0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-17 23:18:34 +00:00

Merge pull request #8521 from teemuatlut/Ultratronics

[2.0.x] Add support for Ultratronics Pro v1.0 and fix compiling for Due HAL
This commit is contained in:
Scott Lahteine 2017-11-22 16:18:59 -06:00 committed by GitHub
commit 001ce7a2fd
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 313 additions and 153 deletions

View file

@ -34,18 +34,22 @@
#include "../../Marlin.h" #include "../../Marlin.h"
// Based on selected port, use the proper configuration // Based on selected port, use the proper configuration
#if SERIAL_PORT == 0 #if SERIAL_PORT == -1
#define HWUART UART #define HWUART UART
#define HWUART_IRQ UART_IRQn #define HWUART_IRQ UART_IRQn
#define HWUART_IRQ_ID ID_UART #define HWUART_IRQ_ID ID_UART
#elif SERIAL_PORT == 1 #elif SERIAL_PORT == 0
#define HWUART USART0 #define HWUART USART0
#define HWUART_IRQ USART0_IRQn #define HWUART_IRQ USART0_IRQn
#define HWUART_IRQ_ID ID_USART0 #define HWUART_IRQ_ID ID_USART0
#elif SERIAL_PORT == 2 #elif SERIAL_PORT == 1
#define HWUART USART1 #define HWUART USART1
#define HWUART_IRQ USART1_IRQn #define HWUART_IRQ USART1_IRQn
#define HWUART_IRQ_ID ID_USART1 #define HWUART_IRQ_ID ID_USART1
#elif SERIAL_PORT == 2
#define HWUART USART2
#define HWUART_IRQ USART2_IRQn
#define HWUART_IRQ_ID ID_USART2
#elif SERIAL_PORT == 3 #elif SERIAL_PORT == 3
#define HWUART USART3 #define HWUART USART3
#define HWUART_IRQ USART3_IRQn #define HWUART_IRQ USART3_IRQn
@ -101,8 +105,6 @@ ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if ENABLED(EMERGENCY_PARSER) #if ENABLED(EMERGENCY_PARSER)
#include "../../module/stepper.h"
// Currently looking for: M108, M112, M410 // Currently looking for: M108, M112, M410
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h // If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
@ -111,80 +113,80 @@ ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
static e_parser_state state = state_RESET; static e_parser_state state = state_RESET;
switch (state) { switch (state) {
case state_RESET: case state_RESET:
switch (c) { switch (c) {
case ' ': break; case ' ': break;
case 'N': state = state_N; break; case 'N': state = state_N; break;
case 'M': state = state_M; break; case 'M': state = state_M; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_N: case state_N:
switch (c) { switch (c) {
case '0': case '1': case '2': case '0': case '1': case '2':
case '3': case '4': case '5': case '3': case '4': case '5':
case '6': case '7': case '8': case '6': case '7': case '8':
case '9': case '-': case ' ': break; case '9': case '-': case ' ': break;
case 'M': state = state_M; break; case 'M': state = state_M; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_M: case state_M:
switch (c) { switch (c) {
case ' ': break; case ' ': break;
case '1': state = state_M1; break; case '1': state = state_M1; break;
case '4': state = state_M4; break; case '4': state = state_M4; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_M1: case state_M1:
switch (c) { switch (c) {
case '0': state = state_M10; break; case '0': state = state_M10; break;
case '1': state = state_M11; break; case '1': state = state_M11; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_M10: case state_M10:
state = (c == '8') ? state_M108 : state_IGNORE; state = (c == '8') ? state_M108 : state_IGNORE;
break; break;
case state_M11: case state_M11:
state = (c == '2') ? state_M112 : state_IGNORE; state = (c == '2') ? state_M112 : state_IGNORE;
break; break;
case state_M4: case state_M4:
state = (c == '1') ? state_M41 : state_IGNORE; state = (c == '1') ? state_M41 : state_IGNORE;
break; break;
case state_M41: case state_M41:
state = (c == '0') ? state_M410 : state_IGNORE; state = (c == '0') ? state_M410 : state_IGNORE;
break; break;
case state_IGNORE: case state_IGNORE:
if (c == '\n') state = state_RESET; if (c == '\n') state = state_RESET;
break; break;
default: default:
if (c == '\n') { if (c == '\n') {
switch (state) { switch (state) {
case state_M108: case state_M108:
wait_for_user = wait_for_heatup = false; wait_for_user = wait_for_heatup = false;
break; break;
case state_M112: case state_M112:
kill(PSTR(MSG_KILLED)); kill(PSTR(MSG_KILLED));
break; break;
case state_M410: case state_M410:
quickstop_stepper(); quickstop_stepper();
break; break;
default: default:
break; break;
}
state = state_RESET;
} }
state = state_RESET;
}
} }
} }
@ -209,61 +211,61 @@ FORCE_INLINE void store_rxd_char() {
else if (!++rx_dropped_bytes) ++rx_dropped_bytes; else if (!++rx_dropped_bytes) ++rx_dropped_bytes;
#endif #endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
#endif
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// calculate count of bytes stored into the RX buffer // calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
#endif
// if we are above 12.5% of RX buffer capacity, send XOFF before #if ENABLED(SERIAL_XON_XOFF)
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
// let the host react and stop sending bytes. This translates to 13mS
// propagation time.
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
// If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
// Send an XOFF character
HWUART->UART_THR = XOFF_CHAR;
// And remember it was sent // for high speed transfers, we can use XON/XOFF protocol to do
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // software handshake and avoid overruns.
} if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
else {
// TX interrupts disabled, but buffer still not empty ... or // calculate count of bytes stored into the RX buffer
// TX interrupts enabled. Reenable TX ints and schedule XOFF ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// character to be sent
#if TX_BUFFER_SIZE > 0 // if we are above 12.5% of RX buffer capacity, send XOFF before
HWUART->UART_IER = UART_IER_TXRDY; // we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
xon_xoff_state = XOFF_CHAR; // let the host react and stop sending bytes. This translates to 13mS
#else // propagation time.
// We are not using TX interrupts, we will have to send this manually if (rx_count >= (RX_BUFFER_SIZE) / 8) {
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); }; // If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
// Send an XOFF character
HWUART->UART_THR = XOFF_CHAR; HWUART->UART_THR = XOFF_CHAR;
// And remember we already sent it
// And remember it was sent
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif }
else {
// TX interrupts disabled, but buffer still not empty ... or
// TX interrupts enabled. Reenable TX ints and schedule XOFF
// character to be sent
#if TX_BUFFER_SIZE > 0
HWUART->UART_IER = UART_IER_TXRDY;
xon_xoff_state = XOFF_CHAR;
#else
// We are not using TX interrupts, we will have to send this manually
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); };
HWUART->UART_THR = XOFF_CHAR;
// And remember we already sent it
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif
}
} }
} }
} #endif // SERIAL_XON_XOFF
#endif // SERIAL_XON_XOFF
#if ENABLED(EMERGENCY_PARSER) #if ENABLED(EMERGENCY_PARSER)
emergency_parser(c); emergency_parser(c);
#endif #endif
} }
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
@ -292,7 +294,7 @@ FORCE_INLINE void store_rxd_char() {
HWUART->UART_IDR = UART_IDR_TXRDY; HWUART->UART_IDR = UART_IDR_TXRDY;
} }
#endif // TX_BUFFER_SIZE #endif // TX_BUFFER_SIZE > 0
static void UART_ISR(void) { static void UART_ISR(void) {
uint32_t status = HWUART->UART_SR; uint32_t status = HWUART->UART_SR;
@ -389,20 +391,20 @@ int MarlinSerial::read(void) {
v = rx_buffer.buffer[t]; v = rx_buffer.buffer[t];
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
#if ENABLED(SERIAL_XON_XOFF) #if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer // Get count of bytes in the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before // When below 10% of RX buffer capacity, send XON before
// running out of RX buffer bytes // running out of RX buffer bytes
if (rx_count < (RX_BUFFER_SIZE) / 10) { if (rx_count < (RX_BUFFER_SIZE) / 10) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
CRITICAL_SECTION_END; // End critical section before returning! CRITICAL_SECTION_END; // End critical section before returning!
writeNoHandshake(XON_CHAR); writeNoHandshake(XON_CHAR);
return v; return v;
}
} }
} #endif
#endif
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
return v; return v;
@ -423,15 +425,16 @@ void MarlinSerial::flush(void) {
rx_buffer.head = rx_buffer.tail; rx_buffer.head = rx_buffer.tail;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
#if ENABLED(SERIAL_XON_XOFF) #if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
writeNoHandshake(XON_CHAR); writeNoHandshake(XON_CHAR);
} }
#endif #endif
} }
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
uint8_t MarlinSerial::availableForWrite(void) { uint8_t MarlinSerial::availableForWrite(void) {
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
const uint8_t h = tx_buffer.head, t = tx_buffer.tail; const uint8_t h = tx_buffer.head, t = tx_buffer.tail;

View file

@ -175,6 +175,7 @@
#define BOARD_RAMPS4DUE_EEF 1546 // RAMPS4DUE (Power outputs: Hotend0, Hotend1, Fan) #define BOARD_RAMPS4DUE_EEF 1546 // RAMPS4DUE (Power outputs: Hotend0, Hotend1, Fan)
#define BOARD_RAMPS4DUE_SF 1548 // RAMPS4DUE (Power outputs: Spindle, Controller Fan) #define BOARD_RAMPS4DUE_SF 1548 // RAMPS4DUE (Power outputs: Spindle, Controller Fan)
#define BOARD_RURAMPS4D 1550 // RuRAMPS4Duo v1 (Power outputs: Hotend0, Hotend2, Hotend2, Fan0, Fan1, Bed) #define BOARD_RURAMPS4D 1550 // RuRAMPS4Duo v1 (Power outputs: Hotend0, Hotend2, Hotend2, Fan0, Fan1, Bed)
#define BOARD_ULTRATRONICS_PRO 1560 // ReprapWorld Ultratronics Pro V1.0
#define BOARD_ARCHIM2 1590 // UltiMachine Archim2 (with TMC2130 drivers) #define BOARD_ARCHIM2 1590 // UltiMachine Archim2 (with TMC2130 drivers)
#define BOARD_ALLIGATOR 1602 // Alligator Board R2 #define BOARD_ALLIGATOR 1602 // Alligator Board R2

View file

@ -64,7 +64,7 @@
* G32 - Undock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only)
* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION) * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
* G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET) * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
* G42 - Coordinated move to a mesh point (Requires HAS_MESH) * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
* G90 - Use Absolute Coordinates * G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates * G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given * G92 - Set current position to coordinates given

View file

@ -164,8 +164,11 @@
// LCD selection // LCD selection
#if ENABLED(REPRAPWORLD_GRAPHICAL_LCD) #if ENABLED(REPRAPWORLD_GRAPHICAL_LCD)
#ifdef CPU_32_BIT // SPI too fast with 32bit?
U8GLIB_ST7920_128X64_4X u8g(LCD_PINS_D4, LCD_PINS_ENABLE, LCD_PINS_RS); // Original u8glib device. 2 stripes, SW SPI
#else
U8GLIB_ST7920_128X64_4X u8g(LCD_PINS_RS); // 2 stripes, HW SPI U8GLIB_ST7920_128X64_4X u8g(LCD_PINS_RS); // 2 stripes, HW SPI
//U8GLIB_ST7920_128X64_4X u8g(LCD_PINS_D4, LCD_PINS_ENABLE, LCD_PINS_RS); // Original u8glib device. 2 stripes, SW SPI #endif
#elif ENABLED(U8GLIB_ST7920) #elif ENABLED(U8GLIB_ST7920)
// RepRap Discount Full Graphics Smart Controller // RepRap Discount Full Graphics Smart Controller
//U8GLIB_ST7920_128X64_4X u8g(LCD_PINS_RS); // 2 stripes, HW SPI //U8GLIB_ST7920_128X64_4X u8g(LCD_PINS_RS); // 2 stripes, HW SPI

View file

@ -304,6 +304,8 @@
#include "pins_RAMPS4DUE.h" #include "pins_RAMPS4DUE.h"
#elif MB(RAMPS4DUE_SF) #elif MB(RAMPS4DUE_SF)
#include "pins_RAMPS4DUE.h" #include "pins_RAMPS4DUE.h"
#elif MB(ULTRATRONICS_PRO)
#include "pins_ULTRATRONICS_PRO.h"
#elif MB(ARCHIM2) #elif MB(ARCHIM2)
#include "pins_ARCHIM2.h" #include "pins_ARCHIM2.h"
#elif MB(ALLIGATOR) #elif MB(ALLIGATOR)

View file

@ -54,13 +54,6 @@
#define SERVO2_PIN 24 // Motor header MX3 #define SERVO2_PIN 24 // Motor header MX3
#define SERVO3_PIN 5 // PWM header pin 5 #define SERVO3_PIN 5 // PWM header pin 5
//
// Z Probe (when not Z_MIN_PIN)
//
#ifndef Z_MIN_PROBE_PIN
#define Z_MIN_PROBE_PIN 30
#endif
// //
// Limit Switches // Limit Switches
// //
@ -71,6 +64,13 @@
#define Z_MIN_PIN 10 #define Z_MIN_PIN 10
#define Z_MAX_PIN 30 #define Z_MAX_PIN 30
//
// Z Probe (when not Z_MIN_PIN)
//
#ifndef Z_MIN_PROBE_PIN
#define Z_MIN_PROBE_PIN 30
#endif
// //
// Steppers // Steppers
// //

View file

@ -0,0 +1,151 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* ReprapWorld ULTRATRONICS v1.0
*/
#define KNOWN_BOARD
#define BOARD_NAME "Ultratronics v1.0"
#ifndef ARDUINO_ARCH_SAM
#error Oops! Make sure you have 'Arduino Due' selected from the 'Tools -> Boards' menu.
#endif
//
// Servos
//
#if NUM_SERVOS > 0
#define SERVO0_PIN 11
#if NUM_SERVOS > 1
#define SERVO1_PIN 12
#endif
#endif
//
// Limit Switches
//
#define X_MIN_PIN 31
#define X_MAX_PIN 30
#define Y_MIN_PIN 12
#define Y_MAX_PIN 11
#define Z_MIN_PIN 29
#define Z_MAX_PIN 28
//
// Steppers
//
#define X_STEP_PIN 35
#define X_DIR_PIN 34
#define X_ENABLE_PIN 37
#define Y_STEP_PIN 22
#define Y_DIR_PIN 23
#define Y_ENABLE_PIN 33
#define Z_STEP_PIN 25
#define Z_DIR_PIN 26
#define Z_ENABLE_PIN 24
#define E0_STEP_PIN 47
#define E0_DIR_PIN 46
#define E0_ENABLE_PIN 48
#define E1_STEP_PIN 44
#define E1_DIR_PIN 36
#define E1_ENABLE_PIN 45
#define E2_STEP_PIN 42
#define E2_DIR_PIN 41
#define E2_ENABLE_PIN 43
#define E3_STEP_PIN 39
#define E3_DIR_PIN 38
#define E3_ENABLE_PIN 40
//
// Temperature Sensors
//
#define TEMP_0_PIN 0 // Analog Input
#define TEMP_1_PIN 2 // Analog Input
#define TEMP_2_PIN 3 // Analog Input
#define TEMP_3_PIN 4 // Analog Input
#define TEMP_BED_PIN 1 // Analog Input
//
// Heaters / Fans
//
#define HEATER_0_PIN 3
#define HEATER_1_PIN 8
#define HEATER_2_PIN 7
#define HEATER_3_PIN 9
#define HEATER_BED_PIN 2
#define FAN_PIN 6
#define FAN2_PIN 5
//
// Misc. Functions
//
#define SDSS 59
#define SD_DETECT_PIN 60
#define LED_PIN 13
#define PS_ON_PIN 32
//
// SPI Buses
//
#define DAC0_SYNC 53 // PB14
#define SPI_CHAN_DAC 1
#define SPI_CHAN_EEPROM1 -1
#define SPI_EEPROM1_CS -1
#define SPI_EEPROM2_CS -1
#define SPI_FLASH_CS -1
// SPI for Max6675 or Max31855 Thermocouple
#define MAX6675_SS 65
#define MAX31855_SS0 65
#define MAX31855_SS1 52
#define MAX31855_SS2 50
#define MAX31855_SS3 51
#define ENC424_SS 61
//
// LCD / Controller
//
#define BEEPER_PIN 27
#if ENABLED(REPRAPWORLD_GRAPHICAL_LCD)
#define LCD_PINS_RS A8 // CS chip select / SS chip slave select
#define LCD_PINS_ENABLE MOSI // SID (MOSI)
#define LCD_PINS_D4 SCK // SCK (CLK) clock
#define BTN_EN1 20
#define BTN_EN2 21
#define BTN_ENC 64
#endif // REPRAPWORLD_GRAPHICAL_LCD