1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-23 20:18:52 +00:00
MarlinFirmware/Marlin/temperature.h

201 lines
5.7 KiB
C
Raw Normal View History

/*
temperature.h - temperature controller
Part of Marlin
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef temperature_h
#define temperature_h
#include "Marlin.h"
#include "planner.h"
#ifdef PID_ADD_EXTRUSION_RATE
#include "stepper.h"
#endif
// public functions
void tp_init(); //initialize the heating
void manage_heater(); //it is critical that this is called periodically.
#ifdef FILAMENT_SENSOR
// For converting raw Filament Width to milimeters
float analog2widthFil();
// For converting raw Filament Width to an extrusion ratio
int widthFil_to_size_ratio();
#endif
// low level conversion routines
// do not use these routines and variables outside of temperature.cpp
extern int target_temperature[EXTRUDERS];
extern float current_temperature[EXTRUDERS];
#ifdef SHOW_TEMP_ADC_VALUES
extern int current_temperature_raw[EXTRUDERS];
extern int current_temperature_bed_raw;
#endif
extern int target_temperature_bed;
extern float current_temperature_bed;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
extern float redundant_temperature;
#endif
#if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
extern unsigned char soft_pwm_bed;
#endif
#ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
#define PID_PARAM(param,e) param[e] // use macro to point to array value
#else
extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
#define PID_PARAM(param, e) param // use macro to point directly to value
#endif // PID_PARAMS_PER_EXTRUDER
float scalePID_i(float i);
float scalePID_d(float d);
float unscalePID_i(float i);
float unscalePID_d(float d);
#endif
#ifdef PIDTEMPBED
extern float bedKp,bedKi,bedKd;
#endif
#ifdef BABYSTEPPING
extern volatile int babystepsTodo[3];
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
return current_temperature[extruder];
};
#ifdef SHOW_TEMP_ADC_VALUES
FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
return current_temperature_raw[extruder];
};
FORCE_INLINE float rawBedTemp() {
return current_temperature_bed_raw;
};
#endif
FORCE_INLINE float degBed() {
return current_temperature_bed;
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return target_temperature[extruder];
};
FORCE_INLINE float degTargetBed() {
return target_temperature_bed;
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_temperature_bed = celsius;
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_temperature[extruder] > current_temperature[extruder];
};
FORCE_INLINE bool isHeatingBed() {
return target_temperature_bed > current_temperature_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_temperature[extruder] < current_temperature[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_temperature_bed < current_temperature_bed;
};
#define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0)
#define setTargetHotend0(_celsius) setTargetHotend((_celsius), 0)
#define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1
#define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1)
#else
#define setTargetHotend1(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 2
#define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2)
#else
#define setTargetHotend2(_celsius) do{}while(0)
#endif
#if EXTRUDERS > 3
#error Invalid number of extruders
#endif
int getHeaterPower(int heater);
void disable_heater();
void setWatch();
void updatePID();
2014-12-20 16:33:43 +00:00
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
static int thermal_runaway_state_machine[3]; // = {0,0,0};
static unsigned long thermal_runaway_timer[3]; // = {0,0,0};
static bool thermal_runaway = false;
#if TEMP_SENSOR_BED != 0
static int thermal_runaway_bed_state_machine;
static unsigned long thermal_runaway_bed_timer;
#endif
#endif
FORCE_INLINE void autotempShutdown(){
#ifdef AUTOTEMP
if(autotemp_enabled)
{
autotemp_enabled=false;
if(degTargetHotend(active_extruder)>autotemp_min)
setTargetHotend(0,active_extruder);
}
#endif
}
void PID_autotune(float temp, int extruder, int ncycles);
void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans();
#endif