine's XY plane.
* The height can be set with M420 Z
*/
#define ENABLE_LEVELING_FADE_HEIGHT
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
#define DEFAULT_LEVELING_FADE_HEIGHT 10.0 // (mm) Default fade height.
#endif
/**
* For Cartesian machines, instead of dividing moves on mesh boundaries,
* split up moves into short segments like a Delta. This follows the
* contours of the bed more closely than edge-to-edge straight moves.
*/
#define SEGMENT_LEVELED_MOVES
#define LEVELED_SEGMENT_LENGTH 5.0 // (mm) Length of all segments (except the last one)
/**
* Enable the G26 Mesh Validation Pattern tool.
*/
//#define G26_MESH_VALIDATION
#if ENABLED(G26_MESH_VALIDATION)
#define MESH_TEST_NOZZLE_SIZE 0.4 // (mm) Diameter of primary nozzle.
#define MESH_TEST_LAYER_HEIGHT 0.2 // (mm) Default layer height for G26.
#define MESH_TEST_HOTEND_TEMP 205 // (°C) Default nozzle temperature for G26.
#define MESH_TEST_BED_TEMP 60 // (°C) Default bed temperature for G26.
#define G26_XY_FEEDRATE 20 // (mm/s) Feedrate for G26 XY moves.
#define G26_XY_FEEDRATE_TRAVEL 100 // (mm/s) Feedrate for G26 XY travel moves.
#define G26_RETRACT_MULTIPLIER 1.0 // G26 Q (retraction) used by default between mesh test elements.
#endif
#endif
#if ANY(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
#define GRID_MAX_POINTS_X 3
#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X
// Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Beyond the probed grid, continue the implied tilt?
// Default is to maintain the height of the nearest edge.
//#define EXTRAPOLATE_BEYOND_GRID
//
// Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
//
//#define ABL_BILINEAR_SUBDIVISION
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
// Number of subdivisions between probe points
#define BILINEAR_SUBDIVISIONS 3
#endif
#endif
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
//#define MESH_EDIT_GFX_OVERLAY // Display a graphics overlay while editing the mesh
#define MESH_INSET 1 // Set Mesh bounds as an inset region of the bed
#define GRID_MAX_POINTS_X 10 // Don't use more than 15 points per axis, implementation limited.
#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X
//#define UBL_HILBERT_CURVE // Use Hilbert distribution for less travel when probing multiple points
//#define UBL_TILT_ON_MESH_POINTS // Use nearest mesh points with G29 J for better Z reference
//#define UBL_TILT_ON_MESH_POINTS_3POINT // Use nearest mesh points with G29 J0 (3-point)
#define UBL_MESH_EDIT_MOVES_Z // Sophisticated users prefer no movement of nozzle
#define UBL_SAVE_ACTIVE_ON_M500 // Save the currently active mesh in the current slot on M500
//#define UBL_Z_RAISE_WHEN_OFF_MESH 2.5 // When the nozzle is off the mesh, this value is used
// as the Z-Height correction value.
//#define UBL_MESH_WIZARD // Run several commands in a row to get a complete mesh
/**
* Probing not allowed within the position of an obstacle.
*/
//#define AVOID_OBSTACLES
#if ENABLED(AVOID_OBSTACLES)
#define CLIP_W 23 // Bed clip width, should be padded a few mm over its physical size
#define CLIP_H 14 // Bed clip height, should be padded a few mm over its physical size
// Obstacle Rectangles defined as { X1, Y1, X2, Y2 }
#define OBSTACLE1 { (X_BED_SIZE) / 4 - (CLIP_W) / 2, 0, (X_BED_SIZE) / 4 + (CLIP_W) / 2, CLIP_H }
#define OBSTACLE2 { (X_BED_SIZE) * 3 / 4 - (CLIP_W) / 2, 0, (X_BED_SIZE) * 3 / 4 + (CLIP_W) / 2, CLIP_H }
#define OBSTACLE3 { (X_BED_SIZE) / 4 - (CLIP_W) / 2, (Y_BED_SIZE) - (CLIP_H), (X_BED_SIZE) / 4 + (CLIP_W) / 2, Y_BED_SIZE }
#define OBSTACLE4 { (X_BED_SIZE) * 3 / 4 - (CLIP_W) / 2, (Y_BED_SIZE) - (CLIP_H), (X_BED_SIZE) * 3 / 4 + (CLIP_W) / 2, Y_BED_SIZE }
// The probed grid must be inset for G29 J. This is okay, since it is
// only used to compute a linear transformation for the mesh itself.
#define G29J_MESH_TILT_MARGIN ((CLIP_H) + 1)
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MESH_INSET 10 // Set Mesh bounds as an inset region of the bed
#define GRID_MAX_POINTS_X 3 // Don't use more than 7 points per axis, implementation limited.
#define GRID_MAX_POINTS_Y GRID_MAX_POINTS_X
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
#endif // BED_LEVELING
/**
* Add a bed leveling sub-menu for ABL or MBL.
* Include a guided procedure if manual probing is enabled.
*/
//#define LCD_BED_LEVELING
#if ENABLED(LCD_BED_LEVELING)
#define MESH_EDIT_Z_STEP 0.025 // (mm) Step size while manually probing Z axis.
#define LCD_PROBE_Z_RANGE 4 // (mm) Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_EDIT_MENU // Add a menu to edit mesh points
#endif
// Add a menu item to move between bed corners for manual bed adjustment
#define LCD_BED_TRAMMING
#if ENABLED(LCD_BED_TRAMMING)
#define BED_TRAMMING_INSET_LFRB { 30, 30, 30, 30 } // (mm) Left, Front, Right, Back insets
#define BED_TRAMMING_HEIGHT 0.2 // (mm) Z height of nozzle at tramming points
#define BED_TRAMMING_Z_HOP 4.0 // (mm) Z raise between tramming points
//#define BED_TRAMMING_INCLUDE_CENTER // Move to the center after the last corner
//#define BED_TRAMMING_USE_PROBE
#if ENABLED(BED_TRAMMING_USE_PROBE)
#define BED_TRAMMING_PROBE_TOLERANCE 0.1 // (mm)
#define BED_TRAMMING_VERIFY_RAISED // After adjustment triggers the probe, re-probe to verify
//#define BED_TRAMMING_AUDIO_FEEDBACK
#endif
/**
* Corner Leveling Order
*
* Set 2 or 4 points. When 2 points are given, the 3rd is the center of the opposite edge.
*
* LF Left-Front RF Right-Front
* LB Left-Back RB Right-Back
*
* Examples:
*
* Default {LF,RB,LB,RF} {LF,RF} {LB,LF}
* LB --------- RB LB --------- RB LB --------- RB LB --------- RB
* | 4 3 | | 3 2 | | <3> | | 1 |
* | | | | | | | <3>|
* | 1 2 | | 1 4 | | 1 2 | | 2 |
* LF --------- RF LF --------- RF LF --------- RF LF --------- RF
*/
#define BED_TRAMMING_LEVELING_ORDER { LF, RF, RB, LB }
#endif
// @section homing
// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0
// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0
//#define MANUAL_I_HOME_POS 0
//#define MANUAL_J_HOME_POS 0
//#define MANUAL_K_HOME_POS 0
//#define MANUAL_U_HOME_POS 0
//#define MANUAL_V_HOME_POS 0
//#define MANUAL_W_HOME_POS 0
/**
* Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
*
* - Moves the Z probe (or nozzle) to a defined XY point before Z homing.
* - Allows Z homing only when XY positions are known and trusted.
* - If stepper drivers sleep, XY homing may be required again before Z homing.
*/
//#define Z_SAFE_HOMING
#if ENABLED(Z_SAFE_HOMING)
#define Z_SAFE_HOMING_X_POINT X_CENTER // (mm) X point for Z homing
#define Z_SAFE_HOMING_Y_POINT 4
//#define Z_SAFE_HOMING_POINT_ABSOLUTE // Ignore home offsets (M206) for Z homing position
#endif
// Homing speeds (linear=mm/min, rotational=°/min)
#define HOMING_FEEDRATE_MM_M { (40*60), (40*60), (4*60) }
// Edit homing feedrates with M210 and MarlinUI menu items
//#define EDITABLE_HOMING_FEEDRATE
// Validate that endstops are triggered on homing moves
#define VALIDATE_HOMING_ENDSTOPS
// @section calibrate
/**
* Bed Skew Compensation
*
* This feature corrects for misalignment in the XYZ axes.
*
* Take the following steps to get the bed skew in the XY plane:
* 1. Print a test square (e.g., https://www.thingiverse.com/thing:2563185)
* 2. For XY_DIAG_AC measure the diagonal A to C
* 3. For XY_DIAG_BD measure the diagonal B to D
* 4. For XY_SIDE_AD measure the edge A to D
*
* Marlin automatically computes skew factors from these measurements.
* Skew factors may also be computed and set manually:
*
* - Compute AB : SQRT(2*AC*AC+2*BD*BD-4*AD*AD)/2
* - XY_SKEW_FACTOR : TAN(PI/2-ACOS((AC*AC-AB*AB-AD*AD)/(2*AB*AD)))
*
* If desired, follow the same procedure for XZ and YZ.
* Use these diagrams for reference:
*
* Y Z Z
* ^ B-------C ^ B-------C ^ B-------C
* | / / | / / | / /
* | / / | / / | / /
* | A-------D | A-------D | A-------D
* +-------------->X +-------------->X +-------------->Y
* XY_SKEW_FACTOR XZ_SKEW_FACTOR YZ_SKEW_FACTOR
*/
//#define SKEW_CORRECTION
#if ENABLED(SKEW_CORRECTION)
// Input all length measurements here:
#define XY_DIAG_AC 282.8427124746
#define XY_DIAG_BD 282.8427124746
#define XY_SIDE_AD 200
// Or, set the XY skew factor directly:
//#define XY_SKEW_FACTOR 0.0
//#define SKEW_CORRECTION_FOR_Z
#if ENABLED(SKEW_CORRECTION_FOR_Z)
#define XZ_DIAG_AC 282.8427124746
#define XZ_DIAG_BD 282.8427124746
#define YZ_DIAG_AC 282.8427124746
#define YZ_DIAG_BD 282.8427124746
#define YZ_SIDE_AD 200
// Or, set the Z skew factors directly:
//#define XZ_SKEW_FACTOR 0.0
//#define YZ_SKEW_FACTOR 0.0
#endif
// Enable this option for M852 to set skew at runtime
//#define SKEW_CORRECTION_GCODE
#endif
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// @section eeprom
/**
* EEPROM
*
* Persistent storage to preserve configurable settings across reboots.
*
* M500 - Store settings to EEPROM.
* M501 - Read settings from EEPROM. (i.e., Throw away unsaved changes)
* M502 - Revert settings to "factory" defaults. (Follow with M500 to init the EEPROM.)
*/
#define EEPROM_SETTINGS // Persistent storage with M500 and M501
//#define DISABLE_M503 // Saves ~2700 bytes of flash. Disable for release!
#define EEPROM_CHITCHAT // Give feedback on EEPROM commands. Disable to save flash.
#define EEPROM_BOOT_SILENT // Keep M503 quiet and only give errors during first load
#if ENABLED(EEPROM_SETTINGS)
//#define EEPROM_AUTO_INIT // Init EEPROM automatically on any errors.
//#define EEPROM_INIT_NOW // Init EEPROM on first boot after a new build.
#endif
// @section host
//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
#define BUSY_WHILE_HEATING // Some hosts require "busy" messages even during heating
// @section units
//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT
//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT
// @section temperature
//
// Preheat Constants - Up to 10 are supported without changes
//
#define PREHEAT_1_LABEL "PLA"
#define PREHEAT_1_TEMP_HOTEND 200
#define PREHEAT_1_TEMP_BED 60
#define PREHEAT_1_TEMP_CHAMBER 35
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255
#define PREHEAT_2_LABEL "ABS"
#define PREHEAT_2_TEMP_HOTEND 230
#define PREHEAT_2_TEMP_BED 80
#define PREHEAT_2_TEMP_CHAMBER 35
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255
/**
* @section nozzle park
*
* Nozzle Park
*
* Park the nozzle at the given XYZ position on idle or G27.
*
* The "P" parameter controls the action applied to the Z axis:
*
* P0 (Default) If Z is below park Z raise the nozzle.
* P1 Raise the nozzle always to Z-park height.
* P2 Raise the nozzle by Z-park amount, limited to Z_MAX_POS.
*/
#define NOZZLE_PARK_FEATURE
#if ENABLED(NOZZLE_PARK_FEATURE)
// Specify a park position as { X, Y, Z_raise }
#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
#define NOZZLE_PARK_MOVE 0 // Park motion: 0 = XY Move, 1 = X Only, 2 = Y Only, 3 = X before Y, 4 = Y before X
#define NOZZLE_PARK_Z_RAISE_MIN 2 // (mm) Always raise Z by at least this distance
#define NOZZLE_PARK_XY_FEEDRATE 100 // (mm/s) X and Y axes feedrate (also used for delta Z axis)
#define NOZZLE_PARK_Z_FEEDRATE 5 // (mm/s) Z axis feedrate (not used for delta printers)
#endif
/**
* @section nozzle clean
*
* Clean Nozzle Feature
*
* Adds the G12 command to perform a nozzle cleaning process.
*
* Parameters:
* P Pattern
* S Strokes / Repetitions
* T Triangles (P1 only)
*
* Patterns:
* P0 Straight line (default). This process requires a sponge type material
* at a fixed bed location. "S" specifies strokes (i.e. back-forth motions)
* between the start / end points.
*
* P1 Zig-zag pattern between (X0, Y0) and (X1, Y1), "T" specifies the
* number of zig-zag triangles to do. "S" defines the number of strokes.
* Zig-zags are done in whichever is the narrower dimension.
* For example, "G12 P1 S1 T3" will execute:
*
* --
* | (X0, Y1) | /\ /\ /\ | (X1, Y1)
* | | / \ / \ / \ |
* A | | / \ / \ / \ |
* | | / \ / \ / \ |
* | (X0, Y0) | / \/ \/ \ | (X1, Y0)
* -- +--------------------------------+
* |________|_________|_________|
* T1 T2 T3
*
* P2 Circular pattern with middle at NOZZLE_CLEAN_CIRCLE_MIDDLE.
* "R" specifies the radius. "S" specifies the stroke count.
* Before starting, the nozzle moves to NOZZLE_CLEAN_START_POINT.
*
* Caveats: The ending Z should be the same as starting Z.
*/
//#define NOZZLE_CLEAN_FEATURE
#if ENABLED(NOZZLE_CLEAN_FEATURE)
#define NOZZLE_CLEAN_PATTERN_LINE // Provide 'G12 P0' - a simple linear cleaning pattern
#define NOZZLE_CLEAN_PATTERN_ZIGZAG // Provide 'G12 P1' - a zigzag cleaning pattern
#define NOZZLE_CLEAN_PATTERN_CIRCLE // Provide 'G12 P2' - a circular cleaning pattern
// Default pattern to use when 'P' is not provided to G12. One of the enabled options above.
#define NOZZLE_CLEAN_DEFAULT_PATTERN 0
#define NOZZLE_CLEAN_STROKES 12 // Default number of pattern repetitions
#if ENABLED(NOZZLE_CLEAN_PATTERN_ZIGZAG)
#define NOZZLE_CLEAN_TRIANGLES 3 // Default number of triangles
#endif
// Specify positions for each tool as { { X, Y, Z }, { X, Y, Z } }
// Dual hotend system may use { { -20, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }, { 420, (Y_BED_SIZE / 2), (Z_MIN_POS + 1) }}
#define NOZZLE_CLEAN_START_POINT { { 30, 30, (Z_MIN_POS + 1) } }
#define NOZZLE_CLEAN_END_POINT { { 100, 60, (Z_MIN_POS + 1) } }
#if ENABLED(NOZZLE_CLEAN_PATTERN_CIRCLE)
#define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5 // (mm) Circular pattern radius
#define NOZZLE_CLEAN_CIRCLE_FN 10 // Circular pattern circle number of segments
#define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT // Middle point of circle
#endif
// Move the nozzle to the initial position after cleaning
#define NOZZLE_CLEAN_GOBACK
// For a purge/clean station that's always at the gantry height (thus no Z move)
//#define NOZZLE_CLEAN_NO_Z
// For a purge/clean station mounted on the X axis
//#define NOZZLE_CLEAN_NO_Y
// Require a minimum hotend temperature for cleaning
#define NOZZLE_CLEAN_MIN_TEMP 170
//#define NOZZLE_CLEAN_HEATUP // Heat up the nozzle instead of skipping wipe
// Explicit wipe G-code script applies to a G12 with no arguments.
//#define WIPE_SEQUENCE_COMMANDS "G1 X-17 Y25 Z10 F4000\nG1 Z1\nM114\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 X-17 Y25\nG1 X-17 Y95\nG1 Z15\nM400\nG0 X-10.0 Y-9.0"
#endif
// @section host
/**
* Print Job Timer
*
* Automatically start and stop the print job timer on M104/M109/M140/M190/M141/M191.
* The print job timer will only be stopped if the bed/chamber target temp is
* below BED_MINTEMP/CHAMBER_MINTEMP.
*
* M104 (hotend, no wait) - high temp = none, low temp = stop timer
* M109 (hotend, wait) - high temp = start timer, low temp = stop timer
* M140 (bed, no wait) - high temp = none, low temp = stop timer
* M190 (bed, wait) - high temp = start timer, low temp = none
* M141 (chamber, no wait) - high temp = none, low temp = stop timer
* M191 (chamber, wait) - high temp = start timer, low temp = none
*
* For M104/M109, high temp is anything over EXTRUDE_MINTEMP / 2.
* For M140/M190, high temp is anything over BED_MINTEMP.
* For M141/M191, high temp is anything over CHAMBER_MINTEMP.
*
* The timer can also be controlled with the following commands:
*
* M75 - Start the print job timer
* M76 - Pause the print job timer
* M77 - Stop the print job timer
*/
#define PRINTJOB_TIMER_AUTOSTART
// @section stats
/**
* Print Counter
*
* Track statistical data such as:
*
* - Total print jobs
* - Total successful print jobs
* - Total failed print jobs
* - Total time printing
*
* View the current statistics with M78.
*/
//#define PRINTCOUNTER
#if ENABLED(PRINTCOUNTER)
#define PRINTCOUNTER_SAVE_INTERVAL 60 // (minutes) EEPROM save interval during print. A value of 0 will save stats at end of print.
#endif
// @section security
/**
* Password
*
* Set a numerical password for the printer which can be requested:
*
* - When the printer boots up
* - Upon opening the 'Print from Media' Menu
* - When SD printing is completed or aborted
*
* The following G-codes can be used:
*
* M510 - Lock Printer. Blocks all commands except M511.
* M511 - Unlock Printer.
* M512 - Set, Change and Remove Password.
*
* If you forget the password and get locked out you'll need to re-flash
* the firmware with the feature disabled, reset EEPROM, and (optionally)
* re-flash the firmware again with this feature enabled.
*/
//#define PASSWORD_FEATURE
#if ENABLED(PASSWORD_FEATURE)
#define PASSWORD_LENGTH 4 // (#) Number of digits (1-9). 3 or 4 is recommended
#define PASSWORD_ON_STARTUP
#define PASSWORD_UNLOCK_GCODE // Unlock with the M511 P command. Disable to prevent brute-force attack.
#define PASSWORD_CHANGE_GCODE // Change the password with M512 P S.
//#define PASSWORD_ON_SD_PRINT_MENU // This does not prevent G-codes from running
//#define PASSWORD_AFTER_SD_PRINT_END
//#define PASSWORD_AFTER_SD_PRINT_ABORT
//#include "Configuration_Secure.h" // External file with PASSWORD_DEFAULT_VALUE
#endif
// @section media
/**
* SD CARD
*
* SD Card support is disabled by default. If your controller has an SD slot,
* you must uncomment the following option or it won't work.
*/
#define SDSUPPORT
/**
* SD CARD: ENABLE CRC
*
* Use CRC checks and retries on the SD communication.
*/
#if ENABLED(SDSUPPORT)
//#define SD_CHECK_AND_RETRY
#endif
// @section interface
/**
* LCD LANGUAGE
*
* Select the language to display on the LCD. These languages are available:
*
* en, an, bg, ca, cz, da, de, el, el_CY, es, eu, fi, fr, gl, hr, hu, it,
* jp_kana, ko_KR, nl, pl, pt, pt_br, ro, ru, sk, sv, tr, uk, vi, zh_CN, zh_TW
*
* :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cz':'Czech', 'da':'Danish', 'de':'German', 'el':'Greek (Greece)', 'el_CY':'Greek (Cyprus)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'hu':'Hungarian', 'it':'Italian', 'jp_kana':'Japanese', 'ko_KR':'Korean (South Korea)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt_br':'Portuguese (Brazilian)', 'ro':'Romanian', 'ru':'Russian', 'sk':'Slovak', 'sv':'Swedish', 'tr':'Turkish', 'uk':'Ukrainian', 'vi':'Vietnamese', 'zh_CN':'Chinese (Simplified)', 'zh_TW':'Chinese (Traditional)' }
*/
#define LCD_LANGUAGE en
/**
* LCD Character Set
*
* Note: This option is NOT applicable to Graphical Displays.
*
* All character-based LCDs provide ASCII plus one of these
* language extensions:
*
* - JAPANESE ... the most common
* - WESTERN ... with more accented characters
* - CYRILLIC ... for the Russian language
*
* To determine the language extension installed on your controller:
*
* - Compile and upload with LCD_LANGUAGE set to 'test'
* - Click the controller to view the LCD menu
* - The LCD will display Japanese, Western, or Cyrillic text
*
* See https://marlinfw.org/docs/development/lcd_language.html
*
* :['JAPANESE', 'WESTERN', 'CYRILLIC']
*/
#define DISPLAY_CHARSET_HD44780 JAPANESE
/**
* Info Screen Style (0:Classic, 1:Průša, 2:CNC)
*
* :[0:'Classic', 1:'Průša', 2:'CNC']
*/
#define LCD_INFO_SCREEN_STYLE 0
/**
* LCD Menu Items
*
* Disable all menus and only display the Status Screen, or
* just remove some extraneous menu items to recover space.
*/
//#define NO_LCD_MENUS
//#define SLIM_LCD_MENUS
//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 4
//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 1
/**
* Encoder Direction Options
*
* Test your encoder's behavior first with both options disabled.
*
* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.
* Reversed Value Editing only? Enable BOTH options.
*/
//
// This option reverses the encoder direction everywhere.
//
// Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION
//
// This option reverses the encoder direction for navigating LCD menus.
//
// If CLOCKWISE normally moves DOWN this makes it go UP.
// If CLOCKWISE normally moves UP this makes it go DOWN.
//
//#define REVERSE_MENU_DIRECTION
//
// This option reverses the encoder direction for Select Screen.
//
// If CLOCKWISE normally moves LEFT this makes it go RIGHT.
// If CLOCKWISE normally moves RIGHT this makes it go LEFT.
//
//#define REVERSE_SELECT_DIRECTION
//
// Encoder EMI Noise Filter
//
// This option increases encoder samples to filter out phantom encoder clicks caused by EMI noise.
//
//#define ENCODER_NOISE_FILTER
#if ENABLED(ENCODER_NOISE_FILTER)
#define ENCODER_SAMPLES 10
#endif
//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
#define INDIVIDUAL_AXIS_HOMING_MENU
//#define INDIVIDUAL_AXIS_HOMING_SUBMENU
//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
//#define SPEAKER
//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
// M300 S P
//
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 2
//#define LCD_FEEDBACK_FREQUENCY_HZ 5000
//
// Tone queue size, used to keep beeps from blocking execution.
// Default is 4, or override here. Costs 4 bytes of SRAM per entry.
//
//#define TONE_QUEUE_LENGTH 4
//
// A sequence of tones to play at startup, in pairs of tone (Hz), duration (ms).
// Silence in-between tones.
//
//#define STARTUP_TUNE { 698, 300, 0, 50, 523, 50, 0, 25, 494, 50, 0, 25, 523, 100, 0, 50, 554, 300, 0, 100, 523, 300 }
//=============================================================================
//======================== LCD / Controller Selection =========================
//======================== (Character-based LCDs) =========================
//=============================================================================
// @section lcd
//
// RepRapDiscount Smart Controller.
// https://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
//
// GT2560 (YHCB2004) LCD Display
//
// Requires Testato, Koepel softwarewire library and
// Andriy Golovnya's LiquidCrystal_AIP31068 library.
//
//#define YHCB2004
//
// Original RADDS LCD Display+Encoder+SDCardReader
// https://web.archive.org/web/20200719145306/doku.radds.org/dokumentation/lcd-display/
//
//#define RADDS_DISPLAY
//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER
//
// ULTIPANEL as seen on Thingiverse.
//
//#define ULTIPANEL
//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// https://reprap.org/wiki/PanelOne
//
//#define PANEL_ONE
//
// GADGETS3D G3D LCD/SD Controller
// https://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL
//
// RigidBot Panel V1.0
//
//#define RIGIDBOT_PANEL
//
// Makeboard 3D Printer Parts 3D Printer Mini Display 1602 Mini Controller
// https://www.aliexpress.com/item/32765887917.html
//
//#define MAKEBOARD_MINI_2_LINE_DISPLAY_1602
//
// ANET and Tronxy 20x4 Controller
//
//#define ZONESTAR_LCD // Requires ADC_KEYPAD_PIN to be assigned to an analog pin.
// This LCD is known to be susceptible to electrical interference
// which scrambles the display. Pressing any button clears it up.
// This is a LCD2004 display with 5 analog buttons.
//
// Generic 16x2, 16x4, 20x2, or 20x4 character-based LCD.
//
//#define ULTRA_LCD
//=============================================================================
//======================== LCD / Controller Selection =========================
//===================== (I2C and Shift-Register LCDs) =====================
//=============================================================================
//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//
//
// Elefu RA Board Control Panel
// https://web.archive.org/web/20140823033947/www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL
//
// Sainsmart (YwRobot) LCD Displays
//
// These require LiquidCrystal_I2C library:
// https://github.com/MarlinFirmware/New-LiquidCrystal
// https://github.com/fmalpartida/New-LiquidCrystal/wiki
//
//#define LCD_SAINSMART_I2C_1602
//#define LCD_SAINSMART_I2C_2004
//
// Generic LCM1602 LCD adapter
//
//#define LCM1602
//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2
//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI
//
// CONTROLLER TYPE: Shift register panels
//
//
// 2-wire Non-latching LCD SR from https://github.com/fmalpartida/New-LiquidCrystal/wiki/schematics#user-content-ShiftRegister_connection
// LCD configuration: https://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD
//
// 3-wire SR LCD with strobe using 74HC4094
// https://github.com/mikeshub/SailfishLCD
// Uses the code directly from Sailfish
//
//#define FF_INTERFACEBOARD
//
// TFT GLCD Panel with Marlin UI
// Panel connected to main board by SPI or I2C interface.
// See https://github.com/Serhiy-K/TFTGLCDAdapter
//
//#define TFTGLCD_PANEL_SPI
//#define TFTGLCD_PANEL_I2C
//=============================================================================
//======================= LCD / Controller Selection =======================
//========================= (Graphical LCDs) ========================
//=============================================================================
//
// CONTROLLER TYPE: Graphical 128x64 (DOGM)
//
// IMPORTANT: The U8glib library is required for Graphical Display!
// https://github.com/olikraus/U8glib_Arduino
//
// NOTE: If the LCD is unresponsive you may need to reverse the plugs.
//
//
// RepRapDiscount FULL GRAPHIC Smart Controller
// https://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
//
// K.3D Full Graphic Smart Controller
//
//#define K3D_FULL_GRAPHIC_SMART_CONTROLLER
//
// ReprapWorld Graphical LCD
// https://reprapworld.com/electronics/3d-printer-modules/autonomous-printing/graphical-lcd-screen-v1-0/
//
//#define REPRAPWORLD_GRAPHICAL_LCD
//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// https://www.panucatt.com
//
//#define VIKI2
//#define miniVIKI
//
// Alfawise Ex8 printer LCD marked as WYH L12864 COG
//
//#define WYH_L12864
//
// MakerLab Mini Panel with graphic
// controller and SD support - https://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL
//
// MaKr3d Makr-Panel with graphic controller and SD support.
// https://reprap.org/wiki/MaKrPanel
//
//#define MAKRPANEL
//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER
//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER
//
// Cartesio UI
// https://web.archive.org/web/20180605050442/mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI
//
// LCD for Melzi Card with Graphical LCD
//
//#define LCD_FOR_MELZI
//
// Original Ulticontroller from Ultimaker 2 printer with SSD1309 I2C display and encoder
// https://github.com/Ultimaker/Ultimaker2/tree/master/1249_Ulticontroller_Board_(x1)
//
//#define ULTI_CONTROLLER
//
// MKS MINI12864 with graphic controller and SD support
// https://reprap.org/wiki/MKS_MINI_12864
//
//#define MKS_MINI_12864
//
// MKS MINI12864 V3 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight.
//
//#define MKS_MINI_12864_V3
//
// MKS LCD12864A/B with graphic controller and SD support. Follows MKS_MINI_12864 pinout.
// https://www.aliexpress.com/item/33018110072.html
//
//#define MKS_LCD12864A
//#define MKS_LCD12864B
//
// FYSETC variant of the MINI12864 graphic controller with SD support
// https://wiki.fysetc.com/Mini12864_Panel/
//
//#define FYSETC_MINI_12864_X_X // Type C/D/E/F. No tunable RGB Backlight by default
//#define FYSETC_MINI_12864_1_2 // Type C/D/E/F. Simple RGB Backlight (always on)
//#define FYSETC_MINI_12864_2_0 // Type A/B. Discreet RGB Backlight
//#define FYSETC_MINI_12864_2_1 // Type A/B. NeoPixel RGB Backlight
//#define FYSETC_GENERIC_12864_1_1 // Larger display with basic ON/OFF backlight.
//
// BigTreeTech Mini 12864 V1.0 / V2.0 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight.
// https://github.com/bigtreetech/MINI-12864
//
//#define BTT_MINI_12864
//
// BEEZ MINI 12864 is an alias for FYSETC_MINI_12864_2_1. Type A/B. NeoPixel RGB Backlight.
//
//#define BEEZ_MINI_12864
//
// Factory display for Creality CR-10 / CR-7 / Ender-3
// https://marlinfw.org/docs/hardware/controllers.html#cr10_stockdisplay
//
// Connect to EXP1 on RAMPS and compatible boards.
//
#define CR10_STOCKDISPLAY
//
// Ender-2 OEM display, a variant of the MKS_MINI_12864
//
//#define ENDER2_STOCKDISPLAY
//
// ANET and Tronxy 128×64 Full Graphics Controller as used on Anet A6
//
//#define ANET_FULL_GRAPHICS_LCD
//
// GUCOCO CTC 128×64 Full Graphics Controller as used on GUCOCO CTC A10S
//
//#define CTC_A10S_A13
//
// AZSMZ 12864 LCD with SD
// https://www.aliexpress.com/item/32837222770.html
//
//#define AZSMZ_12864
//
// Silvergate GLCD controller
// https://github.com/android444/Silvergate
//
//#define SILVER_GATE_GLCD_CONTROLLER
//
// eMotion Tech LCD with SD
// https://www.reprap-france.com/produit/1234568748-ecran-graphique-128-x-64-points-2-1
//
//#define EMOTION_TECH_LCD
//=============================================================================
//============================== OLED Displays ==============================
//=============================================================================
//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306
//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
#define U8GLIB_SSD1306
//#define U8GLIB_SH1106
#endif
//
// TinyBoy2 128x64 OLED / Encoder Panel
//
//#define OLED_PANEL_TINYBOY2
//
// MKS OLED 1.3" 128×64 Full Graphics Controller
// https://reprap.org/wiki/MKS_12864OLED
//
// Tiny, but very sharp OLED display
//
//#define MKS_12864OLED // Uses the SH1106 controller (default)
//#define MKS_12864OLED_SSD1306 // Uses the SSD1306 controller
//
// Zonestar OLED 128×64 Full Graphics Controller
//
//#define ZONESTAR_12864LCD // Graphical (DOGM) with ST7920 controller
//#define ZONESTAR_12864OLED // 1.3" OLED with SH1106 controller (default)
//#define ZONESTAR_12864OLED_SSD1306 // 0.96" OLED with SSD1306 controller
//
// Einstart S OLED SSD1306
//
//#define U8GLIB_SH1106_EINSTART
//
// Overlord OLED display/controller with i2c buzzer and LEDs
//
//#define OVERLORD_OLED
//
// FYSETC OLED 2.42" 128×64 Full Graphics Controller with WS2812 RGB
// Where to find : https://www.aliexpress.com/item/4000345255731.html
//#define FYSETC_242_OLED_12864 // Uses the SSD1309 controller
//
// K.3D SSD1309 OLED 2.42" 128×64 Full Graphics Controller
//
//#define K3D_242_OLED_CONTROLLER // Software SPI
//=============================================================================
//========================== Extensible UI Displays ===========================
//=============================================================================
/**
* DGUS Touch Display with DWIN OS. (Choose one.)
*
* ORIGIN (Marlin DWIN_SET)
* - Download https://github.com/coldtobi/Marlin_DGUS_Resources
* - Copy the downloaded DWIN_SET folder to the SD card.
* - Product: https://www.aliexpress.com/item/32993409517.html
*
* FYSETC (Supplier default)
* - Download https://github.com/FYSETC/FYSTLCD-2.0
* - Copy the downloaded SCREEN folder to the SD card.
* - Product: https://www.aliexpress.com/item/32961471929.html
*
* HIPRECY (Supplier default)
* - Download https://github.com/HiPrecy/Touch-Lcd-LEO
* - Copy the downloaded DWIN_SET folder to the SD card.
*
* MKS (MKS-H43) (Supplier default)
* - Download https://github.com/makerbase-mks/MKS-H43
* - Copy the downloaded DWIN_SET folder to the SD card.
* - Product: https://www.aliexpress.com/item/1005002008179262.html
*
* RELOADED (T5UID1)
* - Download https://github.com/Neo2003/DGUS-reloaded/releases
* - Copy the downloaded DWIN_SET folder to the SD card.
*
* IA_CREALITY (T5UID1)
* - Download https://github.com/InsanityAutomation/Marlin/raw/CrealityDwin_2.0/TM3D_Combined480272_Landscape_V7.7z
* - Copy the downloaded DWIN_SET folder to the SD card.
*
* E3S1PRO (T5L)
* - Download https://github.com/CrealityOfficial/Ender-3S1/archive/3S1_Plus_Screen.zip
* - Copy the downloaded DWIN_SET folder to the SD card.
*
* Flash display with DGUS Displays for Marlin:
* - Format the SD card to FAT32 with an allocation size of 4kb.
* - Download files as specified for your type of display.
* - Plug the microSD card into the back of the display.
* - Boot the display and wait for the update to complete.
*
* :[ 'ORIGIN', 'FYSETC', 'HYPRECY', 'MKS', 'RELOADED', 'IA_CREALITY', 'E3S1PRO' ]
*/
//#define DGUS_LCD_UI ORIGIN
#if DGUS_UI_IS(MKS)
#define USE_MKS_GREEN_UI
#elif DGUS_UI_IS(IA_CREALITY)
//#define LCD_SCREEN_ROTATE 90 // Portrait Mode or 800x480 displays
//#define IA_CREALITY_BOOT_DELAY 1500 // (ms)
#endif
//
// Touch-screen LCD for Malyan M200/M300 printers
//
//#define MALYAN_LCD
//
// Touch UI for FTDI EVE (FT800/FT810) displays
// See Configuration_adv.h for all configuration options.
//
//#define TOUCH_UI_FTDI_EVE
//
// Touch-screen LCD for Anycubic Chiron
//
//#define ANYCUBIC_LCD_CHIRON
//
// Touch-screen LCD for Anycubic i3 Mega
//
//#define ANYCUBIC_LCD_I3MEGA
#if ENABLED(ANYCUBIC_LCD_I3MEGA)
//#define ANYCUBIC_LCD_GCODE_EXT // Add ".gcode" to menu entries for DGUS clone compatibility
#endif
//
// Touch-screen LCD for Anycubic Vyper
//
//#define ANYCUBIC_LCD_VYPER
//
// Sovol SV-06 Resistive Touch Screen
//
//#define SOVOL_SV06_RTS
//
// 320x240 Nextion 2.8" serial TFT Resistive Touch Screen NX3224T028
//
//#define NEXTION_TFT
//
// Third-party or vendor-customized controller interfaces.
// Sources should be installed in 'src/lcd/extui'.
//
//#define EXTENSIBLE_UI
#if ENABLED(EXTENSIBLE_UI)
//#define EXTUI_LOCAL_BEEPER // Enables use of local Beeper pin with external display
#endif
//=============================================================================
//=============================== Graphical TFTs ==============================
//=============================================================================
/**
* Specific TFT Model Presets. Enable one of the following options
* or enable TFT_GENERIC and set sub-options.
*/
//
// 480x320, 3.5", SPI Display with Rotary Encoder from MKS
// Usually paired with MKS Robin Nano V2 & V3
// https://github.com/makerbase-mks/MKS-TFT-Hardware/tree/master/MKS%20TS35
//
//#define MKS_TS35_V2_0
//
// 320x240, 2.4", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT24
//
// 320x240, 2.8", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT28
//
// 320x240, 3.2", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT32
//
// 480x320, 3.5", FSMC Display From MKS
// Usually paired with MKS Robin Nano V1.2
//
//#define MKS_ROBIN_TFT35
//
// 480x272, 4.3", FSMC Display From MKS
//
//#define MKS_ROBIN_TFT43
//
// 320x240, 3.2", FSMC Display From MKS
// Usually paired with MKS Robin
//
//#define MKS_ROBIN_TFT_V1_1R
//
// 480x320, 3.5", FSMC Stock Display from Tronxy
//
//#define TFT_TRONXY_X5SA
//
// 480x320, 3.5", FSMC Stock Display from AnyCubic
//
//#define ANYCUBIC_TFT35
//
// 320x240, 2.8", FSMC Stock Display from Longer/Alfawise
//
//#define LONGER_LK_TFT28
//
// 320x240, 2.8", FSMC Stock Display from ET4
//
//#define ANET_ET4_TFT28
//
// 480x320, 3.5", FSMC Stock Display from ET5
//
//#define ANET_ET5_TFT35
//
// 1024x600, 7", RGB Stock Display with Rotary Encoder from BIQU BX
// https://github.com/bigtreetech/BIQU-BX/tree/master/Hardware
//
//#define BIQU_BX_TFT70
//
// 480x320, 3.5", SPI Stock Display with Rotary Encoder from BIQU B1 SE Series
// https://github.com/bigtreetech/TFT35-SPI/tree/master/v1
//
//#define BTT_TFT35_SPI_V1_0
//
// Generic TFT with detailed options
//
//#define TFT_GENERIC
#if ENABLED(TFT_GENERIC)
// :[ 'AUTO', 'ST7735', 'ST7789', 'ST7796', 'R61505', 'ILI9328', 'ILI9341', 'ILI9488' ]
#define TFT_DRIVER AUTO
// Interface. Enable one of the following options:
//#define TFT_INTERFACE_FSMC
//#define TFT_INTERFACE_SPI
// TFT Resolution. Enable one of the following options:
//#define TFT_RES_320x240
//#define TFT_RES_480x272
//#define TFT_RES_480x320
//#define TFT_RES_1024x600
#endif
/**
* TFT UI - User Interface Selection. Enable one of the following options:
*
* TFT_CLASSIC_UI - Emulated DOGM - 128x64 Upscaled
* TFT_COLOR_UI - Marlin Default Menus, Touch Friendly, using full TFT capabilities
* TFT_LVGL_UI - A Modern UI using LVGL
*
* For LVGL_UI also copy the 'assets' folder from the build directory to the
* root of your SD card, together with the compiled firmware.
*/
//#define TFT_CLASSIC_UI
//#define TFT_COLOR_UI
//#define TFT_LVGL_UI
#if ENABLED(TFT_COLOR_UI)
/**
* TFT Font for Color_UI. Choose one of the following:
*
* NOTOSANS - Default font with anti-aliasing. Supports Latin Extended and non-Latin characters.
* UNIFONT - Lightweight font, no anti-aliasing. Supports Latin Extended and non-Latin characters.
* HELVETICA - Lightweight font, no anti-aliasing. Supports Basic Latin (0x0020-0x007F) and Latin-1 Supplement (0x0080-0x00FF) characters only.
*/
#define TFT_FONT NOTOSANS
/**
* TFT Theme for Color_UI. Choose one of the following or add a new one to 'Marlin/src/lcd/tft/themes' directory
*
* BLUE_MARLIN - Default theme with 'midnight blue' background
* BLACK_MARLIN - Theme with 'black' background
* ANET_BLACK - Theme used for Anet ET4/5
*/
#define TFT_THEME BLACK_MARLIN
//#define TFT_SHARED_IO // I/O is shared between TFT display and other devices. Disable async data transfer.
#define COMPACT_MARLIN_BOOT_LOGO // Use compressed data to save Flash space
#endif
#if ENABLED(TFT_LVGL_UI)
//#define MKS_WIFI_MODULE // MKS WiFi module
#endif
/**
* TFT Rotation. Set to one of the following values:
*
* TFT_ROTATE_90, TFT_ROTATE_90_MIRROR_X, TFT_ROTATE_90_MIRROR_Y,
* TFT_ROTATE_180, TFT_ROTATE_180_MIRROR_X, TFT_ROTATE_180_MIRROR_Y,
* TFT_ROTATE_270, TFT_ROTATE_270_MIRROR_X, TFT_ROTATE_270_MIRROR_Y,
* TFT_MIRROR_X, TFT_MIRROR_Y, TFT_NO_ROTATION
*
* :{ 'TFT_NO_ROTATION':'None', 'TFT_ROTATE_90':'90°', 'TFT_ROTATE_90_MIRROR_X':'90° (Mirror X)', 'TFT_ROTATE_90_MIRROR_Y':'90° (Mirror Y)', 'TFT_ROTATE_180':'180°', 'TFT_ROTATE_180_MIRROR_X':'180° (Mirror X)', 'TFT_ROTATE_180_MIRROR_Y':'180° (Mirror Y)', 'TFT_ROTATE_270':'270°', 'TFT_ROTATE_270_MIRROR_X':'270° (Mirror X)', 'TFT_ROTATE_270_MIRROR_Y':'270° (Mirror Y)', 'TFT_MIRROR_X':'Mirror X', 'TFT_MIRROR_Y':'Mirror Y' }
*/
//#define TFT_ROTATION TFT_NO_ROTATION
//=============================================================================
//============================ Other Controllers ============================
//=============================================================================
//
// Ender-3 v2 OEM display. A DWIN display with Rotary Encoder.
//
//#define DWIN_CREALITY_LCD // Creality UI
//#define DWIN_LCD_PROUI // Pro UI by MRiscoC
//#define DWIN_CREALITY_LCD_JYERSUI // Jyers UI by Jacob Myers
//#define DWIN_MARLINUI_PORTRAIT // MarlinUI (portrait orientation)
//#define DWIN_MARLINUI_LANDSCAPE // MarlinUI (landscape orientation)
//
// Touch Screen Settings
//
//#define TOUCH_SCREEN
#if ENABLED(TOUCH_SCREEN)
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus
#if ANY(TFT_CLASSIC_UI, TFT_COLOR_UI)
//#define NO_BACK_MENU_ITEM // Don't display a top menu item to go back to the parent menu
#endif
#define TOUCH_SCREEN_CALIBRATION
//#define TOUCH_CALIBRATION_X 12316
//#define TOUCH_CALIBRATION_Y -8981
//#define TOUCH_OFFSET_X -43
//#define TOUCH_OFFSET_Y 257
//#define TOUCH_ORIENTATION TOUCH_LANDSCAPE
#if ALL(TOUCH_SCREEN_CALIBRATION, EEPROM_SETTINGS)
#define TOUCH_CALIBRATION_AUTO_SAVE // Auto save successful calibration values to EEPROM
#endif
#if ENABLED(TFT_COLOR_UI)
//#define SINGLE_TOUCH_NAVIGATION
#endif
#endif
//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// https://reprapworld.com/products/electronics/ramps/keypad_v1_0_fully_assembled/
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 10.0 // (mm) Distance to move per key-press
//
// EasyThreeD ET-4000+ with button input and status LED
//
//#define EASYTHREED_UI
//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================
// @section fans
// Set number of user-controlled fans. Disable to use all board-defined fans.
// :[1,2,3,4,5,6,7,8]
//#define NUM_M106_FANS 1
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
// :[0,1,2,3,4,5,6,7]
#define SOFT_PWM_SCALE 0
// If SOFT_PWM_SCALE is set to a value higher than 0, dithering can
// be used to mitigate the associated resolution loss. If enabled,
// some of the PWM cycles are stretched so on average the desired
// duty cycle is attained.
//#define SOFT_PWM_DITHER
// @section extras
// Support for the BariCUDA Paste Extruder
//#define BARICUDA
// @section lights
// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends, bed temperature, and target temperature are under 54C
// then the BLUE led is on. Otherwise the RED led is on. (1C hysteresis)
//#define TEMP_STAT_LEDS
// Support for BlinkM/CyzRgb
//#define BLINKM
// Support for PCA9632 PWM LED driver
//#define PCA9632
// Support for PCA9533 PWM LED driver
//#define PCA9533
/**
* RGB LED / LED Strip Control
*
* Enable support for an RGB LED connected to 5V digital pins, or
* an RGB Strip connected to MOSFETs controlled by digital pins.
*
* Adds the M150 command to set the LED (or LED strip) color.
* If pins are PWM capable (e.g., 4, 5, 6, 11) then a range of
* luminance values can be set from 0 to 255.
* For NeoPixel LED an overall brightness parameter is also available.
*
* === CAUTION ===
* LED Strips require a MOSFET Chip between PWM lines and LEDs,
* as the Arduino cannot handle the current the LEDs will require.
* Failure to follow this precaution can destroy your Arduino!
*
* NOTE: A separate 5V power supply is required! The NeoPixel LED needs
* more current than the Arduino 5V linear regulator can produce.
*
* Requires PWM frequency between 50 <> 100Hz (Check HAL or variant)
* Use FAST_PWM_FAN, if possible, to reduce fan noise.
*/
// LED Type. Enable only one of the following two options:
//#define RGB_LED
//#define RGBW_LED
#if ANY(RGB_LED, RGBW_LED)
//#define RGB_LED_R_PIN 34
//#define RGB_LED_G_PIN 43
//#define RGB_LED_B_PIN 35
//#define RGB_LED_W_PIN -1
#endif
#if ANY(RGB_LED, RGBW_LED, PCA9632)
//#define RGB_STARTUP_TEST // For PWM pins, fade between all colors
#if ENABLED(RGB_STARTUP_TEST)
#define RGB_STARTUP_TEST_INNER_MS 10 // (ms) Reduce or increase fading speed
#endif
#endif
// Support for Adafruit NeoPixel LED driver
//#define NEOPIXEL_LED
#if ENABLED(NEOPIXEL_LED)
#define NEOPIXEL_TYPE NEO_GRBW // NEO_GRBW, NEO_RGBW, NEO_GRB, NEO_RBG, etc.
// See https://github.com/adafruit/Adafruit_NeoPixel/blob/master/Adafruit_NeoPixel.h
//#define NEOPIXEL_PIN 4 // LED driving pin
//#define NEOPIXEL2_TYPE NEOPIXEL_TYPE
//#define NEOPIXEL2_PIN 5
#define NEOPIXEL_PIXELS 30 // Number of LEDs in the strip. (Longest strip when NEOPIXEL2_SEPARATE is disabled.)
#define NEOPIXEL_IS_SEQUENTIAL // Sequential display for temperature change - LED by LED. Disable to change all LEDs at once.
#define NEOPIXEL_BRIGHTNESS 127 // Initial brightness (0-255)
//#define NEOPIXEL_STARTUP_TEST // Cycle through colors at startup
// Support for second Adafruit NeoPixel LED driver controlled with M150 S1 ...
//#define NEOPIXEL2_SEPARATE
#if ENABLED(NEOPIXEL2_SEPARATE)
#define NEOPIXEL2_PIXELS 15 // Number of LEDs in the second strip
#define NEOPIXEL2_BRIGHTNESS 127 // Initial brightness (0-255)
#define NEOPIXEL2_STARTUP_TEST // Cycle through colors at startup
#define NEOPIXEL_M150_DEFAULT -1 // Default strip for M150 without 'S'. Use -1 to set all by default.
#else
//#define NEOPIXEL2_INSERIES // Default behavior is NeoPixel 2 in parallel
#endif
// Use some of the NeoPixel LEDs for static (background) lighting
//#define NEOPIXEL_BKGD_INDEX_FIRST 0 // Index of the first background LED
//#define NEOPIXEL_BKGD_INDEX_LAST 5 // Index of the last background LED
//#define NEOPIXEL_BKGD_COLOR { 255, 255, 255, 0 } // R, G, B, W
//#define NEOPIXEL_BKGD_TIMEOUT_COLOR { 25, 25, 25, 0 } // R, G, B, W
//#define NEOPIXEL_BKGD_ALWAYS_ON // Keep the backlight on when other NeoPixels are off
#endif
/**
* Printer Event LEDs
*
* During printing, the LEDs will reflect the printer status:
*
* - Gradually change from blue to violet as the heated bed gets to target temp
* - Gradually change from violet to red as the hotend gets to temperature
* - Change to white to illuminate work surface
* - Change to green once print has finished
* - Turn off after the print has finished and the user has pushed a button
*/
#if ANY(BLINKM, RGB_LED, RGBW_LED, PCA9632, PCA9533, NEOPIXEL_LED)
#define PRINTER_EVENT_LEDS
#endif
// @section servos
/**
* Number of servos
*
* For some servo-related options NUM_SERVOS will be set automatically.
* Set this manually if there are extra servos needing manual control.
* Set to 0 to turn off servo support.
*/
//#define NUM_SERVOS 3 // Note: Servo index starts with 0 for M280-M282 commands
// (ms) Delay before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY { 300 }
// Only power servos during movement, otherwise leave off to prevent jitter
//#define DEACTIVATE_SERVOS_AFTER_MOVE
// Edit servo angles with M281 and save to EEPROM with M500
//#define EDITABLE_SERVO_ANGLES
// Disable servo with M282 to reduce power consumption, noise, and heat when not in use
//#define SERVO_DETACH_GCODE