2012-06-02 18:44:17 +00:00
# ifndef CONFIGURATION_ADV_H
# define CONFIGURATION_ADV_H
2012-02-07 19:23:43 +00:00
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
# ifdef BED_LIMIT_SWITCHING
# define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
# endif
2012-09-17 19:17:24 +00:00
# define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
2012-02-07 19:23:43 +00:00
//// Heating sanity check:
2014-02-14 11:48:24 +00:00
// This waits for the watch period in milliseconds whenever an M104 or M109 increases the target temperature
2014-02-05 09:47:12 +00:00
// If the temperature has not increased at the end of that period, the target temperature is set to zero.
2012-12-06 09:36:07 +00:00
// It can be reset with another M104/M109. This check is also only triggered if the target temperature and the current temperature
// differ by at least 2x WATCH_TEMP_INCREASE
2013-01-08 10:53:18 +00:00
//#define WATCH_TEMP_PERIOD 40000 //40 seconds
2012-12-06 09:36:07 +00:00
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
2012-02-07 19:23:43 +00:00
# ifdef PIDTEMP
2014-02-14 11:48:24 +00:00
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
2014-02-05 09:47:12 +00:00
# define PID_ADD_EXTRUSION_RATE
2012-02-07 19:23:43 +00:00
# ifdef PID_ADD_EXTRUSION_RATE
2014-02-14 11:48:24 +00:00
# define DEFAULT_Kc (1) //heating power=Kc*(e_speed)
2012-02-07 19:23:43 +00:00
# endif
# endif
//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode.
//The maximum buffered steps/sec of the extruder motor are called "se".
2014-04-23 09:30:07 +00:00
//You enter the autotemp mode by a M109 S<mintemp> B<maxtemp> F<factor>
2012-02-07 19:23:43 +00:00
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
// you exit the value by any M109 without F*
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
2014-02-14 11:48:24 +00:00
// on an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
2012-04-15 17:17:33 +00:00
# define AUTOTEMP
2012-02-07 19:23:43 +00:00
# ifdef AUTOTEMP
# define AUTOTEMP_OLDWEIGHT 0.98
# endif
2013-10-12 13:41:23 +00:00
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
2014-02-05 09:47:12 +00:00
// extruder run-out prevention.
2012-02-07 19:23:43 +00:00
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
2014-02-05 09:47:12 +00:00
//#define EXTRUDER_RUNOUT_PREVENT
# define EXTRUDER_RUNOUT_MINTEMP 190
2012-02-07 19:23:43 +00:00
# define EXTRUDER_RUNOUT_SECONDS 30.
# define EXTRUDER_RUNOUT_ESTEPS 14. //mm filament
# define EXTRUDER_RUNOUT_SPEED 1500. //extrusion speed
# define EXTRUDER_RUNOUT_EXTRUDE 100
2012-02-26 15:23:47 +00:00
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
# define TEMP_SENSOR_AD595_OFFSET 0.0
# define TEMP_SENSOR_AD595_GAIN 1.0
2012-03-11 09:44:10 +00:00
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
2013-06-06 22:49:25 +00:00
# define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
# define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
# define CONTROLLERFAN_SPEED 255 // == full speed
2012-03-11 09:44:10 +00:00
2012-12-10 04:47:52 +00:00
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
2013-01-10 10:08:45 +00:00
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
2012-12-10 04:47:52 +00:00
2013-06-06 22:49:25 +00:00
// Extruder cooling fans
// Configure fan pin outputs to automatically turn on/off when the associated
// extruder temperature is above/below EXTRUDER_AUTO_FAN_TEMPERATURE.
2014-02-05 09:47:12 +00:00
// Multiple extruders can be assigned to the same pin in which case
2013-06-06 22:49:25 +00:00
// the fan will turn on when any selected extruder is above the threshold.
# define EXTRUDER_0_AUTO_FAN_PIN -1
# define EXTRUDER_1_AUTO_FAN_PIN -1
# define EXTRUDER_2_AUTO_FAN_PIN -1
# define EXTRUDER_AUTO_FAN_TEMPERATURE 50
# define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
2012-02-07 19:23:43 +00:00
//===========================================================================
//=============================Mechanical Settings===========================
//===========================================================================
# define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
2012-09-15 22:25:49 +00:00
//// AUTOSET LOCATIONS OF LIMIT SWITCHES
//// Added by ZetaPhoenix 09-15-2012
2012-12-11 09:54:40 +00:00
# ifdef MANUAL_HOME_POSITIONS // Use manual limit switch locations
2012-09-15 22:25:49 +00:00
# define X_HOME_POS MANUAL_X_HOME_POS
# define Y_HOME_POS MANUAL_Y_HOME_POS
# define Z_HOME_POS MANUAL_Z_HOME_POS
# else //Set min/max homing switch positions based upon homing direction and min/max travel limits
//X axis
# if X_HOME_DIR == -1
# ifdef BED_CENTER_AT_0_0
# define X_HOME_POS X_MAX_LENGTH * -0.5
# else
# define X_HOME_POS X_MIN_POS
# endif //BED_CENTER_AT_0_0
2014-02-05 09:47:12 +00:00
# else
2012-09-15 22:25:49 +00:00
# ifdef BED_CENTER_AT_0_0
# define X_HOME_POS X_MAX_LENGTH * 0.5
# else
# define X_HOME_POS X_MAX_POS
# endif //BED_CENTER_AT_0_0
# endif //X_HOME_DIR == -1
2014-02-05 09:47:12 +00:00
2012-09-15 22:25:49 +00:00
//Y axis
# if Y_HOME_DIR == -1
# ifdef BED_CENTER_AT_0_0
# define Y_HOME_POS Y_MAX_LENGTH * -0.5
# else
# define Y_HOME_POS Y_MIN_POS
# endif //BED_CENTER_AT_0_0
2014-02-05 09:47:12 +00:00
# else
2012-09-15 22:25:49 +00:00
# ifdef BED_CENTER_AT_0_0
# define Y_HOME_POS Y_MAX_LENGTH * 0.5
# else
# define Y_HOME_POS Y_MAX_POS
# endif //BED_CENTER_AT_0_0
# endif //Y_HOME_DIR == -1
2014-02-05 09:47:12 +00:00
2012-09-15 22:25:49 +00:00
// Z axis
# if Z_HOME_DIR == -1 //BED_CENTER_AT_0_0 not used
# define Z_HOME_POS Z_MIN_POS
2014-02-05 09:47:12 +00:00
# else
2012-09-15 22:25:49 +00:00
# define Z_HOME_POS Z_MAX_POS
# endif //Z_HOME_DIR == -1
# endif //End auto min/max positions
//END AUTOSET LOCATIONS OF LIMIT SWITCHES -ZP
2012-02-07 19:23:43 +00:00
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
2012-08-04 06:32:26 +00:00
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this define to utilize a separate stepper driver for each Z axis motor.
// Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used
// to control the 2nd Z axis stepper motor). The pins are currently only defined for a RAMPS motherboards.
// On a RAMPS (or other 5 driver) motherboard, using this feature will limit you to using 1 extruder.
//#define Z_DUAL_STEPPER_DRIVERS
# ifdef Z_DUAL_STEPPER_DRIVERS
# undef EXTRUDERS
# define EXTRUDERS 1
# endif
2013-09-17 18:19:20 +00:00
// Same again but for Y Axis.
2013-09-17 20:49:44 +00:00
//#define Y_DUAL_STEPPER_DRIVERS
2013-09-17 18:19:20 +00:00
// Define if the two Y drives need to rotate in opposite directions
# define INVERT_Y2_VS_Y_DIR true
# ifdef Y_DUAL_STEPPER_DRIVERS
# undef EXTRUDERS
# define EXTRUDERS 1
# endif
2013-12-11 20:37:43 +00:00
# if defined (Z_DUAL_STEPPER_DRIVERS) && defined (Y_DUAL_STEPPER_DRIVERS)
2013-09-17 18:19:20 +00:00
# error "You cannot have dual drivers for both Y and Z"
2013-10-30 10:45:32 +00:00
# endif
2013-09-17 18:19:20 +00:00
2014-02-05 09:47:12 +00:00
// Enable this for dual x-carriage printers.
2013-07-17 12:44:45 +00:00
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
2013-07-20 13:50:30 +00:00
//#define DUAL_X_CARRIAGE
2013-07-17 12:44:45 +00:00
# ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
2013-08-07 14:10:26 +00:00
# define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
2014-02-05 09:47:12 +00:00
# define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
2013-07-17 12:44:45 +00:00
# define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
2014-02-05 09:47:12 +00:00
# define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
2013-07-17 12:44:45 +00:00
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
# define X2_ENABLE_PIN 29
# define X2_STEP_PIN 25
# define X2_DIR_PIN 23
2013-08-07 14:10:26 +00:00
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
2014-02-05 09:47:12 +00:00
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
2013-08-07 14:10:26 +00:00
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
2014-02-05 09:47:12 +00:00
// This is the default power-up mode which can be later using M605.
# define DEFAULT_DUAL_X_CARRIAGE_MODE 0
2013-08-07 14:10:26 +00:00
// As the x-carriages are independent we can now account for any relative Z offset
# define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0
2014-02-05 09:47:12 +00:00
// Default settings in "Auto-park Mode"
2013-08-07 14:10:26 +00:00
# define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
# define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
# define DEFAULT_DUPLICATION_X_OFFSET 100
# endif //DUAL_X_CARRIAGE
2014-02-05 09:47:12 +00:00
2012-02-07 19:23:43 +00:00
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
2014-02-05 09:47:12 +00:00
# define X_HOME_RETRACT_MM 5
# define Y_HOME_RETRACT_MM 5
2014-03-08 21:35:05 +00:00
# define Z_HOME_RETRACT_MM 2
2012-02-22 22:51:04 +00:00
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
2012-02-07 19:23:43 +00:00
# define AXIS_RELATIVE_MODES {false, false, false, false}
2014-12-03 13:37:16 +00:00
# ifdef CONFIG_STEPPERS_TOSHIBA
# define MAX_STEP_FREQUENCY 10000 // Max step frequency for Toshiba Stepper Controllers
# else
2012-02-07 19:23:43 +00:00
# define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
2014-12-03 13:37:16 +00:00
# endif
2012-06-29 14:27:47 +00:00
//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
# define INVERT_X_STEP_PIN false
# define INVERT_Y_STEP_PIN false
# define INVERT_Z_STEP_PIN false
# define INVERT_E_STEP_PIN false
2012-02-07 19:23:43 +00:00
//default stepper release if idle
# define DEFAULT_STEPPER_DEACTIVE_TIME 60
# define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
# define DEFAULT_MINTRAVELFEEDRATE 0.0
2013-07-30 12:33:30 +00:00
// Feedrates for manual moves along X, Y, Z, E from panel
# ifdef ULTIPANEL
# define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // set the speeds for manual moves (mm/min)
# endif
2014-03-12 22:13:50 +00:00
//Comment to disable setting feedrate multiplier via encoder
# ifdef ULTIPANEL
# define ULTIPANEL_FEEDMULTIPLY
# endif
2012-04-15 17:17:33 +00:00
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
# define DEFAULT_MINSEGMENTTIME 20000
2012-02-07 19:23:43 +00:00
// If defined the movements slow down when the look ahead buffer is only half full
# define SLOWDOWN
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
2012-04-01 14:23:40 +00:00
# define MINIMUM_PLANNER_SPEED 0.05 // (mm/sec)
2012-02-07 19:23:43 +00:00
2012-08-30 07:16:57 +00:00
// MS1 MS2 Stepper Driver Microstepping mode table
# define MICROSTEP1 LOW,LOW
# define MICROSTEP2 HIGH,LOW
# define MICROSTEP4 LOW,HIGH
# define MICROSTEP8 HIGH,HIGH
# define MICROSTEP16 HIGH,HIGH
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
# define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
# define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
2014-02-05 09:47:12 +00:00
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
2014-02-05 22:28:23 +00:00
//#define DIGIPOT_I2C
2014-02-05 09:47:12 +00:00
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
# define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
# define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
2012-08-30 07:16:57 +00:00
2012-02-07 19:23:43 +00:00
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
2014-02-05 22:39:45 +00:00
2014-03-10 20:52:33 +00:00
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
# define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
2012-02-07 19:23:43 +00:00
# define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
2012-11-06 14:33:49 +00:00
# define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
2012-02-07 19:23:43 +00:00
2014-02-14 11:48:24 +00:00
# define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
2013-10-12 11:24:55 +00:00
// using:
//#define MENU_ADDAUTOSTART
2014-12-28 06:26:14 +00:00
// Show a progress bar on the LCD when printing from SD?
//#define LCD_PROGRESS_BAR
# ifdef LCD_PROGRESS_BAR
// Amount of time (ms) to show the bar
# define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message
# define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever)
# define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE
# endif
2014-02-14 11:48:24 +00:00
// The hardware watchdog should reset the microcontroller disabling all outputs, in case the firmware gets stuck and doesn't do temperature regulation.
2012-11-06 12:20:08 +00:00
//#define USE_WATCHDOG
2012-11-06 11:06:41 +00:00
# ifdef USE_WATCHDOG
2012-12-06 09:36:07 +00:00
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
2012-11-06 12:33:00 +00:00
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
2012-11-06 14:33:49 +00:00
//#define WATCHDOG_RESET_MANUAL
2012-11-06 11:06:41 +00:00
# endif
2013-06-06 22:49:25 +00:00
// Enable the option to stop SD printing when hitting and endstops, needs to be enabled from the LCD menu when this option is enabled.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
2012-02-07 19:23:43 +00:00
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
2013-10-06 19:14:51 +00:00
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
2014-02-14 11:48:24 +00:00
// it can e.g. be used to change z-positions in the print startup phase in real-time
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
2013-10-06 19:14:51 +00:00
// does not respect endstops!
//#define BABYSTEPPING
2013-10-07 07:14:04 +00:00
# ifdef BABYSTEPPING
# define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
# define BABYSTEP_INVERT_Z false //true for inverse movements in Z
# define BABYSTEP_Z_MULTIPLICATOR 2 //faster z movements
2014-02-05 09:47:12 +00:00
2013-10-07 07:14:04 +00:00
# ifdef COREXY
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
2013-10-06 19:14:51 +00:00
# error BABYSTEPPING not implemented for COREXY yet.
2013-10-07 07:14:04 +00:00
# endif
# ifdef DELTA
# ifdef BABYSTEP_XY
# error BABYSTEPPING only implemented for Z axis on deltabots.
# endif
# endif
Add the socalled "Babystepping" feature.
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
2013-10-06 19:14:51 +00:00
# endif
2012-02-07 19:23:43 +00:00
// extruder advance constant (s2/mm3)
//
2014-12-28 06:26:14 +00:00
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
2012-02-07 19:23:43 +00:00
//
2014-02-14 11:48:24 +00:00
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
2012-02-07 19:23:43 +00:00
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
# ifdef ADVANCE
# define EXTRUDER_ADVANCE_K .0
# define D_FILAMENT 2.85
# define STEPS_MM_E 836
2014-12-18 16:13:08 +00:00
# define EXTRUSION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
# define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS] / EXTRUSION_AREA)
2012-02-07 19:23:43 +00:00
# endif // ADVANCE
// Arc interpretation settings:
# define MM_PER_ARC_SEGMENT 1
# define N_ARC_CORRECTION 25
2012-11-06 11:06:41 +00:00
const unsigned int dropsegments = 5 ; //everything with less than this number of steps will be ignored as move and joined with the next movement
2012-02-07 19:23:43 +00:00
2012-02-21 19:36:43 +00:00
// If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted
2014-02-05 09:47:12 +00:00
// You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT
2012-02-21 19:36:43 +00:00
// in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should
// be commented out otherwise
2014-02-05 09:47:12 +00:00
# define SDCARDDETECTINVERTED
2012-02-21 19:36:43 +00:00
2012-03-19 19:06:58 +00:00
# ifdef ULTIPANEL
# undef SDCARDDETECTINVERTED
# endif
2013-01-07 13:33:30 +00:00
// Power Signal Control Definitions
// By default use ATX definition
# ifndef POWER_SUPPLY
# define POWER_SUPPLY 1
# endif
// 1 = ATX
2014-02-05 09:47:12 +00:00
# if (POWER_SUPPLY == 1)
2013-01-07 13:33:30 +00:00
# define PS_ON_AWAKE LOW
# define PS_ON_ASLEEP HIGH
# endif
// 2 = X-Box 360 203W
2014-02-05 09:47:12 +00:00
# if (POWER_SUPPLY == 2)
2013-01-07 13:33:30 +00:00
# define PS_ON_AWAKE HIGH
# define PS_ON_ASLEEP LOW
# endif
2013-11-17 12:29:02 +00:00
// Control heater 0 and heater 1 in parallel.
2013-11-17 16:41:30 +00:00
//#define HEATERS_PARALLEL
2013-11-17 12:29:02 +00:00
2012-02-07 19:23:43 +00:00
//===========================================================================
//=============================Buffers ============================
//===========================================================================
2014-02-05 09:47:12 +00:00
// The number of linear motions that can be in the plan at any give time.
2014-02-14 11:48:24 +00:00
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
2012-02-07 19:23:43 +00:00
# if defined SDSUPPORT
# define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
# else
# define BLOCK_BUFFER_SIZE 16 // maximize block buffer
# endif
2013-06-06 22:49:25 +00:00
2012-02-07 19:23:43 +00:00
2014-02-14 11:48:24 +00:00
//The ASCII buffer for receiving from the serial:
2012-02-07 19:23:43 +00:00
# define MAX_CMD_SIZE 96
# define BUFSIZE 4
2012-06-02 18:32:28 +00:00
2014-02-14 11:48:24 +00:00
// Firmware based and LCD controlled retract
2014-02-05 09:47:12 +00:00
// M207 and M208 can be used to define parameters for the retraction.
2012-06-02 18:32:28 +00:00
// The retraction can be called by the slicer using G10 and G11
2014-02-05 09:47:12 +00:00
// until then, intended retractions can be detected by moves that only extrude and the direction.
2012-06-02 18:32:28 +00:00
// the moves are than replaced by the firmware controlled ones.
// #define FWRETRACT //ONLY PARTIALLY TESTED
2014-02-17 03:00:28 +00:00
# ifdef FWRETRACT
# define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
# define RETRACT_LENGTH 3 //default retract length (positive mm)
2014-06-02 15:02:10 +00:00
# define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change
2014-03-14 21:52:48 +00:00
# define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s)
2014-02-17 03:00:28 +00:00
# define RETRACT_ZLIFT 0 //default retract Z-lift
# define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
2014-06-02 15:02:10 +00:00
# define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change)
2014-03-14 21:52:48 +00:00
# define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s)
2014-02-17 03:00:28 +00:00
# endif
Added a feature to have filament change by gcode or display trigger.
[default off for now]
syntax: M600 X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
if enabled, after a M600, the printer will retract by E, lift by Z, move to XY, retract even more filament.
Oh, and it will display "remove filament" and beep like crazy.
You are then supposed to insert a new filament (other color, e.g.) and click the display to continue.
After having the nozzle cleaned manually, aided by the disabled e-steppers.
After clicking, the printer will then go back the whole shebang, and continue printing with a fancy new color.
2013-01-27 12:21:34 +00:00
//adds support for experimental filament exchange support M600; requires display
# ifdef ULTIPANEL
2013-10-06 19:20:26 +00:00
# define FILAMENTCHANGEENABLE
Added a feature to have filament change by gcode or display trigger.
[default off for now]
syntax: M600 X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
if enabled, after a M600, the printer will retract by E, lift by Z, move to XY, retract even more filament.
Oh, and it will display "remove filament" and beep like crazy.
You are then supposed to insert a new filament (other color, e.g.) and click the display to continue.
After having the nozzle cleaned manually, aided by the disabled e-steppers.
After clicking, the printer will then go back the whole shebang, and continue printing with a fancy new color.
2013-01-27 12:21:34 +00:00
# ifdef FILAMENTCHANGEENABLE
# define FILAMENTCHANGE_XPOS 3
# define FILAMENTCHANGE_YPOS 3
# define FILAMENTCHANGE_ZADD 10
# define FILAMENTCHANGE_FIRSTRETRACT -2
# define FILAMENTCHANGE_FINALRETRACT -100
# endif
# endif
2013-10-12 11:24:55 +00:00
# ifdef FILAMENTCHANGEENABLE
# ifdef EXTRUDER_RUNOUT_PREVENT
# error EXTRUDER_RUNOUT_PREVENT currently incompatible with FILAMENTCHANGE
2014-02-05 09:47:12 +00:00
# endif
2013-10-12 11:24:55 +00:00
# endif
2014-02-05 09:47:12 +00:00
2012-02-07 19:23:43 +00:00
//===========================================================================
//============================= Define Defines ============================
//===========================================================================
2013-06-06 22:49:25 +00:00
# if EXTRUDERS > 1 && defined TEMP_SENSOR_1_AS_REDUNDANT
# error "You cannot use TEMP_SENSOR_1_AS_REDUNDANT if EXTRUDERS > 1"
# endif
2012-02-07 19:23:43 +00:00
2013-11-17 12:29:02 +00:00
# if EXTRUDERS > 1 && defined HEATERS_PARALLEL
# error "You cannot use HEATERS_PARALLEL if EXTRUDERS > 1"
# endif
2012-02-07 19:23:43 +00:00
# if TEMP_SENSOR_0 > 0
# define THERMISTORHEATER_0 TEMP_SENSOR_0
# define HEATER_0_USES_THERMISTOR
# endif
# if TEMP_SENSOR_1 > 0
# define THERMISTORHEATER_1 TEMP_SENSOR_1
# define HEATER_1_USES_THERMISTOR
# endif
# if TEMP_SENSOR_2 > 0
# define THERMISTORHEATER_2 TEMP_SENSOR_2
# define HEATER_2_USES_THERMISTOR
# endif
# if TEMP_SENSOR_BED > 0
# define THERMISTORBED TEMP_SENSOR_BED
# define BED_USES_THERMISTOR
# endif
# if TEMP_SENSOR_0 == -1
# define HEATER_0_USES_AD595
# endif
# if TEMP_SENSOR_1 == -1
# define HEATER_1_USES_AD595
# endif
# if TEMP_SENSOR_2 == -1
# define HEATER_2_USES_AD595
# endif
# if TEMP_SENSOR_BED == -1
# define BED_USES_AD595
# endif
# if TEMP_SENSOR_0 == -2
# define HEATER_0_USES_MAX6675
# endif
2012-02-08 17:28:54 +00:00
# if TEMP_SENSOR_0 == 0
# undef HEATER_0_MINTEMP
# undef HEATER_0_MAXTEMP
# endif
# if TEMP_SENSOR_1 == 0
# undef HEATER_1_MINTEMP
# undef HEATER_1_MAXTEMP
# endif
# if TEMP_SENSOR_2 == 0
# undef HEATER_2_MINTEMP
# undef HEATER_2_MAXTEMP
# endif
# if TEMP_SENSOR_BED == 0
# undef BED_MINTEMP
# undef BED_MAXTEMP
# endif
2012-02-07 19:23:43 +00:00
# endif //__CONFIGURATION_ADV_H