mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-23 12:04:19 +00:00
Merge branch 'Marlin_v1' of https://github.com/ErikZalm/Marlin into Marlin_v1
This commit is contained in:
commit
12e8edcac3
@ -170,6 +170,7 @@ const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
||||
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
||||
|
||||
//#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
|
||||
|
||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||
#define X_ENABLE_ON 0
|
||||
@ -279,8 +280,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
||||
#ifdef ADVANCE
|
||||
#define EXTRUDER_ADVANCE_K .3
|
||||
|
||||
#define D_FILAMENT 1.7
|
||||
#define STEPS_MM_E 65
|
||||
#define D_FILAMENT 2.85
|
||||
#define STEPS_MM_E 836
|
||||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
||||
|
||||
|
@ -529,6 +529,8 @@ FORCE_INLINE void process_commands()
|
||||
saved_feedmultiply = feedmultiply;
|
||||
feedmultiply = 100;
|
||||
|
||||
enable_endstops(true);
|
||||
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
destination[i] = current_position[i];
|
||||
}
|
||||
@ -564,6 +566,9 @@ FORCE_INLINE void process_commands()
|
||||
HOMEAXIS(Z);
|
||||
current_position[2]=code_value()+add_homeing[2];
|
||||
}
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#endif
|
||||
|
||||
feedrate = saved_feedrate;
|
||||
feedmultiply = saved_feedmultiply;
|
||||
|
@ -200,7 +200,6 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
||||
|
||||
// block->accelerate_until = accelerate_steps;
|
||||
// block->decelerate_after = accelerate_steps+plateau_steps;
|
||||
|
||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||
if(block->busy == false) { // Don't update variables if block is busy.
|
||||
block->accelerate_until = accelerate_steps;
|
||||
@ -484,7 +483,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count <=dropsegments) { return; };
|
||||
|
||||
// Compute direction bits for this block
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
||||
@ -725,7 +724,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
else {
|
||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
||||
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA / 3600.0)*65536;
|
||||
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
|
||||
block->advance = advance;
|
||||
if(acc_dist == 0) {
|
||||
block->advance_rate = 0;
|
||||
@ -734,6 +733,13 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||
block->advance_rate = advance / (float)acc_dist;
|
||||
}
|
||||
}
|
||||
/*
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM("advance :");
|
||||
SERIAL_ECHO(block->advance/256.0);
|
||||
SERIAL_ECHOPGM("advance rate :");
|
||||
SERIAL_ECHOLN(block->advance_rate/256.0);
|
||||
*/
|
||||
#endif // ADVANCE
|
||||
|
||||
|
||||
|
@ -56,9 +56,9 @@ static long counter_x, // Counter variables for the bresenham line tracer
|
||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
#ifdef ADVANCE
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static short old_advance = 0;
|
||||
static long old_advance = 0;
|
||||
#endif
|
||||
static short e_steps;
|
||||
static long e_steps;
|
||||
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
||||
static long acceleration_time, deceleration_time;
|
||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
@ -79,13 +79,20 @@ static bool old_y_max_endstop=false;
|
||||
static bool old_z_min_endstop=false;
|
||||
static bool old_z_max_endstop=false;
|
||||
|
||||
static bool check_endstops = true;
|
||||
|
||||
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
||||
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
||||
|
||||
//===========================================================================
|
||||
//=============================functions ============================
|
||||
//===========================================================================
|
||||
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
#define CHECK_ENDSTOPS if(check_endstops)
|
||||
#else
|
||||
#define CHECK_ENDSTOPS
|
||||
#endif
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
@ -191,6 +198,11 @@ void endstops_hit_on_purpose()
|
||||
endstop_z_hit=false;
|
||||
}
|
||||
|
||||
void enable_endstops(bool check)
|
||||
{
|
||||
check_endstops = check;
|
||||
}
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
// / | | \ /| |\ |
|
||||
@ -254,6 +266,9 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||
#ifdef ADVANCE
|
||||
advance = current_block->initial_advance;
|
||||
final_advance = current_block->final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// step_rate to timer interval
|
||||
@ -261,6 +276,17 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
@ -295,82 +321,100 @@ ISR(TIMER1_COMPA_vect)
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
||||
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
||||
count_direction[X_AXIS]=-1;
|
||||
#if X_MIN_PIN > -1
|
||||
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_x_min_endstop = x_min_endstop;
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if X_MIN_PIN > -1
|
||||
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_x_min_endstop = x_min_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
||||
count_direction[X_AXIS]=1;
|
||||
#if X_MAX_PIN > -1
|
||||
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_x_max_endstop = x_max_endstop;
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if X_MAX_PIN > -1
|
||||
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_x_max_endstop = x_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
||||
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
||||
count_direction[Y_AXIS]=-1;
|
||||
#if Y_MIN_PIN > -1
|
||||
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_y_min_endstop = y_min_endstop;
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if Y_MIN_PIN > -1
|
||||
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_y_min_endstop = y_min_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
||||
count_direction[Y_AXIS]=1;
|
||||
#if Y_MAX_PIN > -1
|
||||
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_y_max_endstop = y_max_endstop;
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if Y_MAX_PIN > -1
|
||||
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_y_max_endstop = y_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
||||
count_direction[Z_AXIS]=-1;
|
||||
#if Z_MIN_PIN > -1
|
||||
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_z_min_endstop = z_min_endstop;
|
||||
#endif
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if Z_MIN_PIN > -1
|
||||
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_z_min_endstop = z_min_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
||||
count_direction[Z_AXIS]=1;
|
||||
#if Z_MAX_PIN > -1
|
||||
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_z_max_endstop = z_max_endstop;
|
||||
#endif
|
||||
count_direction[Z_AXIS]=1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if Z_MAX_PIN > -1
|
||||
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_z_max_endstop = z_max_endstop;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef ADVANCE
|
||||
@ -383,6 +427,9 @@ ISR(TIMER1_COMPA_vect)
|
||||
count_direction[E_AXIS]=-1;
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
|
||||
|
||||
|
||||
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||
MSerial.checkRx(); // Check for serial chars.
|
||||
|
||||
@ -391,19 +438,12 @@ ISR(TIMER1_COMPA_vect)
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps--;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
else {
|
||||
CRITICAL_SECTION_START;
|
||||
e_steps++;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
}
|
||||
// Do E steps + advance steps
|
||||
e_steps += ((advance >> 16) - old_advance);
|
||||
old_advance = advance >> 16;
|
||||
#endif //ADVANCE
|
||||
|
||||
counter_x += current_block->steps_x;
|
||||
@ -462,6 +502,11 @@ ISR(TIMER1_COMPA_vect)
|
||||
for(int8_t i=0; i < step_loops; i++) {
|
||||
advance += advance_rate;
|
||||
}
|
||||
//if(advance > current_block->advance) advance = current_block->advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
|
||||
#endif
|
||||
}
|
||||
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
||||
@ -486,8 +531,10 @@ ISR(TIMER1_COMPA_vect)
|
||||
for(int8_t i=0; i < step_loops; i++) {
|
||||
advance -= advance_rate;
|
||||
}
|
||||
if(advance < final_advance)
|
||||
advance = final_advance;
|
||||
if(advance < final_advance) advance = final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
#endif //ADVANCE
|
||||
}
|
||||
else {
|
||||
@ -508,7 +555,7 @@ ISR(TIMER1_COMPA_vect)
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPA_vect)
|
||||
{
|
||||
old_OCR0A += 25; // ~10kHz interrupt
|
||||
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
||||
OCR0A = old_OCR0A;
|
||||
// Set E direction (Depends on E direction + advance)
|
||||
for(unsigned char i=0; i<4;) {
|
||||
@ -520,7 +567,7 @@ ISR(TIMER1_COMPA_vect)
|
||||
e_steps++;
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
}
|
||||
if (e_steps > 0) {
|
||||
else if (e_steps > 0) {
|
||||
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
||||
e_steps--;
|
||||
WRITE(E_STEP_PIN, HIGH);
|
||||
@ -649,6 +696,13 @@ void st_init()
|
||||
e_steps = 0;
|
||||
TIMSK0 |= (1<<OCIE0A);
|
||||
#endif //ADVANCE
|
||||
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#else
|
||||
enable_endstops(true);
|
||||
#endif
|
||||
|
||||
sei();
|
||||
}
|
||||
|
||||
|
@ -44,6 +44,8 @@ void st_wake_up();
|
||||
void checkHitEndstops(); //call from somwhere to create an serial error message with the locations the endstops where hit, in case they were triggered
|
||||
void endstops_hit_on_purpose(); //avoid creation of the message, i.e. after homeing and before a routine call of checkHitEndstops();
|
||||
|
||||
void enable_endstops(bool check); // Enable/disable endstop checking
|
||||
|
||||
void checkStepperErrors(); //Print errors detected by the stepper
|
||||
|
||||
void finishAndDisableSteppers();
|
||||
|
Loading…
Reference in New Issue
Block a user