mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-23 12:04:19 +00:00
Cleanups to UBL_DELTA
This commit is contained in:
parent
cbfca29522
commit
0696dda470
@ -731,15 +731,12 @@
|
||||
* Set granular options based on the specific type of leveling
|
||||
*/
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(DELTA)
|
||||
#define UBL_DELTA
|
||||
#endif
|
||||
|
||||
#define UBL_DELTA (ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(DELTA))
|
||||
#define ABL_PLANAR (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT))
|
||||
#define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR))
|
||||
#define HAS_ABL (ABL_PLANAR || ABL_GRID || ENABLED(AUTO_BED_LEVELING_UBL))
|
||||
#define HAS_LEVELING (HAS_ABL || ENABLED(MESH_BED_LEVELING))
|
||||
#define PLANNER_LEVELING (ABL_PLANAR || ABL_GRID || ENABLED(MESH_BED_LEVELING) || ENABLED(UBL_DELTA))
|
||||
#define PLANNER_LEVELING (ABL_PLANAR || ABL_GRID || ENABLED(MESH_BED_LEVELING) || UBL_DELTA)
|
||||
#define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))
|
||||
#if HAS_PROBING_PROCEDURE
|
||||
#define PROBE_BED_WIDTH abs(RIGHT_PROBE_BED_POSITION - (LEFT_PROBE_BED_POSITION))
|
||||
@ -823,8 +820,7 @@
|
||||
/**
|
||||
* DELTA_SEGMENT_MIN_LENGTH for UBL_DELTA
|
||||
*/
|
||||
|
||||
#if ENABLED(UBL_DELTA)
|
||||
#if UBL_DELTA
|
||||
#ifndef DELTA_SEGMENT_MIN_LENGTH
|
||||
#if IS_SCARA
|
||||
#define DELTA_SEGMENT_MIN_LENGTH 0.25 // SCARA minimum segment size is 0.25mm
|
||||
|
@ -278,8 +278,7 @@
|
||||
|
||||
// If this mesh location is outside the printable_radius, skip it.
|
||||
|
||||
if ( ! position_is_reachable_raw_xy( circle_x, circle_y ))
|
||||
continue;
|
||||
if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue;
|
||||
|
||||
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
||||
yi = location.y_index;
|
||||
@ -329,9 +328,7 @@
|
||||
ye = circle_y + sin_table[tmp_div_30 + 1];
|
||||
#if IS_KINEMATIC
|
||||
// Check to make sure this segment is entirely on the bed, skip if not.
|
||||
if (( ! position_is_reachable_raw_xy( x , y )) ||
|
||||
( ! position_is_reachable_raw_xy( xe, ye )))
|
||||
continue;
|
||||
if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue;
|
||||
#else // not, we need to skip
|
||||
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
@ -459,8 +456,7 @@
|
||||
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
|
||||
if (( position_is_reachable_raw_xy( sx, sy )) &&
|
||||
( position_is_reachable_raw_xy( ex, ey ))) {
|
||||
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
||||
@ -494,8 +490,7 @@
|
||||
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (( position_is_reachable_raw_xy( sx, sy )) &&
|
||||
( position_is_reachable_raw_xy( ex, ey ))) {
|
||||
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
|
||||
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
|
||||
|
@ -2427,8 +2427,11 @@ static void clean_up_after_endstop_or_probe_move() {
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#if ENABLED(UBL_DELTA)
|
||||
if (( ubl.state.active ) && ( ! enable )) { // leveling from on to off
|
||||
#if PLANNER_LEVELING
|
||||
if (ubl.state.active != enable) {
|
||||
if (!enable) // leveling from on to off
|
||||
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
|
||||
else
|
||||
planner.unapply_leveling(current_position);
|
||||
}
|
||||
#endif
|
||||
@ -11104,7 +11107,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
|
||||
#endif // AUTO_BED_LEVELING_BILINEAR
|
||||
|
||||
#if IS_KINEMATIC && DISABLED(UBL_DELTA)
|
||||
#if IS_KINEMATIC && !UBL_DELTA
|
||||
|
||||
/**
|
||||
* Prepare a linear move in a DELTA or SCARA setup.
|
||||
@ -11124,7 +11127,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
}
|
||||
|
||||
// Fail if attempting move outside printable radius
|
||||
if ( ! position_is_reachable_xy( ltarget[X_AXIS], ltarget[Y_AXIS] )) return true;
|
||||
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) return true;
|
||||
|
||||
// Get the cartesian distances moved in XYZE
|
||||
float difference[XYZE];
|
||||
@ -11225,7 +11228,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#else // !IS_KINEMATIC
|
||||
#else // !IS_KINEMATIC || UBL_DELTA
|
||||
|
||||
/**
|
||||
* Prepare a linear move in a Cartesian setup.
|
||||
@ -11263,7 +11266,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
|
||||
return false;
|
||||
}
|
||||
|
||||
#endif // !IS_KINEMATIC
|
||||
#endif // !IS_KINEMATIC || UBL_DELTA
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
|
||||
@ -11375,21 +11378,21 @@ void prepare_move_to_destination() {
|
||||
|
||||
#endif
|
||||
|
||||
if (
|
||||
#if IS_KINEMATIC
|
||||
#if ENABLED(UBL_DELTA)
|
||||
if (ubl_prepare_linear_move_to(destination,feedrate_mm_s)) return;
|
||||
#if UBL_DELTA
|
||||
ubl_prepare_linear_move_to(destination, feedrate_mm_s)
|
||||
#else
|
||||
if (prepare_kinematic_move_to(destination)) return;
|
||||
prepare_kinematic_move_to(destination)
|
||||
#endif
|
||||
#elif ENABLED(DUAL_X_CARRIAGE)
|
||||
prepare_move_to_destination_dualx()
|
||||
#elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely)
|
||||
ubl_prepare_linear_move_to(destination, feedrate_mm_s)
|
||||
#else
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
if (prepare_move_to_destination_dualx()) return;
|
||||
#elif ENABLED(UBL_DELTA) // will work for CARTESIAN too (smaller segments follow mesh more closely)
|
||||
if (ubl_prepare_linear_move_to(destination,feedrate_mm_s)) return;
|
||||
#else
|
||||
if (prepare_move_to_destination_cartesian()) return;
|
||||
#endif
|
||||
prepare_move_to_destination_cartesian()
|
||||
#endif
|
||||
) return;
|
||||
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
@ -248,11 +248,9 @@
|
||||
#if ENABLED(DELTA)
|
||||
#if DISABLED(USE_XMAX_PLUG) && DISABLED(USE_YMAX_PLUG) && DISABLED(USE_ZMAX_PLUG)
|
||||
#error "You probably want to use Max Endstops for DELTA!"
|
||||
#endif
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(UBL_DELTA)
|
||||
#error "ENABLE_LEVELING_FADE_HEIGHT for DELTA requires UBL_DELTA and AUTO_BED_LEVELING_UBL."
|
||||
#endif
|
||||
#if ABL_GRID
|
||||
#elif ENABLED(ENABLE_LEVELING_FADE_HEIGHT) && DISABLED(AUTO_BED_LEVELING_BILINEAR) && !UBL_DELTA
|
||||
#error "ENABLE_LEVELING_FADE_HEIGHT on DELTA requires AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL."
|
||||
#elif ABL_GRID
|
||||
#if (GRID_MAX_POINTS_X & 1) == 0 || (GRID_MAX_POINTS_Y & 1) == 0
|
||||
#error "DELTA requires GRID_MAX_POINTS_X and GRID_MAX_POINTS_Y to be odd numbers."
|
||||
#elif GRID_MAX_POINTS_X < 3
|
||||
@ -431,20 +429,11 @@ static_assert(1 >= 0
|
||||
* Unified Bed Leveling
|
||||
*/
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#if IS_KINEMATIC
|
||||
#if ENABLED(DELTA)
|
||||
#if DISABLED(UBL_DELTA)
|
||||
#error "AUTO_BED_LEVELING_UBL requires UBL_DELTA for DELTA printers."
|
||||
#endif
|
||||
#else // SCARA
|
||||
#error "AUTO_BED_LEVELING_UBL not supported for SCARA printers."
|
||||
#endif
|
||||
#endif
|
||||
#if DISABLED(NEWPANEL)
|
||||
#if IS_SCARA
|
||||
#error "AUTO_BED_LEVELING_UBL does not yet support SCARA printers."
|
||||
#elif DISABLED(NEWPANEL)
|
||||
#error "AUTO_BED_LEVELING_UBL requires an LCD controller."
|
||||
#endif
|
||||
#elif ENABLED(UBL_DELTA)
|
||||
#error "UBL_DELTA requires AUTO_BED_LEVELING_UBL."
|
||||
#endif
|
||||
|
||||
/**
|
||||
@ -603,10 +592,8 @@ static_assert(1 >= 0
|
||||
/**
|
||||
* Delta and SCARA have limited bed leveling options
|
||||
*/
|
||||
#if IS_KINEMATIC
|
||||
#if DISABLED(AUTO_BED_LEVELING_BILINEAR) && DISABLED(UBL_DELTA)
|
||||
#error "Only AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL with UBL_DELTA support DELTA and SCARA bed leveling."
|
||||
#endif
|
||||
#if IS_SCARA && DISABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
#error "Only AUTO_BED_LEVELING_BILINEAR currently supports SCARA bed leveling."
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
@ -534,12 +534,12 @@ void Planner::check_axes_activity() {
|
||||
*/
|
||||
void Planner::apply_leveling(float &lx, float &ly, float &lz) {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_DELTA) // probably should also be enabled for UBL without UBL_DELTA
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && UBL_DELTA // probably should also be enabled for UBL without UBL_DELTA
|
||||
if (!ubl.state.active) return;
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
// if z_fade_height enabled (nonzero) and raw_z above it, no leveling required
|
||||
if ((planner.z_fade_height) && (planner.z_fade_height <= RAW_Z_POSITION(lz))) return;
|
||||
lz += ubl.state.z_offset + ( ubl.get_z_correction(lx,ly) * ubl.fade_scaling_factor_for_z(lz));
|
||||
lz += ubl.state.z_offset + ubl.get_z_correction(lx,ly) * ubl.fade_scaling_factor_for_z(lz);
|
||||
#else // no fade
|
||||
lz += ubl.state.z_offset + ubl.get_z_correction(lx,ly);
|
||||
#endif // FADE
|
||||
@ -598,12 +598,12 @@ void Planner::check_axes_activity() {
|
||||
|
||||
void Planner::unapply_leveling(float logical[XYZ]) {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_DELTA)
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && UBL_DELTA
|
||||
|
||||
if ( ubl.state.active ) {
|
||||
if (ubl.state.active) {
|
||||
|
||||
float z_leveled = RAW_Z_POSITION(logical[Z_AXIS]);
|
||||
float z_ublmesh = ubl.get_z_correction(logical[X_AXIS],logical[Y_AXIS]);
|
||||
const float z_leveled = RAW_Z_POSITION(logical[Z_AXIS]),
|
||||
z_ublmesh = ubl.get_z_correction(logical[X_AXIS], logical[Y_AXIS]);
|
||||
float z_unlevel = z_leveled - ubl.state.z_offset - z_ublmesh;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
@ -616,9 +616,9 @@ void Planner::check_axes_activity() {
|
||||
// so U(1-M/H)==L-O-M
|
||||
// so U==(L-O-M)/(1-M/H) for U<H
|
||||
|
||||
if ( planner.z_fade_height ) {
|
||||
float z_unfaded = z_unlevel / ( 1.0 - ( z_ublmesh * planner.inverse_z_fade_height ));
|
||||
if ( z_unfaded < planner.z_fade_height ) // don't know until after compute
|
||||
if (planner.z_fade_height) {
|
||||
float z_unfaded = z_unlevel / (1.0 - z_ublmesh * planner.inverse_z_fade_height);
|
||||
if (z_unfaded < planner.z_fade_height) // don't know until after compute
|
||||
z_unlevel = z_unfaded;
|
||||
}
|
||||
|
||||
|
@ -474,20 +474,10 @@
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
||||
|
||||
#ifdef UBL_DELTA
|
||||
|
||||
#define COPY_XYZE( target, source ) { \
|
||||
target[X_AXIS] = source[X_AXIS]; \
|
||||
target[Y_AXIS] = source[Y_AXIS]; \
|
||||
target[Z_AXIS] = source[Z_AXIS]; \
|
||||
target[E_AXIS] = source[E_AXIS]; \
|
||||
}
|
||||
#if UBL_DELTA
|
||||
|
||||
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
||||
static float scara_feed_factor;
|
||||
static float scara_oldA;
|
||||
static float scara_oldB;
|
||||
static float scara_feed_factor, scara_oldA, scara_oldB;
|
||||
#endif
|
||||
|
||||
// We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
|
||||
@ -501,18 +491,18 @@
|
||||
float feedrate = fr_mm_s;
|
||||
|
||||
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
||||
float adiff = abs(delta[A_AXIS] - scara_oldA);
|
||||
float bdiff = abs(delta[B_AXIS] - scara_oldB);
|
||||
float adiff = abs(delta[A_AXIS] - scara_oldA),
|
||||
bdiff = abs(delta[B_AXIS] - scara_oldB);
|
||||
scara_oldA = delta[A_AXIS];
|
||||
scara_oldB = delta[B_AXIS];
|
||||
feedrate = max(adiff, bdiff) * scara_feed_factor;
|
||||
#endif
|
||||
|
||||
planner._buffer_line( delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], feedrate, extruder );
|
||||
planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], ltarget[E_AXIS], feedrate, extruder);
|
||||
|
||||
#else // cartesian
|
||||
|
||||
planner._buffer_line( ltarget[X_AXIS], ltarget[Y_AXIS], ltarget[Z_AXIS], ltarget[E_AXIS], fr_mm_s, extruder );
|
||||
planner._buffer_line(ltarget[X_AXIS], ltarget[Y_AXIS], ltarget[Z_AXIS], ltarget[E_AXIS], fr_mm_s, extruder);
|
||||
|
||||
#endif
|
||||
}
|
||||
@ -525,7 +515,7 @@
|
||||
|
||||
static bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
|
||||
|
||||
if ( ! position_is_reachable_xy( ltarget[X_AXIS], ltarget[Y_AXIS] )) // fail if moving outside reachable boundary
|
||||
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
|
||||
return true; // did not move, so current_position still accurate
|
||||
|
||||
const float difference[XYZE] = { // cartesian distances moved in XYZE
|
||||
@ -535,19 +525,19 @@
|
||||
ltarget[E_AXIS] - current_position[E_AXIS]
|
||||
};
|
||||
|
||||
float cartesian_xy_mm = sqrtf( sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) ); // total horizontal xy distance
|
||||
const float cartesian_xy_mm = HYPOT(difference[X_AXIS], difference[Y_AXIS]); // total horizontal xy distance
|
||||
|
||||
#if IS_KINEMATIC
|
||||
float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
||||
uint16_t segments = lroundf( delta_segments_per_second * seconds ); // preferred number of segments for distance @ feedrate
|
||||
uint16_t seglimit = lroundf( cartesian_xy_mm * (1.0/(DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
||||
NOMORE( segments, seglimit ); // limit to minimum segment length (fewer segments)
|
||||
const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
|
||||
uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
|
||||
seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
|
||||
NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
|
||||
#else
|
||||
uint16_t segments = lroundf( cartesian_xy_mm * (1.0/(DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
||||
uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
|
||||
#endif
|
||||
|
||||
NOLESS( segments, 1 ); // must have at least one segment
|
||||
float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
||||
NOLESS(segments, 1); // must have at least one segment
|
||||
const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
|
||||
|
||||
#if IS_SCARA // scale the feed rate from mm/s to degrees/s
|
||||
scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
|
||||
@ -565,52 +555,48 @@
|
||||
// Note that E segment distance could vary slightly as z mesh height
|
||||
// changes for each segment, but small enough to ignore.
|
||||
|
||||
bool above_fade_height = false;
|
||||
const bool above_fade_height = (
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
if (( planner.z_fade_height != 0 ) &&
|
||||
( planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS]) )) {
|
||||
above_fade_height = true;
|
||||
}
|
||||
planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS])
|
||||
#else
|
||||
false
|
||||
#endif
|
||||
);
|
||||
|
||||
// Only compute leveling per segment if ubl active and target below z_fade_height.
|
||||
|
||||
if (( ! ubl.state.active ) || ( above_fade_height )) { // no mesh leveling
|
||||
if (!ubl.state.active || above_fade_height) { // no mesh leveling
|
||||
|
||||
const float z_offset = ubl.state.active ? ubl.state.z_offset : 0.0;
|
||||
|
||||
float seg_dest[XYZE]; // per-segment destination,
|
||||
COPY_XYZE( seg_dest, current_position ); // starting from current position
|
||||
COPY(seg_dest, current_position); // starting from current position
|
||||
|
||||
while (--segments) {
|
||||
LOOP_XYZE(i) seg_dest[i] += segment_distance[i];
|
||||
float ztemp = seg_dest[Z_AXIS];
|
||||
seg_dest[Z_AXIS] += z_offset;
|
||||
ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
seg_dest[Z_AXIS] = ztemp;
|
||||
}
|
||||
|
||||
// Since repeated adding segment_distance accumulates small errors, final move to exact destination.
|
||||
COPY_XYZE( seg_dest, ltarget );
|
||||
COPY(seg_dest, ltarget);
|
||||
seg_dest[Z_AXIS] += z_offset;
|
||||
ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
return false; // moved but did not set_current_to_destination();
|
||||
}
|
||||
|
||||
// Otherwise perform per-segment leveling
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
float fade_scaling_factor = ubl.fade_scaling_factor_for_z(ltarget[Z_AXIS]);
|
||||
#endif
|
||||
|
||||
float seg_dest[XYZE]; // per-segment destination, initialize to first segment
|
||||
LOOP_XYZE(i) seg_dest[i] = current_position[i] + segment_distance[i];
|
||||
|
||||
const float& dx_seg = segment_distance[X_AXIS]; // alias for clarity
|
||||
const float& dy_seg = segment_distance[Y_AXIS];
|
||||
|
||||
float rx = RAW_X_POSITION(seg_dest[X_AXIS]); // assume raw vs logical coordinates shifted but not scaled.
|
||||
float ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
|
||||
float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled.
|
||||
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
|
||||
|
||||
do { // for each mesh cell encountered during the move
|
||||
|
||||
@ -621,66 +607,67 @@
|
||||
// in top of loop and again re-find same adjacent cell and use it, just less efficient
|
||||
// for mesh inset area.
|
||||
|
||||
int8_t cell_xi = (rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
cell_xi = constrain( cell_xi, 0, (GRID_MAX_POINTS_X) - 1 );
|
||||
int8_t cell_xi = (rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
|
||||
cell_yi = (ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
||||
|
||||
int8_t cell_yi = (ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
|
||||
cell_yi = constrain( cell_yi, 0, (GRID_MAX_POINTS_Y) - 1 );
|
||||
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
|
||||
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
|
||||
|
||||
// float x0 = (UBL_MESH_MIN_X) + ((MESH_X_DIST) * cell_xi ); // lower left cell corner
|
||||
// float y0 = (UBL_MESH_MIN_Y) + ((MESH_Y_DIST) * cell_yi ); // lower left cell corner
|
||||
// float x1 = x0 + MESH_X_DIST; // upper right cell corner
|
||||
// float y1 = y0 + MESH_Y_DIST; // upper right cell corner
|
||||
|
||||
float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])); // 64 byte table lookup avoids mul+add
|
||||
float y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])); // 64 byte table lookup avoids mul+add
|
||||
float x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])); // 64 byte table lookup avoids mul+add
|
||||
float y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
|
||||
const float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add
|
||||
y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add
|
||||
x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add
|
||||
y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])), // 64 byte table lookup avoids mul+add
|
||||
|
||||
float cx = rx - x0; // cell-relative x
|
||||
float cy = ry - y0; // cell-relative y
|
||||
cx = rx - x0, // cell-relative x
|
||||
cy = ry - y0; // cell-relative y
|
||||
|
||||
float z_x0y0 = ubl.z_values[cell_xi ][cell_yi ]; // z at lower left corner
|
||||
float z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ]; // z at upper left corner
|
||||
float z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1]; // z at lower right corner
|
||||
float z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
||||
float z_x0y0 = ubl.z_values[cell_xi ][cell_yi ], // z at lower left corner
|
||||
z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ], // z at upper left corner
|
||||
z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1], // z at lower right corner
|
||||
z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
|
||||
|
||||
if ( isnan( z_x0y0 )) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A)
|
||||
if ( isnan( z_x1y0 )) z_x1y0 = 0; // should refuse if any invalid mesh points
|
||||
if ( isnan( z_x0y1 )) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
||||
if ( isnan( z_x1y1 )) z_x1y1 = 0; // thus guessing zero for undefined points
|
||||
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A)
|
||||
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
|
||||
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
|
||||
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
|
||||
|
||||
float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0/MESH_X_DIST); // z slope per x along y0 (lower left to lower right)
|
||||
float z_xmy1 = (z_x1y1 - z_x0y1) * (1.0/MESH_X_DIST); // z slope per x along y1 (upper left to upper right)
|
||||
const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
|
||||
z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
|
||||
|
||||
float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx
|
||||
float z_cxy1 = z_x0y1 + z_xmy1 * cx; // z height along y1 at cx
|
||||
float z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
||||
|
||||
float z_cxym = z_cxyd * (1.0/MESH_Y_DIST); // z slope per y along cx from y0 to y1
|
||||
float z_cxcy = z_cxy0 + z_cxym * cy; // z height along cx at cy
|
||||
const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
|
||||
z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
|
||||
|
||||
float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)), // z slope per y along cx from y0 to y1
|
||||
z_cxcy = z_cxy0 + z_cxym * cy; // z height along cx at cy
|
||||
|
||||
// As subsequent segments step through this cell, the z_cxy0 intercept will change
|
||||
// and the z_cxym slope will change, both as a function of cx within the cell, and
|
||||
// each change by a constant for fixed segment lengths.
|
||||
|
||||
float z_sxy0 = z_xmy0 * dx_seg; // per-segment adjustment to z_cxy0
|
||||
float z_sxym = ( z_xmy1 - z_xmy0 ) * (1.0/MESH_Y_DIST) * dx_seg; // per-segment adjustment to z_cxym
|
||||
const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0
|
||||
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym
|
||||
|
||||
do { // for all segments within this mesh cell
|
||||
|
||||
z_cxcy += ubl.state.z_offset;
|
||||
|
||||
if ( --segments == 0 ) { // this is last segment, use ltarget for exact
|
||||
COPY_XYZE( seg_dest, ltarget );
|
||||
if (--segments == 0) { // this is last segment, use ltarget for exact
|
||||
COPY(seg_dest, ltarget);
|
||||
seg_dest[Z_AXIS] += z_cxcy;
|
||||
ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
return false; // did not set_current_to_destination()
|
||||
}
|
||||
|
||||
float z_orig = seg_dest[Z_AXIS]; // remember the pre-leveled segment z value
|
||||
const float z_orig = seg_dest[Z_AXIS]; // remember the pre-leveled segment z value
|
||||
seg_dest[Z_AXIS] = z_orig + z_cxcy; // adjust segment z height per mesh leveling
|
||||
ubl_buffer_line_segment( seg_dest, feedrate, active_extruder );
|
||||
ubl_buffer_line_segment(seg_dest, feedrate, active_extruder);
|
||||
seg_dest[Z_AXIS] = z_orig; // restore pre-leveled z before incrementing
|
||||
|
||||
LOOP_XYZE(i) seg_dest[i] += segment_distance[i]; // adjust seg_dest for next segment
|
||||
@ -688,7 +675,7 @@
|
||||
cx += dx_seg;
|
||||
cy += dy_seg;
|
||||
|
||||
if ( !WITHIN(cx,0,MESH_X_DIST) || !WITHIN(cy,0,MESH_Y_DIST)) { // done within this cell, break to next
|
||||
if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
|
||||
rx = RAW_X_POSITION(seg_dest[X_AXIS]);
|
||||
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
|
||||
break;
|
||||
|
Loading…
Reference in New Issue
Block a user