mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-18 07:29:33 +00:00
203 lines
6.3 KiB
C++
203 lines
6.3 KiB
C++
|
/*
|
||
|
vector_3.cpp - Vector library for bed leveling
|
||
|
Copyright (c) 2012 Lars Brubaker. All right reserved.
|
||
|
|
||
|
This library is free software; you can redistribute it and/or
|
||
|
modify it under the terms of the GNU Lesser General Public
|
||
|
License as published by the Free Software Foundation; either
|
||
|
version 2.1 of the License, or (at your option) any later version.
|
||
|
|
||
|
This library is distributed in the hope that it will be useful,
|
||
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
|
Lesser General Public License for more details.
|
||
|
|
||
|
You should have received a copy of the GNU Lesser General Public
|
||
|
License along with this library; if not, write to the Free Software
|
||
|
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
|
||
|
*/
|
||
|
#include <math.h>
|
||
|
#include "Marlin.h"
|
||
|
|
||
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||
|
#include "vector_3.h"
|
||
|
|
||
|
vector_3::vector_3()
|
||
|
{
|
||
|
this->x = 0;
|
||
|
this->y = 0;
|
||
|
this->z = 0;
|
||
|
}
|
||
|
|
||
|
vector_3::vector_3(float x, float y, float z)
|
||
|
{
|
||
|
this->x = x;
|
||
|
this->y = y;
|
||
|
this->z = z;
|
||
|
}
|
||
|
|
||
|
vector_3 vector_3::cross(vector_3 left, vector_3 right)
|
||
|
{
|
||
|
return vector_3(left.y * right.z - left.z * right.y,
|
||
|
left.z * right.x - left.x * right.z,
|
||
|
left.x * right.y - left.y * right.x);
|
||
|
}
|
||
|
|
||
|
vector_3 vector_3::operator+(vector_3 v)
|
||
|
{
|
||
|
return vector_3((x + v.x), (y + v.y), (z + v.z));
|
||
|
}
|
||
|
|
||
|
vector_3 vector_3::operator-(vector_3 v)
|
||
|
{
|
||
|
return vector_3((x - v.x), (y - v.y), (z - v.z));
|
||
|
}
|
||
|
|
||
|
vector_3 vector_3::get_normal()
|
||
|
{
|
||
|
vector_3 normalized = vector_3(x, y, z);
|
||
|
normalized.normalize();
|
||
|
return normalized;
|
||
|
}
|
||
|
|
||
|
float vector_3::get_length()
|
||
|
{
|
||
|
float length = sqrt((x * x) + (y * y) + (z * z));
|
||
|
return length;
|
||
|
}
|
||
|
|
||
|
void vector_3::normalize()
|
||
|
{
|
||
|
float length = get_length();
|
||
|
x /= length;
|
||
|
y /= length;
|
||
|
z /= length;
|
||
|
}
|
||
|
|
||
|
void vector_3::apply_rotation(matrix_3x3 matrix)
|
||
|
{
|
||
|
float resultX = x * matrix.matrix[3*0+0] + y * matrix.matrix[3*1+0] + z * matrix.matrix[3*2+0];
|
||
|
float resultY = x * matrix.matrix[3*0+1] + y * matrix.matrix[3*1+1] + z * matrix.matrix[3*2+1];
|
||
|
float resultZ = x * matrix.matrix[3*0+2] + y * matrix.matrix[3*1+2] + z * matrix.matrix[3*2+2];
|
||
|
|
||
|
x = resultX;
|
||
|
y = resultY;
|
||
|
z = resultZ;
|
||
|
}
|
||
|
|
||
|
void vector_3::debug(char* title)
|
||
|
{
|
||
|
SERIAL_PROTOCOL(title);
|
||
|
SERIAL_PROTOCOLPGM(" x: ");
|
||
|
SERIAL_PROTOCOL(x);
|
||
|
SERIAL_PROTOCOLPGM(" y: ");
|
||
|
SERIAL_PROTOCOL(y);
|
||
|
SERIAL_PROTOCOLPGM(" z: ");
|
||
|
SERIAL_PROTOCOL(z);
|
||
|
SERIAL_PROTOCOLPGM("\n");
|
||
|
}
|
||
|
|
||
|
void apply_rotation_xyz(matrix_3x3 matrix, float &x, float& y, float& z)
|
||
|
{
|
||
|
vector_3 vector = vector_3(x, y, z);
|
||
|
vector.apply_rotation(matrix);
|
||
|
x = vector.x;
|
||
|
y = vector.y;
|
||
|
z = vector.z;
|
||
|
}
|
||
|
|
||
|
matrix_3x3 matrix_3x3::create_from_rows(vector_3 row_0, vector_3 row_1, vector_3 row_2)
|
||
|
{
|
||
|
//row_0.debug("row_0");
|
||
|
//row_1.debug("row_1");
|
||
|
//row_2.debug("row_2");
|
||
|
matrix_3x3 new_matrix;
|
||
|
new_matrix.matrix[0] = row_0.x; new_matrix.matrix[1] = row_0.y; new_matrix.matrix[2] = row_0.z;
|
||
|
new_matrix.matrix[3] = row_1.x; new_matrix.matrix[4] = row_1.y; new_matrix.matrix[5] = row_1.z;
|
||
|
new_matrix.matrix[6] = row_2.x; new_matrix.matrix[7] = row_2.y; new_matrix.matrix[8] = row_2.z;
|
||
|
//new_matrix.debug("new_matrix");
|
||
|
|
||
|
return new_matrix;
|
||
|
}
|
||
|
|
||
|
void matrix_3x3::set_to_identity()
|
||
|
{
|
||
|
matrix[0] = 1; matrix[1] = 0; matrix[2] = 0;
|
||
|
matrix[3] = 0; matrix[4] = 1; matrix[5] = 0;
|
||
|
matrix[6] = 0; matrix[7] = 0; matrix[8] = 1;
|
||
|
}
|
||
|
|
||
|
matrix_3x3 matrix_3x3::create_look_at(vector_3 target, vector_3 up)
|
||
|
{
|
||
|
// There are lots of examples of look at code on the internet that don't do all these noramize and also find the position
|
||
|
// through several dot products. The problem with them is that they have a bit of error in that all the vectors arn't normal and need to be.
|
||
|
vector_3 z_row = vector_3(-target.x, -target.y, -target.z).get_normal();
|
||
|
vector_3 x_row = vector_3::cross(up, z_row).get_normal();
|
||
|
vector_3 y_row = vector_3::cross(z_row, x_row).get_normal();
|
||
|
|
||
|
//x_row.debug("x_row");
|
||
|
//y_row.debug("y_row");
|
||
|
//z_row.debug("z_row");
|
||
|
|
||
|
matrix_3x3 rot = matrix_3x3::create_from_rows(vector_3(x_row.x, y_row.x, z_row.x),
|
||
|
vector_3(x_row.y, y_row.y, z_row.y),
|
||
|
vector_3(x_row.z, y_row.z, z_row.z));
|
||
|
|
||
|
//rot.debug("rot");
|
||
|
return rot;
|
||
|
}
|
||
|
|
||
|
matrix_3x3 matrix_3x3::create_inverse(matrix_3x3 original)
|
||
|
{
|
||
|
//original.debug("original");
|
||
|
float* A = original.matrix;
|
||
|
float determinant =
|
||
|
+ A[0 * 3 + 0] * (A[1 * 3 + 1] * A[2 * 3 + 2] - A[2 * 3 + 1] * A[1 * 3 + 2])
|
||
|
- A[0 * 3 + 1] * (A[1 * 3 + 0] * A[2 * 3 + 2] - A[1 * 3 + 2] * A[2 * 3 + 0])
|
||
|
+ A[0 * 3 + 2] * (A[1 * 3 + 0] * A[2 * 3 + 1] - A[1 * 3 + 1] * A[2 * 3 + 0]);
|
||
|
matrix_3x3 inverse;
|
||
|
inverse.matrix[0 * 3 + 0] = +(A[1 * 3 + 1] * A[2 * 3 + 2] - A[2 * 3 + 1] * A[1 * 3 + 2]) / determinant;
|
||
|
inverse.matrix[0 * 3 + 1] = -(A[0 * 3 + 1] * A[2 * 3 + 2] - A[0 * 3 + 2] * A[2 * 3 + 1]) / determinant;
|
||
|
inverse.matrix[0 * 3 + 2] = +(A[0 * 3 + 1] * A[1 * 3 + 2] - A[0 * 3 + 2] * A[1 * 3 + 1]) / determinant;
|
||
|
inverse.matrix[1 * 3 + 0] = -(A[1 * 3 + 0] * A[2 * 3 + 2] - A[1 * 3 + 2] * A[2 * 3 + 0]) / determinant;
|
||
|
inverse.matrix[1 * 3 + 1] = +(A[0 * 3 + 0] * A[2 * 3 + 2] - A[0 * 3 + 2] * A[2 * 3 + 0]) / determinant;
|
||
|
inverse.matrix[1 * 3 + 2] = -(A[0 * 3 + 0] * A[1 * 3 + 2] - A[1 * 3 + 0] * A[0 * 3 + 2]) / determinant;
|
||
|
inverse.matrix[2 * 3 + 0] = +(A[1 * 3 + 0] * A[2 * 3 + 1] - A[2 * 3 + 0] * A[1 * 3 + 1]) / determinant;
|
||
|
inverse.matrix[2 * 3 + 1] = -(A[0 * 3 + 0] * A[2 * 3 + 1] - A[2 * 3 + 0] * A[0 * 3 + 1]) / determinant;
|
||
|
inverse.matrix[2 * 3 + 2] = +(A[0 * 3 + 0] * A[1 * 3 + 1] - A[1 * 3 + 0] * A[0 * 3 + 1]) / determinant;
|
||
|
|
||
|
vector_3 row0 = vector_3(inverse.matrix[0 * 3 + 0], inverse.matrix[0 * 3 + 1], inverse.matrix[0 * 3 + 2]);
|
||
|
vector_3 row1 = vector_3(inverse.matrix[1 * 3 + 0], inverse.matrix[1 * 3 + 1], inverse.matrix[1 * 3 + 2]);
|
||
|
vector_3 row2 = vector_3(inverse.matrix[2 * 3 + 0], inverse.matrix[2 * 3 + 1], inverse.matrix[2 * 3 + 2]);
|
||
|
|
||
|
row0.normalize();
|
||
|
row1.normalize();
|
||
|
row2.normalize();
|
||
|
|
||
|
inverse = matrix_3x3::create_from_rows(row0, row1, row2);
|
||
|
|
||
|
//inverse.debug("inverse");
|
||
|
return inverse;
|
||
|
}
|
||
|
|
||
|
void matrix_3x3::debug(char* title)
|
||
|
{
|
||
|
SERIAL_PROTOCOL(title);
|
||
|
SERIAL_PROTOCOL("\n");
|
||
|
int count = 0;
|
||
|
for(int i=0; i<3; i++)
|
||
|
{
|
||
|
for(int j=0; j<3; j++)
|
||
|
{
|
||
|
SERIAL_PROTOCOL(matrix[count]);
|
||
|
SERIAL_PROTOCOLPGM(" ");
|
||
|
count++;
|
||
|
}
|
||
|
|
||
|
SERIAL_PROTOCOLPGM("\n");
|
||
|
}
|
||
|
}
|
||
|
|
||
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||
|
|