diff --git a/Marlin/src/HAL/HAL_AVR/HAL.h b/Marlin/src/HAL/HAL_AVR/HAL.h index a38c7d2441..aa2c59db49 100644 --- a/Marlin/src/HAL/HAL_AVR/HAL.h +++ b/Marlin/src/HAL/HAL_AVR/HAL.h @@ -162,24 +162,148 @@ extern "C" { * (otherwise, characters will be lost due to UART overflow). * Then: Stepper, Endstops, Temperature, and -finally- all others. */ -#define HAL_timer_isr_prologue_0 do{ DISABLE_TEMPERATURE_INTERRUPT(); sei(); }while(0) -#define HAL_timer_isr_epilogue_0 do{ cli(); ENABLE_TEMPERATURE_INTERRUPT(); }while(0) +#define HAL_timer_isr_prologue(TIMER_NUM) +#define HAL_timer_isr_epilogue(TIMER_NUM) -#define HAL_timer_isr_prologue_1 \ - const bool temp_isr_was_enabled = TEMPERATURE_ISR_ENABLED(); \ - do{ \ - DISABLE_TEMPERATURE_INTERRUPT(); \ - DISABLE_STEPPER_DRIVER_INTERRUPT(); \ - sei(); \ - }while(0) +/* 18 cycles maximum latency */ +#define HAL_STEP_TIMER_ISR \ +extern "C" void TIMER1_COMPA_vect (void) __attribute__ ((signal, naked, used, externally_visible)); \ +extern "C" void TIMER1_COMPA_vect_bottom (void) asm ("TIMER1_COMPA_vect_bottom") __attribute__ ((used, externally_visible, noinline)); \ +void TIMER1_COMPA_vect (void) { \ + __asm__ __volatile__ ( \ + A("push r16") /* 2 Save R16 */ \ + A("in r16, __SREG__") /* 1 Get SREG */ \ + A("push r16") /* 2 Save SREG into stack */ \ + A("lds r16, %[timsk0]") /* 2 Load into R0 the Temperature timer Interrupt mask register */ \ + A("push r16") /* 2 Save TIMSK0 into the stack */ \ + A("andi r16,~%[msk0]") /* 1 Disable the temperature ISR */ \ + A("sts %[timsk0], r16") /* 2 And set the new value */ \ + A("lds r16, %[timsk1]") /* 2 Load into R0 the stepper timer Interrupt mask register [TIMSK1] */ \ + A("andi r16,~%[msk1]") /* 1 Disable the stepper ISR */ \ + A("sts %[timsk1], r16") /* 2 And set the new value */ \ + A("sei") /* 1 Enable global interrupts - stepper and temperature ISRs are disabled, so no risk of reentry or being preempted by the temperature ISR */ \ + A("push r16") /* 2 Save TIMSK1 into stack */ \ + A("in r16, 0x3B") /* 1 Get RAMPZ register */ \ + A("push r16") /* 2 Save RAMPZ into stack */ \ + A("in r16, 0x3C") /* 1 Get EIND register */ \ + A("push r0") /* C runtime can modify all the following registers without restoring them */ \ + A("push r1") \ + A("push r18") \ + A("push r19") \ + A("push r20") \ + A("push r21") \ + A("push r22") \ + A("push r23") \ + A("push r24") \ + A("push r25") \ + A("push r26") \ + A("push r27") \ + A("push r30") \ + A("push r31") \ + A("clr r1") /* C runtime expects this register to be 0 */ \ + A("call TIMER1_COMPA_vect_bottom") /* Call the bottom handler - No inlining allowed, otherwise registers used are not saved */ \ + A("pop r31") \ + A("pop r30") \ + A("pop r27") \ + A("pop r26") \ + A("pop r25") \ + A("pop r24") \ + A("pop r23") \ + A("pop r22") \ + A("pop r21") \ + A("pop r20") \ + A("pop r19") \ + A("pop r18") \ + A("pop r1") \ + A("pop r0") \ + A("out 0x3C, r16") /* 1 Restore EIND register */ \ + A("pop r16") /* 2 Get the original RAMPZ register value */ \ + A("out 0x3B, r16") /* 1 Restore RAMPZ register to its original value */ \ + A("pop r16") /* 2 Get the original TIMSK1 value but with stepper ISR disabled */ \ + A("ori r16,%[msk1]") /* 1 Reenable the stepper ISR */ \ + A("cli") /* 1 Disable global interrupts - Reenabling Stepper ISR can reenter amd temperature can reenter, and we want that, if it happens, after this ISR has ended */ \ + A("sts %[timsk1], r16") /* 2 And restore the old value - This reenables the stepper ISR */ \ + A("pop r16") /* 2 Get the temperature timer Interrupt mask register [TIMSK0] */ \ + A("sts %[timsk0], r16") /* 2 And restore the old value - This reenables the temperature ISR */ \ + A("pop r16") /* 2 Get the old SREG value */ \ + A("out __SREG__, r16") /* 1 And restore the SREG value */ \ + A("pop r16") /* 2 Restore R16 value */ \ + A("reti") /* 4 Return from interrupt */ \ + : \ + : [timsk0] "i" ((uint16_t)&TIMSK0), \ + [timsk1] "i" ((uint16_t)&TIMSK1), \ + [msk0] "M" ((uint8_t)(1< - -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } /** * Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h) @@ -95,19 +88,19 @@ void pciSetup(const int8_t pin) { // Handlers for pin change interrupts #ifdef PCINT0_vect - ISR(PCINT0_vect) { endstop_ISR_worker(); } + ISR(PCINT0_vect) { endstop_ISR(); } #endif #ifdef PCINT1_vect - ISR(PCINT1_vect) { endstop_ISR_worker(); } + ISR(PCINT1_vect) { endstop_ISR(); } #endif #ifdef PCINT2_vect - ISR(PCINT2_vect) { endstop_ISR_worker(); } + ISR(PCINT2_vect) { endstop_ISR(); } #endif #ifdef PCINT3_vect - ISR(PCINT3_vect) { endstop_ISR_worker(); } + ISR(PCINT3_vect) { endstop_ISR(); } #endif void setup_endstop_interrupts( void ) { diff --git a/Marlin/src/HAL/HAL_DUE/DebugMonitor_Due.cpp b/Marlin/src/HAL/HAL_DUE/DebugMonitor_Due.cpp index d4c21c9810..51064f9ba2 100644 --- a/Marlin/src/HAL/HAL_DUE/DebugMonitor_Due.cpp +++ b/Marlin/src/HAL/HAL_DUE/DebugMonitor_Due.cpp @@ -46,6 +46,11 @@ static void TXBegin(void) { // Disable UART interrupt in NVIC NVIC_DisableIRQ( UART_IRQn ); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + // Disable clock pmc_disable_periph_clk( ID_UART ); diff --git a/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.cpp b/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.cpp index 9f56bbeb58..eb23692b44 100644 --- a/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.cpp +++ b/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.cpp @@ -99,6 +99,11 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) { // Disable interrupt, just in case it was already enabled NVIC_DisableIRQ(irq); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + // Disable timer interrupt tc->TC_CHANNEL[channel].TC_IDR = TC_IDR_CPCS; @@ -126,18 +131,28 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) { } void HAL_timer_enable_interrupt(const uint8_t timer_num) { - const tTimerConfig * const pConfig = &TimerConfig[timer_num]; - pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_IER = TC_IER_CPCS; + IRQn_Type irq = TimerConfig[timer_num].IRQ_Id; + NVIC_EnableIRQ(irq); } void HAL_timer_disable_interrupt(const uint8_t timer_num) { - const tTimerConfig * const pConfig = &TimerConfig[timer_num]; - pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_IDR = TC_IDR_CPCS; + IRQn_Type irq = TimerConfig[timer_num].IRQ_Id; + NVIC_DisableIRQ(irq); + + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); +} + +// missing from CMSIS: Check if interrupt is enabled or not +static bool NVIC_GetEnabledIRQ(IRQn_Type IRQn) { + return (NVIC->ISER[(uint32_t)(IRQn) >> 5] & (1 << ((uint32_t)(IRQn) & 0x1F))) != 0; } bool HAL_timer_interrupt_enabled(const uint8_t timer_num) { - const tTimerConfig * const pConfig = &TimerConfig[timer_num]; - return (pConfig->pTimerRegs->TC_CHANNEL[pConfig->channel].TC_IMR & TC_IMR_CPCS) != 0; + IRQn_Type irq = TimerConfig[timer_num].IRQ_Id; + return NVIC_GetEnabledIRQ(irq); } #endif // ARDUINO_ARCH_SAM diff --git a/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.h b/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.h index df3db76fad..ca762f689d 100644 --- a/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.h +++ b/Marlin/src/HAL/HAL_DUE/HAL_timers_Due.h @@ -118,8 +118,6 @@ void HAL_timer_enable_interrupt(const uint8_t timer_num); void HAL_timer_disable_interrupt(const uint8_t timer_num); bool HAL_timer_interrupt_enabled(const uint8_t timer_num); -//void HAL_timer_isr_prologue(const uint8_t timer_num); - FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) { const tTimerConfig * const pConfig = &TimerConfig[timer_num]; // Reading the status register clears the interrupt flag diff --git a/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp b/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp index 8413c002ab..ac36606308 100644 --- a/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp +++ b/Marlin/src/HAL/HAL_DUE/MarlinSerial_Due.cpp @@ -245,6 +245,11 @@ // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + // Disable clock pmc_disable_periph_clk( HWUART_IRQ_ID ); @@ -290,6 +295,11 @@ // Disable UART interrupt in NVIC NVIC_DisableIRQ( HWUART_IRQ ); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + pmc_disable_periph_clk( HWUART_IRQ_ID ); } diff --git a/Marlin/src/HAL/HAL_DUE/endstop_interrupts.h b/Marlin/src/HAL/HAL_DUE/endstop_interrupts.h index 1a1d8fe82b..b662804cd1 100644 --- a/Marlin/src/HAL/HAL_DUE/endstop_interrupts.h +++ b/Marlin/src/HAL/HAL_DUE/endstop_interrupts.h @@ -24,7 +24,7 @@ * Endstop Interrupts * * Without endstop interrupts the endstop pins must be polled continually in - * the stepper-ISR via endstops.update(), most of the time finding no change. + * the temperature-ISR via endstops.update(), most of the time finding no change. * With this feature endstops.update() is called only when we know that at * least one endstop has changed state, saving valuable CPU cycles. * @@ -37,16 +37,10 @@ #ifndef _ENDSTOP_INTERRUPTS_H_ #define _ENDSTOP_INTERRUPTS_H_ -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } /** * Endstop interrupts for Due based targets. diff --git a/Marlin/src/HAL/HAL_DUE/watchdog_Due.cpp b/Marlin/src/HAL/HAL_DUE/watchdog_Due.cpp index 79081f43a2..3467fdd942 100644 --- a/Marlin/src/HAL/HAL_DUE/watchdog_Due.cpp +++ b/Marlin/src/HAL/HAL_DUE/watchdog_Due.cpp @@ -68,6 +68,11 @@ void watchdogSetup(void) { // Disable WDT interrupt (just in case, to avoid triggering it!) NVIC_DisableIRQ(WDT_IRQn); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + // Initialize WDT with the given parameters WDT_Enable(WDT, value); diff --git a/Marlin/src/HAL/HAL_LPC1768/HAL_timers.cpp b/Marlin/src/HAL/HAL_LPC1768/HAL_timers.cpp index 25f1381f5c..5e437bbe8b 100644 --- a/Marlin/src/HAL/HAL_LPC1768/HAL_timers.cpp +++ b/Marlin/src/HAL/HAL_LPC1768/HAL_timers.cpp @@ -23,7 +23,7 @@ /** * Description: * - * For TARGET_LPC1768 + * Timers for LPC1768 */ #ifdef TARGET_LPC1768 @@ -32,62 +32,35 @@ #include "HAL_timers.h" void HAL_timer_init(void) { - SBI(LPC_SC->PCONP, 1); // power on timer0 + SBI(LPC_SC->PCONP, SBIT_TIMER0); // Power ON Timer 0 LPC_TIM0->PR = (HAL_TIMER_RATE) / (HAL_STEPPER_TIMER_RATE) - 1; // Use prescaler to set frequency if needed - SBI(LPC_SC->PCONP, 2); // power on timer1 + SBI(LPC_SC->PCONP, SBIT_TIMER1); // Power ON Timer 1 LPC_TIM1->PR = (HAL_TIMER_RATE) / 1000000 - 1; } void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) { switch (timer_num) { case 0: - LPC_TIM0->MCR = 3; // Match on MR0, reset on MR0 + LPC_TIM0->MCR = _BV(SBIT_MR0I) | _BV(SBIT_MR0R); // Match on MR0, reset on MR0, interrupts when NVIC enables them LPC_TIM0->MR0 = uint32_t(HAL_STEPPER_TIMER_RATE) / frequency; // Match value (period) to set frequency - LPC_TIM0->TCR = _BV(0); // enable + LPC_TIM0->TCR = _BV(SBIT_CNTEN); // Counter Enable + + NVIC_SetPriority(TIMER0_IRQn, NVIC_EncodePriority(0, 1, 0)); + NVIC_EnableIRQ(TIMER0_IRQn); break; + case 1: - LPC_TIM1->MCR = 3; + LPC_TIM1->MCR = _BV(SBIT_MR0I) | _BV(SBIT_MR0R); // Match on MR0, reset on MR0, interrupts when NVIC enables them LPC_TIM1->MR0 = uint32_t(HAL_TEMP_TIMER_RATE) / frequency; - LPC_TIM1->TCR = _BV(0); + LPC_TIM1->TCR = _BV(SBIT_CNTEN); // Counter Enable + + NVIC_SetPriority(TIMER1_IRQn, NVIC_EncodePriority(0, 2, 0)); + NVIC_EnableIRQ(TIMER1_IRQn); break; + default: break; } } -void HAL_timer_enable_interrupt(const uint8_t timer_num) { - switch (timer_num) { - case 0: - NVIC_EnableIRQ(TIMER0_IRQn); // Enable interrupt handler - NVIC_SetPriority(TIMER0_IRQn, NVIC_EncodePriority(0, 1, 0)); - break; - case 1: - NVIC_EnableIRQ(TIMER1_IRQn); - NVIC_SetPriority(TIMER1_IRQn, NVIC_EncodePriority(0, 2, 0)); - break; - } -} - -void HAL_timer_disable_interrupt(const uint8_t timer_num) { - switch (timer_num) { - case 0: NVIC_DisableIRQ(TIMER0_IRQn); break; // disable interrupt handler - case 1: NVIC_DisableIRQ(TIMER1_IRQn); break; - } -} - -bool HAL_timer_interrupt_enabled(const uint8_t timer_num) { - switch (timer_num) { - case 0: return NVIC_GetActive(TIMER0_IRQn); - case 1: return NVIC_GetActive(TIMER1_IRQn); - } - return false; -} - -void HAL_timer_isr_prologue(const uint8_t timer_num) { - switch (timer_num) { - case 0: SBI(LPC_TIM0->IR, 0); break; // Clear the Interrupt - case 1: SBI(LPC_TIM1->IR, 0); break; - } -} - #endif // TARGET_LPC1768 diff --git a/Marlin/src/HAL/HAL_LPC1768/HAL_timers.h b/Marlin/src/HAL/HAL_LPC1768/HAL_timers.h index c5147462d4..72b19b9fa9 100644 --- a/Marlin/src/HAL/HAL_LPC1768/HAL_timers.h +++ b/Marlin/src/HAL/HAL_LPC1768/HAL_timers.h @@ -34,18 +34,42 @@ #include +#include "../../core/macros.h" + +#define SBIT_TIMER0 1 +#define SBIT_TIMER1 2 + +#define SBIT_CNTEN 0 + +#define SBIT_MR0I 0 // Timer 0 Interrupt when TC matches MR0 +#define SBIT_MR0R 1 // Timer 0 Reset TC on Match +#define SBIT_MR0S 2 // Timer 0 Stop TC and PC on Match +#define SBIT_MR1I 3 +#define SBIT_MR1R 4 +#define SBIT_MR1S 5 +#define SBIT_MR2I 6 +#define SBIT_MR2R 7 +#define SBIT_MR2S 8 +#define SBIT_MR3I 9 +#define SBIT_MR3R 10 +#define SBIT_MR3S 11 + // -------------------------------------------------------------------------- // Defines // -------------------------------------------------------------------------- -#define FORCE_INLINE __attribute__((always_inline)) inline +#define _HAL_TIMER(T) _CAT(LPC_TIM, T) +#define _HAL_TIMER_IRQ(T) TIMER##T##_IRQn +#define __HAL_TIMER_ISR(T) extern "C" void TIMER##T##_IRQHandler(void) +#define _HAL_TIMER_ISR(T) __HAL_TIMER_ISR(T) typedef uint32_t hal_timer_t; #define HAL_TIMER_TYPE_MAX 0xFFFFFFFF -#define STEP_TIMER_NUM 0 // index of timer to use for stepper -#define TEMP_TIMER_NUM 1 // index of timer to use for temperature +#define STEP_TIMER_NUM 0 // Timer Index for Stepper +#define TEMP_TIMER_NUM 1 // Timer Index for Temperature #define PULSE_TIMER_NUM STEP_TIMER_NUM +#define PWM_TIMER_NUM 3 // Timer Index for PWM #define HAL_TIMER_RATE ((SystemCoreClock) / 4) // frequency of timers peripherals #define HAL_STEPPER_TIMER_RATE HAL_TIMER_RATE // frequency of stepper timer (HAL_TIMER_RATE / STEPPER_TIMER_PRESCALE) @@ -66,21 +90,12 @@ typedef uint32_t hal_timer_t; #define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(TEMP_TIMER_NUM) #define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(TEMP_TIMER_NUM) -#define HAL_STEP_TIMER_ISR extern "C" void TIMER0_IRQHandler(void) -#define HAL_TEMP_TIMER_ISR extern "C" void TIMER1_IRQHandler(void) +#define HAL_STEP_TIMER_ISR _HAL_TIMER_ISR(STEP_TIMER_NUM) +#define HAL_TEMP_TIMER_ISR _HAL_TIMER_ISR(TEMP_TIMER_NUM) -// PWM timer -#define HAL_PWM_TIMER LPC_TIM3 -#define HAL_PWM_TIMER_ISR extern "C" void TIMER3_IRQHandler(void) -#define HAL_PWM_TIMER_IRQn TIMER3_IRQn - -// -------------------------------------------------------------------------- -// Types -// -------------------------------------------------------------------------- - -// -------------------------------------------------------------------------- -// Public Variables -// -------------------------------------------------------------------------- +// Timer references by index +#define STEP_TIMER _HAL_TIMER(STEP_TIMER_NUM) +#define TEMP_TIMER _HAL_TIMER(TEMP_TIMER_NUM) // -------------------------------------------------------------------------- // Public functions @@ -90,31 +105,23 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency); FORCE_INLINE static void HAL_timer_set_compare(const uint8_t timer_num, const hal_timer_t compare) { switch (timer_num) { - case 0: - LPC_TIM0->MR0 = compare; - if (LPC_TIM0->TC > compare) - LPC_TIM0->TC = compare - 5; // generate an immediate stepper ISR - break; - case 1: - LPC_TIM1->MR0 = compare; - if (LPC_TIM1->TC > compare) - LPC_TIM1->TC = compare - 5; // make sure we don't have one extra long period - break; + case 0: STEP_TIMER->MR0 = compare; break; // Stepper Timer Match Register 0 + case 1: TEMP_TIMER->MR0 = compare; break; // Temp Timer Match Register 0 } } FORCE_INLINE static hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) { switch (timer_num) { - case 0: return LPC_TIM0->MR0; - case 1: return LPC_TIM1->MR0; + case 0: return STEP_TIMER->MR0; // Stepper Timer Match Register 0 + case 1: return TEMP_TIMER->MR0; // Temp Timer Match Register 0 } return 0; } FORCE_INLINE static hal_timer_t HAL_timer_get_count(const uint8_t timer_num) { switch (timer_num) { - case 0: return LPC_TIM0->TC; - case 1: return LPC_TIM1->TC; + case 0: return STEP_TIMER->TC; // Stepper Timer Count + case 1: return TEMP_TIMER->TC; // Temp Timer Count } return 0; } @@ -124,10 +131,45 @@ FORCE_INLINE static void HAL_timer_restrain(const uint8_t timer_num, const uint1 if (HAL_timer_get_compare(timer_num) < mincmp) HAL_timer_set_compare(timer_num, mincmp); } -void HAL_timer_enable_interrupt(const uint8_t timer_num); -void HAL_timer_disable_interrupt(const uint8_t timer_num); -bool HAL_timer_interrupt_enabled(const uint8_t timer_num); -void HAL_timer_isr_prologue(const uint8_t timer_num); +FORCE_INLINE static void HAL_timer_enable_interrupt(const uint8_t timer_num) { + switch (timer_num) { + case 0: NVIC_EnableIRQ(TIMER0_IRQn); // Enable interrupt handler + case 1: NVIC_EnableIRQ(TIMER1_IRQn); // Enable interrupt handler + } +} + +FORCE_INLINE static void HAL_timer_disable_interrupt(const uint8_t timer_num) { + switch (timer_num) { + case 0: NVIC_DisableIRQ(TIMER0_IRQn); // Disable interrupt handler + case 1: NVIC_DisableIRQ(TIMER1_IRQn); // Disable interrupt handler + } + + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); +} + +// This function is missing from CMSIS +FORCE_INLINE static bool NVIC_GetEnableIRQ(IRQn_Type IRQn) { + return (NVIC->ISER[((uint32_t)IRQn) >> 5] & (1 << ((uint32_t)IRQn) & 0x1F)) != 0; +} + +FORCE_INLINE static bool HAL_timer_interrupt_enabled(const uint8_t timer_num) { + switch (timer_num) { + case 0: return NVIC_GetEnableIRQ(TIMER0_IRQn); // Check if interrupt is enabled or not + case 1: return NVIC_GetEnableIRQ(TIMER1_IRQn); // Check if interrupt is enabled or not + } + return false; +} + +FORCE_INLINE static void HAL_timer_isr_prologue(const uint8_t timer_num) { + switch (timer_num) { + case 0: SBI(STEP_TIMER->IR, SBIT_CNTEN); break; + case 1: SBI(TEMP_TIMER->IR, SBIT_CNTEN); break; + } +} + #define HAL_timer_isr_epilogue(TIMER_NUM) -#endif // _HAL_TIMERS_DUE_H +#endif // _HAL_TIMERS_H diff --git a/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp b/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp index c2bfd65d14..b27d8e1f31 100644 --- a/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp +++ b/Marlin/src/HAL/HAL_LPC1768/LPC1768_PWM.cpp @@ -78,12 +78,14 @@ #define NUM_ISR_PWMS 20 +#define HAL_PWM_TIMER LPC_TIM3 +#define HAL_PWM_TIMER_ISR extern "C" void TIMER3_IRQHandler(void) +#define HAL_PWM_TIMER_IRQn TIMER3_IRQn #define LPC_PORT_OFFSET (0x0020) #define LPC_PIN(pin) (1UL << pin) #define LPC_GPIO(port) ((volatile LPC_GPIO_TypeDef *)(LPC_GPIO0_BASE + LPC_PORT_OFFSET * port)) - typedef struct { // holds all data needed to control/init one of the PWM channels bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN pin_t pin; @@ -256,6 +258,11 @@ bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = // OK to update the active table because the // ISR doesn't use any of the changed items + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + if (ISR_table_update) //use work table if that's the newest temp_table = work_table; else @@ -340,6 +347,11 @@ bool LPC1768_PWM_detach_pin(pin_t pin) { //// interrupt controlled PWM code NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + if (ISR_table_update) { ISR_table_update = false; // don't update yet - have another update to do NVIC_EnableIRQ(HAL_PWM_TIMER_IRQn); // re-enable PWM interrupts @@ -426,6 +438,12 @@ bool LPC1768_PWM_write(pin_t pin, uint32_t value) { //// interrupt controlled PWM code NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); + + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + if (!ISR_table_update) // use the most up to date table COPY_ACTIVE_TABLE; // copy active table into work table @@ -454,6 +472,11 @@ bool useable_hardware_PWM(pin_t pin) { NVIC_DisableIRQ(HAL_PWM_TIMER_IRQn); + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); + bool return_flag = false; for (uint8_t i = 0; i < NUM_ISR_PWMS; i++) // see if it's already setup if (active_table[i].pin == pin) return_flag = true; diff --git a/Marlin/src/HAL/HAL_LPC1768/endstop_interrupts.h b/Marlin/src/HAL/HAL_LPC1768/endstop_interrupts.h index cb0449629a..25da1f95fa 100644 --- a/Marlin/src/HAL/HAL_LPC1768/endstop_interrupts.h +++ b/Marlin/src/HAL/HAL_LPC1768/endstop_interrupts.h @@ -24,7 +24,7 @@ * Endstop Interrupts * * Without endstop interrupts the endstop pins must be polled continually in - * the stepper-ISR via endstops.update(), most of the time finding no change. + * the temperature-ISR via endstops.update(), most of the time finding no change. * With this feature endstops.update() is called only when we know that at * least one endstop has changed state, saving valuable CPU cycles. * @@ -40,16 +40,10 @@ //Currently this is untested and broken #error "Please disable Endstop Interrupts LPC176x is currently an unsupported platform" -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } void setup_endstop_interrupts(void) { #if HAS_X_MAX diff --git a/Marlin/src/HAL/HAL_STM32F1/endstop_interrupts.h b/Marlin/src/HAL/HAL_STM32F1/endstop_interrupts.h index 21cecad63e..916e3ffee0 100644 --- a/Marlin/src/HAL/HAL_STM32F1/endstop_interrupts.h +++ b/Marlin/src/HAL/HAL_STM32F1/endstop_interrupts.h @@ -36,7 +36,7 @@ * Endstop Interrupts * * Without endstop interrupts the endstop pins must be polled continually in - * the stepper-ISR via endstops.update(), most of the time finding no change. + * the temperature-ISR via endstops.update(), most of the time finding no change. * With this feature endstops.update() is called only when we know that at * least one endstop has changed state, saving valuable CPU cycles. * @@ -49,16 +49,10 @@ #ifndef _ENDSTOP_INTERRUPTS_H_ #define _ENDSTOP_INTERRUPTS_H_ -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } void setup_endstop_interrupts(void) { #if HAS_X_MAX diff --git a/Marlin/src/HAL/HAL_STM32F4/HAL_timers_STM32F4.cpp b/Marlin/src/HAL/HAL_STM32F4/HAL_timers_STM32F4.cpp index 02c07b1147..1c12f5f4e9 100644 --- a/Marlin/src/HAL/HAL_STM32F4/HAL_timers_STM32F4.cpp +++ b/Marlin/src/HAL/HAL_STM32F4/HAL_timers_STM32F4.cpp @@ -123,6 +123,11 @@ void HAL_timer_enable_interrupt(const uint8_t timer_num) { void HAL_timer_disable_interrupt(const uint8_t timer_num) { HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id); + + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); } hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) { diff --git a/Marlin/src/HAL/HAL_STM32F4/endstop_interrupts.h b/Marlin/src/HAL/HAL_STM32F4/endstop_interrupts.h index cd7d961926..38de2af819 100644 --- a/Marlin/src/HAL/HAL_STM32F4/endstop_interrupts.h +++ b/Marlin/src/HAL/HAL_STM32F4/endstop_interrupts.h @@ -24,16 +24,10 @@ #ifndef _ENDSTOP_INTERRUPTS_H_ #define _ENDSTOP_INTERRUPTS_H_ -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } void setup_endstop_interrupts(void) { #if HAS_X_MAX diff --git a/Marlin/src/HAL/HAL_STM32F7/HAL_timers_STM32F7.cpp b/Marlin/src/HAL/HAL_STM32F7/HAL_timers_STM32F7.cpp index d5bde97b13..9454b71c81 100644 --- a/Marlin/src/HAL/HAL_STM32F7/HAL_timers_STM32F7.cpp +++ b/Marlin/src/HAL/HAL_STM32F7/HAL_timers_STM32F7.cpp @@ -127,6 +127,11 @@ void HAL_timer_enable_interrupt(const uint8_t timer_num) { void HAL_timer_disable_interrupt(const uint8_t timer_num) { HAL_NVIC_DisableIRQ(timerConfig[timer_num].IRQ_Id); + + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); } hal_timer_t HAL_timer_get_compare(const uint8_t timer_num) { diff --git a/Marlin/src/HAL/HAL_STM32F7/endstop_interrupts.h b/Marlin/src/HAL/HAL_STM32F7/endstop_interrupts.h index 0908140fdb..aa6a5c4c45 100644 --- a/Marlin/src/HAL/HAL_STM32F7/endstop_interrupts.h +++ b/Marlin/src/HAL/HAL_STM32F7/endstop_interrupts.h @@ -26,16 +26,10 @@ #ifndef _ENDSTOP_INTERRUPTS_H_ #define _ENDSTOP_INTERRUPTS_H_ -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } void setup_endstop_interrupts(void) { #if HAS_X_MAX diff --git a/Marlin/src/HAL/HAL_TEENSY35_36/HAL_timers_Teensy.cpp b/Marlin/src/HAL/HAL_TEENSY35_36/HAL_timers_Teensy.cpp index 19a8dfc674..d31d9ddf67 100644 --- a/Marlin/src/HAL/HAL_TEENSY35_36/HAL_timers_Teensy.cpp +++ b/Marlin/src/HAL/HAL_TEENSY35_36/HAL_timers_Teensy.cpp @@ -29,6 +29,22 @@ #include "HAL.h" #include "HAL_timers_Teensy.h" +/** \brief Instruction Synchronization Barrier + Instruction Synchronization Barrier flushes the pipeline in the processor, + so that all instructions following the ISB are fetched from cache or + memory, after the instruction has been completed. +*/ +FORCE_INLINE static void __ISB(void) { + __asm__ __volatile__("isb 0xF":::"memory"); +} + +/** \brief Data Synchronization Barrier + This function acts as a special kind of Data Memory Barrier. + It completes when all explicit memory accesses before this instruction complete. +*/ +FORCE_INLINE static void __DSB(void) { + __asm__ __volatile__("dsb 0xF":::"memory"); +} void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) { switch (timer_num) { @@ -65,6 +81,11 @@ void HAL_timer_disable_interrupt(const uint8_t timer_num) { case 0: NVIC_DISABLE_IRQ(IRQ_FTM0); break; case 1: NVIC_DISABLE_IRQ(IRQ_FTM1); break; } + + // We NEED memory barriers to ensure Interrupts are actually disabled! + // ( https://dzone.com/articles/nvic-disabling-interrupts-on-arm-cortex-m-and-the ) + __DSB(); + __ISB(); } bool HAL_timer_interrupt_enabled(const uint8_t timer_num) { diff --git a/Marlin/src/HAL/HAL_TEENSY35_36/endstop_interrupts.h b/Marlin/src/HAL/HAL_TEENSY35_36/endstop_interrupts.h index 12c45db49f..3ba40bdc87 100644 --- a/Marlin/src/HAL/HAL_TEENSY35_36/endstop_interrupts.h +++ b/Marlin/src/HAL/HAL_TEENSY35_36/endstop_interrupts.h @@ -24,7 +24,7 @@ * Endstop Interrupts * * Without endstop interrupts the endstop pins must be polled continually in - * the stepper-ISR via endstops.update(), most of the time finding no change. + * the temperature-ISR via endstops.update(), most of the time finding no change. * With this feature endstops.update() is called only when we know that at * least one endstop has changed state, saving valuable CPU cycles. * @@ -37,16 +37,10 @@ #ifndef _ENDSTOP_INTERRUPTS_H_ #define _ENDSTOP_INTERRUPTS_H_ -volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail. - // Must be reset to 0 by the test function when finished. - -// This is what is really done inside the interrupts. -FORCE_INLINE void endstop_ISR_worker( void ) { - e_hit = 2; // Because the detection of a e-stop hit has a 1 step debouncer it has to be called at least twice. -} +#include "../../module/endstops.h" // One ISR for all EXT-Interrupts -void endstop_ISR(void) { endstop_ISR_worker(); } +void endstop_ISR(void) { endstops.check_possible_change(); } /** * Endstop interrupts for Due based targets. diff --git a/Marlin/src/Marlin.cpp b/Marlin/src/Marlin.cpp index 57a38963f9..6f7fc4dae6 100644 --- a/Marlin/src/Marlin.cpp +++ b/Marlin/src/Marlin.cpp @@ -95,10 +95,6 @@ #include "feature/I2CPositionEncoder.h" #endif -#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - #include HAL_PATH(HAL, endstop_interrupts.h) -#endif - #if HAS_TRINAMIC #include "feature/tmc_util.h" #endif @@ -269,7 +265,7 @@ bool pin_is_protected(const pin_t pin) { } void quickstop_stepper() { - stepper.quick_stop(); + planner.quick_stop(); planner.synchronize(); set_current_from_steppers_for_axis(ALL_AXES); SYNC_PLAN_POSITION_KINEMATIC(); @@ -748,7 +744,9 @@ void setup() { print_job_timer.init(); // Initial setup of print job timer - stepper.init(); // Initialize stepper, this enables interrupts! + endstops.init(); // Init endstops and pullups + + stepper.init(); // Init stepper. This enables interrupts! #if HAS_SERVOS servo_init(); @@ -860,10 +858,6 @@ void setup() { i2c.onRequest(i2c_on_request); #endif - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - setup_endstop_interrupts(); - #endif - #if DO_SWITCH_EXTRUDER move_extruder_servo(0); // Initialize extruder servo #endif diff --git a/Marlin/src/feature/Max7219_Debug_LEDs.cpp b/Marlin/src/feature/Max7219_Debug_LEDs.cpp index 616b61c18c..8403f3c18b 100644 --- a/Marlin/src/feature/Max7219_Debug_LEDs.cpp +++ b/Marlin/src/feature/Max7219_Debug_LEDs.cpp @@ -73,7 +73,6 @@ static uint8_t LEDs[8] = { 0 }; #endif void Max7219_PutByte(uint8_t data) { - CRITICAL_SECTION_START; for (uint8_t i = 8; i--;) { SIG_DELAY(); WRITE(MAX7219_CLK_PIN, LOW); // tick @@ -84,12 +83,10 @@ void Max7219_PutByte(uint8_t data) { SIG_DELAY(); data <<= 1; } - CRITICAL_SECTION_END; } void Max7219(const uint8_t reg, const uint8_t data) { SIG_DELAY(); - CRITICAL_SECTION_START; WRITE(MAX7219_LOAD_PIN, LOW); // begin SIG_DELAY(); Max7219_PutByte(reg); // specify register @@ -99,7 +96,6 @@ void Max7219(const uint8_t reg, const uint8_t data) { WRITE(MAX7219_LOAD_PIN, LOW); // and tell the chip to load the data SIG_DELAY(); WRITE(MAX7219_LOAD_PIN, HIGH); - CRITICAL_SECTION_END; SIG_DELAY(); } diff --git a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp index a94144f58c..4900f0e0df 100644 --- a/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp +++ b/Marlin/src/feature/bedlevel/ubl/ubl_motion.cpp @@ -262,7 +262,8 @@ z_position = end[Z_AXIS]; } - planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder); + if (!planner.buffer_segment(rx, ry, z_position + z0, e_position, feed_rate, extruder)) + break; } //else printf("FIRST MOVE PRUNED "); } @@ -319,7 +320,8 @@ e_position = end[E_AXIS]; z_position = end[Z_AXIS]; } - planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder); + if (!planner.buffer_segment(rx, next_mesh_line_y, z_position + z0, e_position, feed_rate, extruder)) + break; current_yi += dyi; yi_cnt--; } @@ -342,7 +344,8 @@ z_position = end[Z_AXIS]; } - planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder); + if (!planner.buffer_segment(next_mesh_line_x, ry, z_position + z0, e_position, feed_rate, extruder)) + break; current_xi += dxi; xi_cnt--; } diff --git a/Marlin/src/gcode/config/M540.cpp b/Marlin/src/gcode/config/M540.cpp index 498aa9e76f..d554258030 100644 --- a/Marlin/src/gcode/config/M540.cpp +++ b/Marlin/src/gcode/config/M540.cpp @@ -33,7 +33,7 @@ void GcodeSuite::M540() { if (parser.seen('S')) - stepper.abort_on_endstop_hit = parser.value_bool(); + planner.abort_on_endstop_hit = parser.value_bool(); } diff --git a/Marlin/src/gcode/control/M17_M18_M84.cpp b/Marlin/src/gcode/control/M17_M18_M84.cpp index 5ff5812607..c428a87877 100644 --- a/Marlin/src/gcode/control/M17_M18_M84.cpp +++ b/Marlin/src/gcode/control/M17_M18_M84.cpp @@ -47,7 +47,7 @@ void GcodeSuite::M18_M84() { else { bool all_axis = !(parser.seen('X') || parser.seen('Y') || parser.seen('Z') || parser.seen('E')); if (all_axis) { - stepper.finish_and_disable(); + planner.finish_and_disable(); } else { planner.synchronize(); diff --git a/Marlin/src/gcode/control/M80_M81.cpp b/Marlin/src/gcode/control/M80_M81.cpp index 97991cca5b..4047049f54 100644 --- a/Marlin/src/gcode/control/M80_M81.cpp +++ b/Marlin/src/gcode/control/M80_M81.cpp @@ -95,7 +95,7 @@ */ void GcodeSuite::M81() { thermalManager.disable_all_heaters(); - stepper.finish_and_disable(); + planner.finish_and_disable(); #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; diff --git a/Marlin/src/gcode/motion/G2_G3.cpp b/Marlin/src/gcode/motion/G2_G3.cpp index f5c98c934d..4c2c5ac913 100644 --- a/Marlin/src/gcode/motion/G2_G3.cpp +++ b/Marlin/src/gcode/motion/G2_G3.cpp @@ -197,14 +197,17 @@ void plan_arc( // i.e., Complete the angular vector in the given time. inverse_kinematics(raw); ADJUST_DELTA(raw); - planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); + if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder)) + break; oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #elif HAS_UBL_AND_CURVES float pos[XYZ] = { raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS] }; planner.apply_leveling(pos); - planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder); + if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], raw[E_AXIS], fr_mm_s, active_extruder)) + break; #else - planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder); + if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder)) + break; #endif } diff --git a/Marlin/src/lcd/ultralcd.cpp b/Marlin/src/lcd/ultralcd.cpp index f456ad3ade..6c42e06389 100644 --- a/Marlin/src/lcd/ultralcd.cpp +++ b/Marlin/src/lcd/ultralcd.cpp @@ -2421,12 +2421,10 @@ void lcd_quick_feedback(const bool clear_buttons) { void _lcd_do_nothing() {} void _lcd_hard_stop() { - stepper.quick_stop(); const screenFunc_t old_screen = currentScreen; currentScreen = _lcd_do_nothing; - while (planner.movesplanned()) idle(); + planner.quick_stop(); currentScreen = old_screen; - stepper.cleaning_buffer_counter = 0; set_current_from_steppers_for_axis(ALL_AXES); sync_plan_position(); } @@ -3856,7 +3854,7 @@ void lcd_quick_feedback(const bool clear_buttons) { // M540 S - Abort on endstop hit when SD printing #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit); + MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &planner.abort_on_endstop_hit); #endif END_MENU(); diff --git a/Marlin/src/module/endstops.cpp b/Marlin/src/module/endstops.cpp index f0942a3a3a..d354774afe 100644 --- a/Marlin/src/module/endstops.cpp +++ b/Marlin/src/module/endstops.cpp @@ -32,18 +32,27 @@ #include "../module/temperature.h" #include "../lcd/ultralcd.h" -// TEST_ENDSTOP: test the old and the current status of an endstop -#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP)) +#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + #include HAL_PATH(../HAL, endstop_interrupts.h) +#endif + +// TEST_ENDSTOP: test the current status of an endstop +#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP)) + +#if HAS_BED_PROBE + #define ENDSTOPS_ENABLED (endstops.enabled || endstops.z_probe_enabled) +#else + #define ENDSTOPS_ENABLED endstops.enabled +#endif Endstops endstops; // public: bool Endstops::enabled, Endstops::enabled_globally; // Initialized by settings.load() -volatile char Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value +volatile uint8_t Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value -Endstops::esbits_t Endstops::current_endstop_bits = 0, - Endstops::old_endstop_bits = 0; +Endstops::esbits_t Endstops::current_endstop_bits = 0; #if HAS_BED_PROBE volatile bool Endstops::z_probe_enabled = false; @@ -196,8 +205,93 @@ void Endstops::init() { #endif #endif + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + setup_endstop_interrupts(); + #endif + + // Enable endstops + enable_globally( + #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) + true + #else + false + #endif + ); + } // Endstops::init +// Called from ISR. A change was detected. Find out what happened! +void Endstops::check_possible_change() { if (ENDSTOPS_ENABLED) endstops.update(); } + +// Called from ISR: Poll endstop state if required +void Endstops::poll() { + + #if ENABLED(PINS_DEBUGGING) + endstops.run_monitor(); // report changes in endstop status + #endif + + #if DISABLED(ENDSTOP_INTERRUPTS_FEATURE) + if (ENDSTOPS_ENABLED) endstops.update(); + #endif +} + +void Endstops::enable_globally(const bool onoff) { + enabled_globally = enabled = onoff; + + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + if (onoff) endstops.update(); // If enabling, update state now + #endif +} + +// Enable / disable endstop checking +void Endstops::enable(const bool onoff) { + enabled = onoff; + + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + if (onoff) endstops.update(); // If enabling, update state now + #endif +} + + +// Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable +void Endstops::not_homing() { + enabled = enabled_globally; + + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + if (enabled) endstops.update(); // If enabling, update state now + #endif +} + +// Clear endstops (i.e., they were hit intentionally) to suppress the report +void Endstops::hit_on_purpose() { + endstop_hit_bits = 0; + + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + if (enabled) endstops.update(); // If enabling, update state now + #endif +} + +// Enable / disable endstop z-probe checking +#if HAS_BED_PROBE + void Endstops::enable_z_probe(bool onoff) { + z_probe_enabled = onoff; + + #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) + if (enabled) endstops.update(); // If enabling, update state now + #endif + } +#endif + +#if ENABLED(PINS_DEBUGGING) + void Endstops::run_monitor() { + if (!monitor_flag) return; + static uint8_t monitor_count = 16; // offset this check from the others + monitor_count += _BV(1); // 15 Hz + monitor_count &= 0x7F; + if (!monitor_count) monitor(); // report changes in endstop status + } +#endif + void Endstops::report_state() { if (endstop_hit_bits) { #if ENABLED(ULTRA_LCD) @@ -208,7 +302,7 @@ void Endstops::report_state() { #endif #define _ENDSTOP_HIT_ECHO(A,C) do{ \ - SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(_AXIS(A))); \ + SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); \ _SET_STOP_CHAR(A,C); }while(0) #define _ENDSTOP_HIT_TEST(A,C) \ @@ -238,7 +332,7 @@ void Endstops::report_state() { hit_on_purpose(); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) - if (stepper.abort_on_endstop_hit) { + if (planner.abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickstop_stepper(); @@ -300,38 +394,41 @@ void Endstops::M119() { #endif } // Endstops::M119 +// The following routines are called from an ISR context. It could be the temperature ISR, the +// endstop ISR or the Stepper ISR. + #if ENABLED(X_DUAL_ENDSTOPS) void Endstops::test_dual_x_endstops(const EndstopEnum es1, const EndstopEnum es2) { const byte x_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for X, bit 1 for X2 - if (x_test && stepper.current_block->steps[X_AXIS] > 0) { + if (x_test && stepper.movement_non_null(X_AXIS)) { SBI(endstop_hit_bits, X_MIN); if (!stepper.performing_homing || (x_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - stepper.kill_current_block(); + stepper.quick_stop(); } } #endif #if ENABLED(Y_DUAL_ENDSTOPS) void Endstops::test_dual_y_endstops(const EndstopEnum es1, const EndstopEnum es2) { const byte y_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Y, bit 1 for Y2 - if (y_test && stepper.current_block->steps[Y_AXIS] > 0) { + if (y_test && stepper.movement_non_null(Y_AXIS)) { SBI(endstop_hit_bits, Y_MIN); if (!stepper.performing_homing || (y_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - stepper.kill_current_block(); + stepper.quick_stop(); } } #endif #if ENABLED(Z_DUAL_ENDSTOPS) void Endstops::test_dual_z_endstops(const EndstopEnum es1, const EndstopEnum es2) { const byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2 - if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { + if (z_test && stepper.movement_non_null(Z_AXIS)) { SBI(endstop_hit_bits, Z_MIN); if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... - stepper.kill_current_block(); + stepper.quick_stop(); } } #endif -// Check endstops - Called from ISR! +// Check endstops - Could be called from ISR! void Endstops::update() { #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX @@ -349,7 +446,7 @@ void Endstops::update() { UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX))) { \ _ENDSTOP_HIT(AXIS, MINMAX); \ - stepper.endstop_triggered(_AXIS(AXIS)); \ + planner.endstop_triggered(_AXIS(AXIS)); \ } \ }while(0) @@ -358,9 +455,9 @@ void Endstops::update() { if (G38_move) { UPDATE_ENDSTOP_BIT(Z, MIN_PROBE); if (TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE))) { - if (stepper.current_block->steps[_AXIS(X)] > 0) { _ENDSTOP_HIT(X, MIN); stepper.endstop_triggered(_AXIS(X)); } - else if (stepper.current_block->steps[_AXIS(Y)] > 0) { _ENDSTOP_HIT(Y, MIN); stepper.endstop_triggered(_AXIS(Y)); } - else if (stepper.current_block->steps[_AXIS(Z)] > 0) { _ENDSTOP_HIT(Z, MIN); stepper.endstop_triggered(_AXIS(Z)); } + if (stepper.movement_non_null(_AXIS(X))) { _ENDSTOP_HIT(X, MIN); planner.endstop_triggered(_AXIS(X)); } + else if (stepper.movement_non_null(_AXIS(Y))) { _ENDSTOP_HIT(Y, MIN); planner.endstop_triggered(_AXIS(Y)); } + else if (stepper.movement_non_null(_AXIS(Z))) { _ENDSTOP_HIT(Z, MIN); planner.endstop_triggered(_AXIS(Z)); } G38_endstop_hit = true; } } @@ -371,7 +468,7 @@ void Endstops::update() { */ #if IS_CORE - #define S_(N) stepper.current_block->steps[CORE_AXIS_##N] + #define S_(N) stepper.movement_non_null(CORE_AXIS_##N) #define D_(N) stepper.motor_direction(CORE_AXIS_##N) #endif @@ -391,7 +488,7 @@ void Endstops::update() { #define X_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) X_CMP D_(2)) ) #define X_AXIS_HEAD X_HEAD #else - #define X_MOVE_TEST stepper.current_block->steps[X_AXIS] > 0 + #define X_MOVE_TEST stepper.movement_non_null(X_AXIS) #define X_AXIS_HEAD X_AXIS #endif @@ -411,7 +508,7 @@ void Endstops::update() { #define Y_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Y_CMP D_(2)) ) #define Y_AXIS_HEAD Y_HEAD #else - #define Y_MOVE_TEST stepper.current_block->steps[Y_AXIS] > 0 + #define Y_MOVE_TEST stepper.movement_non_null(Y_AXIS) #define Y_AXIS_HEAD Y_AXIS #endif @@ -431,13 +528,13 @@ void Endstops::update() { #define Z_MOVE_TEST ( S_(1) != S_(2) || (S_(1) > 0 && D_(1) Z_CMP D_(2)) ) #define Z_AXIS_HEAD Z_HEAD #else - #define Z_MOVE_TEST stepper.current_block->steps[Z_AXIS] > 0 + #define Z_MOVE_TEST stepper.movement_non_null(Z_AXIS) #define Z_AXIS_HEAD Z_AXIS #endif // With Dual X, endstops are only checked in the homing direction for the active extruder #if ENABLED(DUAL_X_CARRIAGE) - #define E0_ACTIVE stepper.current_block->active_extruder == 0 + #define E0_ACTIVE stepper.movement_extruder() == 0 #define X_MIN_TEST ((X_HOME_DIR < 0 && E0_ACTIVE) || (X2_HOME_DIR < 0 && !E0_ACTIVE)) #define X_MAX_TEST ((X_HOME_DIR > 0 && E0_ACTIVE) || (X2_HOME_DIR > 0 && !E0_ACTIVE)) #else @@ -448,126 +545,119 @@ void Endstops::update() { /** * Check and update endstops according to conditions */ - if (stepper.current_block) { - - if (X_MOVE_TEST) { - if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction - #if HAS_X_MIN - #if ENABLED(X_DUAL_ENDSTOPS) - UPDATE_ENDSTOP_BIT(X, MIN); - #if HAS_X2_MIN - UPDATE_ENDSTOP_BIT(X2, MIN); - #else - COPY_BIT(current_endstop_bits, X_MIN, X2_MIN); - #endif - test_dual_x_endstops(X_MIN, X2_MIN); + if (X_MOVE_TEST) { + if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction + #if HAS_X_MIN + #if ENABLED(X_DUAL_ENDSTOPS) + UPDATE_ENDSTOP_BIT(X, MIN); + #if HAS_X2_MIN + UPDATE_ENDSTOP_BIT(X2, MIN); #else - if (X_MIN_TEST) UPDATE_ENDSTOP(X, MIN); + COPY_BIT(current_endstop_bits, X_MIN, X2_MIN); #endif + test_dual_x_endstops(X_MIN, X2_MIN); + #else + if (X_MIN_TEST) UPDATE_ENDSTOP(X, MIN); #endif - } - else { // +direction - #if HAS_X_MAX - #if ENABLED(X_DUAL_ENDSTOPS) - UPDATE_ENDSTOP_BIT(X, MAX); - #if HAS_X2_MAX - UPDATE_ENDSTOP_BIT(X2, MAX); - #else - COPY_BIT(current_endstop_bits, X_MAX, X2_MAX); - #endif - test_dual_x_endstops(X_MAX, X2_MAX); - #else - if (X_MAX_TEST) UPDATE_ENDSTOP(X, MAX); - #endif - #endif - } + #endif } - - if (Y_MOVE_TEST) { - if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction - #if HAS_Y_MIN - #if ENABLED(Y_DUAL_ENDSTOPS) - UPDATE_ENDSTOP_BIT(Y, MIN); - #if HAS_Y2_MIN - UPDATE_ENDSTOP_BIT(Y2, MIN); - #else - COPY_BIT(current_endstop_bits, Y_MIN, Y2_MIN); - #endif - test_dual_y_endstops(Y_MIN, Y2_MIN); + else { // +direction + #if HAS_X_MAX + #if ENABLED(X_DUAL_ENDSTOPS) + UPDATE_ENDSTOP_BIT(X, MAX); + #if HAS_X2_MAX + UPDATE_ENDSTOP_BIT(X2, MAX); #else - UPDATE_ENDSTOP(Y, MIN); + COPY_BIT(current_endstop_bits, X_MAX, X2_MAX); #endif + test_dual_x_endstops(X_MAX, X2_MAX); + #else + if (X_MAX_TEST) UPDATE_ENDSTOP(X, MAX); #endif - } - else { // +direction - #if HAS_Y_MAX - #if ENABLED(Y_DUAL_ENDSTOPS) - UPDATE_ENDSTOP_BIT(Y, MAX); - #if HAS_Y2_MAX - UPDATE_ENDSTOP_BIT(Y2, MAX); - #else - COPY_BIT(current_endstop_bits, Y_MAX, Y2_MAX); - #endif - test_dual_y_endstops(Y_MAX, Y2_MAX); - #else - UPDATE_ENDSTOP(Y, MAX); - #endif - #endif - } + #endif } + } - if (Z_MOVE_TEST) { - if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up. - #if HAS_Z_MIN - #if ENABLED(Z_DUAL_ENDSTOPS) - UPDATE_ENDSTOP_BIT(Z, MIN); - #if HAS_Z2_MIN - UPDATE_ENDSTOP_BIT(Z2, MIN); - #else - COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); - #endif - test_dual_z_endstops(Z_MIN, Z2_MIN); + if (Y_MOVE_TEST) { + if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction + #if HAS_Y_MIN + #if ENABLED(Y_DUAL_ENDSTOPS) + UPDATE_ENDSTOP_BIT(Y, MIN); + #if HAS_Y2_MIN + UPDATE_ENDSTOP_BIT(Y2, MIN); #else - #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) - if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN); - #else - UPDATE_ENDSTOP(Z, MIN); - #endif + COPY_BIT(current_endstop_bits, Y_MIN, Y2_MIN); #endif + test_dual_y_endstops(Y_MIN, Y2_MIN); + #else + UPDATE_ENDSTOP(Y, MIN); #endif - - // When closing the gap check the enabled probe - #if ENABLED(Z_MIN_PROBE_ENDSTOP) - if (z_probe_enabled) { - UPDATE_ENDSTOP(Z, MIN_PROBE); - if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE); - } - #endif - } - else { // Z +direction. Gantry up, bed down. - #if HAS_Z_MAX - // Check both Z dual endstops - #if ENABLED(Z_DUAL_ENDSTOPS) - UPDATE_ENDSTOP_BIT(Z, MAX); - #if HAS_Z2_MAX - UPDATE_ENDSTOP_BIT(Z2, MAX); - #else - COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); - #endif - test_dual_z_endstops(Z_MAX, Z2_MAX); - // If this pin is not hijacked for the bed probe - // then it belongs to the Z endstop - #elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN - UPDATE_ENDSTOP(Z, MAX); - #endif - #endif - } + #endif } + else { // +direction + #if HAS_Y_MAX + #if ENABLED(Y_DUAL_ENDSTOPS) + UPDATE_ENDSTOP_BIT(Y, MAX); + #if HAS_Y2_MAX + UPDATE_ENDSTOP_BIT(Y2, MAX); + #else + COPY_BIT(current_endstop_bits, Y_MAX, Y2_MAX); + #endif + test_dual_y_endstops(Y_MAX, Y2_MAX); + #else + UPDATE_ENDSTOP(Y, MAX); + #endif + #endif + } + } - } // stepper.current_block - - old_endstop_bits = current_endstop_bits; + if (Z_MOVE_TEST) { + if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up. + #if HAS_Z_MIN + #if ENABLED(Z_DUAL_ENDSTOPS) + UPDATE_ENDSTOP_BIT(Z, MIN); + #if HAS_Z2_MIN + UPDATE_ENDSTOP_BIT(Z2, MIN); + #else + COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); + #endif + test_dual_z_endstops(Z_MIN, Z2_MIN); + #else + #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) + if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN); + #else + UPDATE_ENDSTOP(Z, MIN); + #endif + #endif + #endif + // When closing the gap check the enabled probe + #if ENABLED(Z_MIN_PROBE_ENDSTOP) + if (z_probe_enabled) { + UPDATE_ENDSTOP(Z, MIN_PROBE); + if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE); + } + #endif + } + else { // Z +direction. Gantry up, bed down. + #if HAS_Z_MAX + // Check both Z dual endstops + #if ENABLED(Z_DUAL_ENDSTOPS) + UPDATE_ENDSTOP_BIT(Z, MAX); + #if HAS_Z2_MAX + UPDATE_ENDSTOP_BIT(Z2, MAX); + #else + COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); + #endif + test_dual_z_endstops(Z_MAX, Z2_MAX); + // If this pin is not hijacked for the bed probe + // then it belongs to the Z endstop + #elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN + UPDATE_ENDSTOP(Z, MAX); + #endif + #endif + } + } } // Endstops::update() #if ENABLED(PINS_DEBUGGING) diff --git a/Marlin/src/module/endstops.h b/Marlin/src/module/endstops.h index 5ff5af4548..da276cc729 100644 --- a/Marlin/src/module/endstops.h +++ b/Marlin/src/module/endstops.h @@ -51,7 +51,7 @@ class Endstops { public: static bool enabled, enabled_globally; - static volatile char endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value + static volatile uint8_t endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) typedef uint16_t esbits_t; @@ -68,23 +68,26 @@ class Endstops { typedef byte esbits_t; #endif - static esbits_t current_endstop_bits, old_endstop_bits; + static esbits_t current_endstop_bits; - Endstops() { - enable_globally( - #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) - true - #else - false - #endif - ); - }; + Endstops() {}; /** * Initialize the endstop pins */ static void init(); + /** + * A change was detected or presumed to be in endstops pins. Find out what + * changed, if anything. Called from ISR contexts + */ + static void check_possible_change(); + + /** + * Periodic call to poll endstops if required. Called from temperature ISR + */ + static void poll(); + /** * Update the endstops bits from the pins */ @@ -101,34 +104,28 @@ class Endstops { static void M119(); // Enable / disable endstop checking globally - static void enable_globally(bool onoff=true) { enabled_globally = enabled = onoff; } + static void enable_globally(const bool onoff=true); // Enable / disable endstop checking - static void enable(bool onoff=true) { enabled = onoff; } + static void enable(const bool onoff=true); // Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable - static void not_homing() { enabled = enabled_globally; } + static void not_homing(); // Clear endstops (i.e., they were hit intentionally) to suppress the report - static void hit_on_purpose() { endstop_hit_bits = 0; } + static void hit_on_purpose(); // Enable / disable endstop z-probe checking #if HAS_BED_PROBE static volatile bool z_probe_enabled; - static void enable_z_probe(bool onoff=true) { z_probe_enabled = onoff; } + static void enable_z_probe(bool onoff=true); #endif // Debugging of endstops #if ENABLED(PINS_DEBUGGING) static bool monitor_flag; static void monitor(); - FORCE_INLINE static void run_monitor() { - if (!monitor_flag) return; - static uint8_t monitor_count = 16; // offset this check from the others - monitor_count += _BV(1); // 15 Hz - monitor_count &= 0x7F; - if (!monitor_count) monitor(); // report changes in endstop status - } + static void run_monitor(); #endif private: @@ -146,10 +143,4 @@ class Endstops { extern Endstops endstops; -#if HAS_BED_PROBE - #define ENDSTOPS_ENABLED (endstops.enabled || endstops.z_probe_enabled) -#else - #define ENDSTOPS_ENABLED endstops.enabled -#endif - #endif // __ENDSTOPS_H__ diff --git a/Marlin/src/module/motion.cpp b/Marlin/src/module/motion.cpp index b6f53b4acc..94f810e7d2 100644 --- a/Marlin/src/module/motion.cpp +++ b/Marlin/src/module/motion.cpp @@ -644,7 +644,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, #if ENABLED(SCARA_FEEDRATE_SCALING) // For SCARA scale the feed rate from mm/s to degrees/s // i.e., Complete the angular vector in the given time. - planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder); + if (!planner.buffer_segment(delta[A_AXIS], delta[B_AXIS], raw[Z_AXIS], raw[E_AXIS], HYPOT(delta[A_AXIS] - oldA, delta[B_AXIS] - oldB) * inverse_secs, active_extruder)) + break; /* SERIAL_ECHO(segments); SERIAL_ECHOPAIR(": X=", raw[X_AXIS]); SERIAL_ECHOPAIR(" Y=", raw[Y_AXIS]); @@ -654,7 +655,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, //*/ oldA = delta[A_AXIS]; oldB = delta[B_AXIS]; #else - planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm); + if (!planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder, cartesian_segment_mm)) + break; #endif } @@ -746,7 +748,8 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, idle(); } LOOP_XYZE(i) raw[i] += segment_distance[i]; - planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm); + if (!planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder, cartesian_segment_mm)) + break; } // Since segment_distance is only approximate, @@ -848,14 +851,14 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, } // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower for (uint8_t i = 0; i < 3; i++) - planner.buffer_line( + if (!planner.buffer_line( i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS], i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS], i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS], current_position[E_AXIS], i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS], - active_extruder - ); + active_extruder) + ) break; delayed_move_time = 0; active_extruder_parked = false; #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -872,11 +875,11 @@ float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS }, #endif // move duplicate extruder into correct duplication position. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); - planner.buffer_line( + if (!planner.buffer_line( current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], - planner.max_feedrate_mm_s[X_AXIS], 1 - ); + planner.max_feedrate_mm_s[X_AXIS], 1) + ) break; planner.synchronize(); SYNC_PLAN_POSITION_KINEMATIC(); extruder_duplication_enabled = true; diff --git a/Marlin/src/module/planner.cpp b/Marlin/src/module/planner.cpp index e1f5f10238..8644a69f0e 100644 --- a/Marlin/src/module/planner.cpp +++ b/Marlin/src/module/planner.cpp @@ -92,6 +92,10 @@ #include "../feature/power.h" #endif +// Delay for delivery of first block to the stepper ISR, if the queue contains 2 or +// fewer movements. The delay is measured in milliseconds, and must be less than 250ms +#define BLOCK_DELAY_FOR_1ST_MOVE 50 + Planner planner; // public: @@ -100,13 +104,20 @@ Planner planner; * A ring buffer of moves described in steps */ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE]; -volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed - Planner::block_buffer_tail; +volatile uint8_t Planner::block_buffer_head, // Index of the next block to be pushed + Planner::block_buffer_tail; // Index of the busy block, if any +uint16_t Planner::cleaning_buffer_counter; // A counter to disable queuing of blocks +uint8_t Planner::delay_before_delivering, // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks + Planner::block_buffer_planned; // Index of the optimally planned block -float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second +float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second Planner::axis_steps_per_mm[XYZE_N], Planner::steps_to_mm[XYZE_N]; +#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) + bool Planner::abort_on_endstop_hit = false; +#endif + #if ENABLED(DISTINCT_E_FACTORS) uint8_t Planner::last_extruder = 0; // Respond to extruder change #endif @@ -175,7 +186,7 @@ int32_t Planner::position[NUM_AXIS] = { 0 }; uint32_t Planner::cutoff_long; float Planner::previous_speed[NUM_AXIS], - Planner::previous_nominal_speed; + Planner::previous_nominal_speed_sqr; #if ENABLED(DISABLE_INACTIVE_EXTRUDER) uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; @@ -212,11 +223,13 @@ void Planner::init() { ZERO(position_float); #endif ZERO(previous_speed); - previous_nominal_speed = 0.0; + previous_nominal_speed_sqr = 0.0; #if ABL_PLANAR bed_level_matrix.set_to_identity(); #endif clear_block_buffer(); + block_buffer_planned = 0; + delay_before_delivering = 0; } #if ENABLED(BEZIER_JERK_CONTROL) @@ -363,7 +376,7 @@ void Planner::init() { // static uint32_t get_period_inverse(uint32_t d) { - static const uint8_t inv_tab[256] PROGMEM = { + static const uint8_t inv_tab[256] PROGMEM = { 255,253,252,250,248,246,244,242,240,238,236,234,233,231,229,227, 225,224,222,220,218,217,215,213,212,210,208,207,205,203,202,200, 199,197,195,194,192,191,189,188,186,185,183,182,180,179,178,176, @@ -727,12 +740,9 @@ void Planner::init() { } #else // All the other 32 CPUs can easily perform the inverse using hardware division, - // so we don´t need to reduce precision or to use assembly language at all. - + // so we don't need to reduce precision or to use assembly language at all. // This routine, for all the other archs, returns 0x100000000 / d ~= 0xFFFFFFFF / d - static FORCE_INLINE uint32_t get_period_inverse(uint32_t d) { - return 0xFFFFFFFF / d; - } + static FORCE_INLINE uint32_t get_period_inverse(const uint32_t d) { return 0xFFFFFFFF / d; } #endif #endif @@ -743,12 +753,13 @@ void Planner::init() { * by the provided factors. */ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor) { + uint32_t initial_rate = CEIL(block->nominal_rate * entry_factor), final_rate = CEIL(block->nominal_rate * exit_factor); // (steps per second) // Limit minimal step rate (Otherwise the timer will overflow.) - NOLESS(initial_rate, MINIMAL_STEP_RATE); - NOLESS(final_rate, MINIMAL_STEP_RATE); + NOLESS(initial_rate, uint32_t(MINIMAL_STEP_RATE)); + NOLESS(final_rate, uint32_t(MINIMAL_STEP_RATE)); #if ENABLED(BEZIER_JERK_CONTROL) uint32_t cruise_rate = initial_rate; @@ -757,19 +768,18 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e const int32_t accel = block->acceleration_steps_per_s2; // Steps required for acceleration, deceleration to/from nominal rate - int32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), - decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)), + uint32_t accelerate_steps = CEIL(estimate_acceleration_distance(initial_rate, block->nominal_rate, accel)), + decelerate_steps = FLOOR(estimate_acceleration_distance(block->nominal_rate, final_rate, -accel)); // Steps between acceleration and deceleration, if any - plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; + int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Does accelerate_steps + decelerate_steps exceed step_event_count? // Then we can't possibly reach the nominal rate, there will be no cruising. // Use intersection_distance() to calculate accel / braking time in order to // reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { - accelerate_steps = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); - NOLESS(accelerate_steps, 0); // Check limits due to numerical round-off - accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) + const float accelerate_steps_float = CEIL(intersection_distance(initial_rate, final_rate, accel, block->step_event_count)); + accelerate_steps = MIN(uint32_t(MAX(accelerate_steps_float, 0)), block->step_event_count); plateau_steps = 0; #if ENABLED(BEZIER_JERK_CONTROL) @@ -796,8 +806,12 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e #endif - CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section - if (!TEST(block->flag, BLOCK_BIT_BUSY)) { // Don't update variables if block is busy. + // Fill variables used by the stepper in a critical section + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + // Don't update variables if block is busy: It is being interpreted by the planner + if (!TEST(block->flag, BLOCK_BIT_BUSY)) { block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps + plateau_steps; block->initial_rate = initial_rate; @@ -810,32 +824,99 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e #endif block->final_rate = final_rate; } - CRITICAL_SECTION_END; + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); } -// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. -// This method will calculate the junction jerk as the euclidean distance between the nominal -// velocities of the respective blocks. -//inline float junction_jerk(block_t *before, block_t *after) { -// return SQRT( -// POW((before->speed_x-after->speed_x), 2)+POW((before->speed_y-after->speed_y), 2)); -//} +/* PLANNER SPEED DEFINITION + +--------+ <- current->nominal_speed + / \ + current->entry_speed -> + \ + | + <- next->entry_speed (aka exit speed) + +-------------+ + time --> + + Recalculates the motion plan according to the following basic guidelines: + + 1. Go over every feasible block sequentially in reverse order and calculate the junction speeds + (i.e. current->entry_speed) such that: + a. No junction speed exceeds the pre-computed maximum junction speed limit or nominal speeds of + neighboring blocks. + b. A block entry speed cannot exceed one reverse-computed from its exit speed (next->entry_speed) + with a maximum allowable deceleration over the block travel distance. + c. The last (or newest appended) block is planned from a complete stop (an exit speed of zero). + 2. Go over every block in chronological (forward) order and dial down junction speed values if + a. The exit speed exceeds the one forward-computed from its entry speed with the maximum allowable + acceleration over the block travel distance. + + When these stages are complete, the planner will have maximized the velocity profiles throughout the all + of the planner blocks, where every block is operating at its maximum allowable acceleration limits. In + other words, for all of the blocks in the planner, the plan is optimal and no further speed improvements + are possible. If a new block is added to the buffer, the plan is recomputed according to the said + guidelines for a new optimal plan. + + To increase computational efficiency of these guidelines, a set of planner block pointers have been + created to indicate stop-compute points for when the planner guidelines cannot logically make any further + changes or improvements to the plan when in normal operation and new blocks are streamed and added to the + planner buffer. For example, if a subset of sequential blocks in the planner have been planned and are + bracketed by junction velocities at their maximums (or by the first planner block as well), no new block + added to the planner buffer will alter the velocity profiles within them. So we no longer have to compute + them. Or, if a set of sequential blocks from the first block in the planner (or a optimal stop-compute + point) are all accelerating, they are all optimal and can not be altered by a new block added to the + planner buffer, as this will only further increase the plan speed to chronological blocks until a maximum + junction velocity is reached. However, if the operational conditions of the plan changes from infrequently + used feed holds or feedrate overrides, the stop-compute pointers will be reset and the entire plan is + recomputed as stated in the general guidelines. + + Planner buffer index mapping: + - block_buffer_tail: Points to the beginning of the planner buffer. First to be executed or being executed. + - block_buffer_head: Points to the buffer block after the last block in the buffer. Used to indicate whether + the buffer is full or empty. As described for standard ring buffers, this block is always empty. + - block_buffer_planned: Points to the first buffer block after the last optimally planned block for normal + streaming operating conditions. Use for planning optimizations by avoiding recomputing parts of the + planner buffer that don't change with the addition of a new block, as describe above. In addition, + this block can never be less than block_buffer_tail and will always be pushed forward and maintain + this requirement when encountered by the plan_discard_current_block() routine during a cycle. + + NOTE: Since the planner only computes on what's in the planner buffer, some motions with lots of short + line segments, like G2/3 arcs or complex curves, may seem to move slow. This is because there simply isn't + enough combined distance traveled in the entire buffer to accelerate up to the nominal speed and then + decelerate to a complete stop at the end of the buffer, as stated by the guidelines. If this happens and + becomes an annoyance, there are a few simple solutions: (1) Maximize the machine acceleration. The planner + will be able to compute higher velocity profiles within the same combined distance. (2) Maximize line + motion(s) distance per block to a desired tolerance. The more combined distance the planner has to use, + the faster it can go. (3) Maximize the planner buffer size. This also will increase the combined distance + for the planner to compute over. It also increases the number of computations the planner has to perform + to compute an optimal plan, so select carefully. +*/ // The kernel called by recalculate() when scanning the plan from last to first entry. -void Planner::reverse_pass_kernel(block_t* const current, const block_t* const next) { - if (current && next) { - // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. - // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and - // check for maximum allowable speed reductions to ensure maximum possible planned speed. - const float max_entry_speed = current->max_entry_speed; - if (current->entry_speed != max_entry_speed || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { - // If nominal length true, max junction speed is guaranteed to be reached. Only compute - // for max allowable speed if block is decelerating and nominal length is false. - const float new_entry_speed = (TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) || max_entry_speed <= next->entry_speed) - ? max_entry_speed - : MIN(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); - if (new_entry_speed != current->entry_speed) { - current->entry_speed = new_entry_speed; +void Planner::reverse_pass_kernel(block_t* const current, const block_t * const next) { + if (current) { + // If entry speed is already at the maximum entry speed, and there was no change of speed + // in the next block, there is no need to recheck. Block is cruising and there is no need to + // compute anything for this block, + // If not, block entry speed needs to be recalculated to ensure maximum possible planned speed. + const float max_entry_speed_sqr = current->max_entry_speed_sqr; + + // Compute maximum entry speed decelerating over the current block from its exit speed. + // If not at the maximum entry speed, or the previous block entry speed changed + if (current->entry_speed_sqr != max_entry_speed_sqr || (next && TEST(next->flag, BLOCK_BIT_RECALCULATE))) { + + // If nominal length true, max junction speed is guaranteed to be reached. + // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then + // the current block and next block junction speeds are guaranteed to always be at their maximum + // junction speeds in deceleration and acceleration, respectively. This is due to how the current + // block nominal speed limits both the current and next maximum junction speeds. Hence, in both + // the reverse and forward planners, the corresponding block junction speed will always be at the + // the maximum junction speed and may always be ignored for any speed reduction checks. + + const float new_entry_speed_sqr = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) + ? max_entry_speed_sqr + : MIN(max_entry_speed_sqr, max_allowable_speed_sqr(-current->acceleration, next ? next->entry_speed_sqr : sq(MINIMUM_PLANNER_SPEED), current->millimeters)); + if (current->entry_speed_sqr != new_entry_speed_sqr) { + current->entry_speed_sqr = new_entry_speed_sqr; + + // Need to recalculate the block speed SBI(current->flag, BLOCK_BIT_RECALCULATE); } } @@ -847,51 +928,72 @@ void Planner::reverse_pass_kernel(block_t* const current, const block_t* const n * Once in reverse and once forward. This implements the reverse pass. */ void Planner::reverse_pass() { - if (movesplanned() > 2) { - const uint8_t endnr = next_block_index(block_buffer_tail); // tail is running. tail+1 shouldn't be altered because it's connected to the running block. - uint8_t blocknr = prev_block_index(block_buffer_head); - block_t* current = &block_buffer[blocknr]; + // Initialize block index to the last block in the planner buffer. + uint8_t block_index = prev_block_index(block_buffer_head); - // Last/newest block in buffer: - const float max_entry_speed = current->max_entry_speed; - if (current->entry_speed != max_entry_speed) { - // If nominal length true, max junction speed is guaranteed to be reached. Only compute - // for max allowable speed if block is decelerating and nominal length is false. - const float new_entry_speed = TEST(current->flag, BLOCK_BIT_NOMINAL_LENGTH) - ? max_entry_speed - : MIN(max_entry_speed, max_allowable_speed(-current->acceleration, MINIMUM_PLANNER_SPEED, current->millimeters)); - if (current->entry_speed != new_entry_speed) { - current->entry_speed = new_entry_speed; - SBI(current->flag, BLOCK_BIT_RECALCULATE); - } + // Read the index of the last buffer planned block. + // The ISR may change it so get a stable local copy. + uint8_t planned_block_index = block_buffer_planned; + + // If there was a race condition and block_buffer_planned was incremented + // or was pointing at the head (queue empty) break loop now and avoid + // planning already consumed blocks + if (planned_block_index == block_buffer_head) return; + + // Reverse Pass: Coarsely maximize all possible deceleration curves back-planning from the last + // block in buffer. Cease planning when the last optimal planned or tail pointer is reached. + // NOTE: Forward pass will later refine and correct the reverse pass to create an optimal plan. + block_t *current; + const block_t *next = NULL; + while (block_index != planned_block_index) { + + // Perform the reverse pass + current = &block_buffer[block_index]; + + // Only consider non sync blocks + if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) { + reverse_pass_kernel(current, next); + next = current; } - do { - const block_t * const next = current; - blocknr = prev_block_index(blocknr); - current = &block_buffer[blocknr]; - reverse_pass_kernel(current, next); - } while (blocknr != endnr); + // Advance to the next + block_index = prev_block_index(block_index); } } // The kernel called by recalculate() when scanning the plan from first to last entry. -void Planner::forward_pass_kernel(const block_t* const previous, block_t* const current) { +void Planner::forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index) { if (previous) { // If the previous block is an acceleration block, too short to complete the full speed // change, adjust the entry speed accordingly. Entry speeds have already been reset, // maximized, and reverse-planned. If nominal length is set, max junction speed is // guaranteed to be reached. No need to recheck. - if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH)) { - if (previous->entry_speed < current->entry_speed) { - const float new_entry_speed = MIN(current->entry_speed, max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); - // Check for junction speed change - if (current->entry_speed != new_entry_speed) { - current->entry_speed = new_entry_speed; - SBI(current->flag, BLOCK_BIT_RECALCULATE); - } + if (!TEST(previous->flag, BLOCK_BIT_NOMINAL_LENGTH) && + previous->entry_speed_sqr < current->entry_speed_sqr) { + + // Compute the maximum allowable speed + const float new_entry_speed_sqr = max_allowable_speed_sqr(-previous->acceleration, previous->entry_speed_sqr, previous->millimeters); + + // If true, current block is full-acceleration and we can move the planned pointer forward. + if (new_entry_speed_sqr < current->entry_speed_sqr) { + + // Always <= max_entry_speed_sqr. Backward pass sets this. + current->entry_speed_sqr = new_entry_speed_sqr; // Always <= max_entry_speed_sqr. Backward pass sets this. + + // Set optimal plan pointer. + block_buffer_planned = block_index; + + // And mark we need to recompute the trapezoidal shape + SBI(current->flag, BLOCK_BIT_RECALCULATE); } } + + // Any block set at its maximum entry speed also creates an optimal plan up to this + // point in the buffer. When the plan is bracketed by either the beginning of the + // buffer and a maximum entry speed or two maximum entry speeds, every block in between + // cannot logically be further improved. Hence, we don't have to recompute them anymore. + if (current->entry_speed_sqr == current->max_entry_speed_sqr) + block_buffer_planned = block_index; } } @@ -900,15 +1002,31 @@ void Planner::forward_pass_kernel(const block_t* const previous, block_t* const * Once in reverse and once forward. This implements the forward pass. */ void Planner::forward_pass() { - block_t* block[3] = { NULL, NULL, NULL }; - for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { - block[0] = block[1]; - block[1] = block[2]; - block[2] = &block_buffer[b]; - forward_pass_kernel(block[0], block[1]); + // Forward Pass: Forward plan the acceleration curve from the planned pointer onward. + // Also scans for optimal plan breakpoints and appropriately updates the planned pointer. + + // Begin at buffer planned pointer. Note that block_buffer_planned can be modified + // by the stepper ISR, so read it ONCE. It it guaranteed that block_buffer_planned + // will never lead head, so the loop is safe to execute. Also note that the forward + // pass will never modify the values at the tail. + uint8_t block_index = block_buffer_planned; + + block_t *current; + const block_t * previous = NULL; + while (block_index != block_buffer_head) { + + // Perform the forward pass + current = &block_buffer[block_index]; + + // Skip SYNC blocks + if (!TEST(current->flag, BLOCK_BIT_SYNC_POSITION)) { + forward_pass_kernel(previous, current, block_index); + previous = current; + } + // Advance to the previous + block_index = next_block_index(block_index); } - forward_pass_kernel(block[1], block[2]); } /** @@ -917,38 +1035,73 @@ void Planner::forward_pass() { * recalculate() after updating the blocks. */ void Planner::recalculate_trapezoids() { - int8_t block_index = block_buffer_tail; - block_t *current, *next = NULL; + // The tail may be changed by the ISR so get a local copy. + uint8_t block_index = block_buffer_tail; + + // As there could be a sync block in the head of the queue, and the next loop must not + // recalculate the head block (as it needs to be specially handled), scan backwards until + // we find the first non SYNC block + uint8_t head_block_index = block_buffer_head; + while (head_block_index != block_index) { + + // Go back (head always point to the first free block) + uint8_t prev_index = prev_block_index(head_block_index); + + // Get the pointer to the block + block_t *prev = &block_buffer[prev_index]; + + // If not dealing with a sync block, we are done. The last block is not a SYNC block + if (!TEST(prev->flag, BLOCK_BIT_SYNC_POSITION)) break; + + // Examine the previous block. This and all following are SYNC blocks + head_block_index = prev_index; + }; + + // Go from the tail (currently executed block) to the first block, without including it) + block_t *current = NULL, *next = NULL; + float current_entry_speed = 0.0, next_entry_speed = 0.0; + while (block_index != head_block_index) { - while (block_index != block_buffer_head) { - current = next; next = &block_buffer[block_index]; - if (current) { - // Recalculate if current block entry or exit junction speed has changed. - if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { - // NOTE: Entry and exit factors always > 0 by all previous logic operations. - const float nomr = 1.0 / current->nominal_speed; - calculate_trapezoid_for_block(current, current->entry_speed * nomr, next->entry_speed * nomr); - #if ENABLED(LIN_ADVANCE) - if (current->use_advance_lead) { - const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; - current->max_adv_steps = current->nominal_speed * comp; - current->final_adv_steps = next->entry_speed * comp; - } - #endif - CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed + + // Skip sync blocks + if (!TEST(next->flag, BLOCK_BIT_SYNC_POSITION)) { + next_entry_speed = SQRT(next->entry_speed_sqr); + + if (current) { + // Recalculate if current block entry or exit junction speed has changed. + if (TEST(current->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) { + // NOTE: Entry and exit factors always > 0 by all previous logic operations. + const float current_nominal_speed = SQRT(current->nominal_speed_sqr), + nomr = 1.0 / current_nominal_speed; + calculate_trapezoid_for_block(current, current_entry_speed * nomr, next_entry_speed * nomr); + #if ENABLED(LIN_ADVANCE) + if (current->use_advance_lead) { + const float comp = current->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; + current->max_adv_steps = current_nominal_speed * comp; + current->final_adv_steps = next_entry_speed * comp; + } + #endif + CBI(current->flag, BLOCK_BIT_RECALCULATE); // Reset current only to ensure next trapezoid is computed + } } + + current = next; + current_entry_speed = next_entry_speed; } + block_index = next_block_index(block_index); } + // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { - const float nomr = 1.0 / next->nominal_speed; - calculate_trapezoid_for_block(next, next->entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr); + const float next_nominal_speed = SQRT(next->nominal_speed_sqr), + nomr = 1.0 / next_nominal_speed; + calculate_trapezoid_for_block(next, next_entry_speed * nomr, (MINIMUM_PLANNER_SPEED) * nomr); #if ENABLED(LIN_ADVANCE) if (next->use_advance_lead) { const float comp = next->e_D_ratio * extruder_advance_K * axis_steps_per_mm[E_AXIS]; - next->max_adv_steps = next->nominal_speed * comp; + next->max_adv_steps = next_nominal_speed * comp; next->final_adv_steps = (MINIMUM_PLANNER_SPEED) * comp; } #endif @@ -956,33 +1109,14 @@ void Planner::recalculate_trapezoids() { } } -/** - * Recalculate the motion plan according to the following algorithm: - * - * 1. Go over every block in reverse order... - * - * Calculate a junction speed reduction (block_t.entry_factor) so: - * - * a. The junction jerk is within the set limit, and - * - * b. No speed reduction within one block requires faster - * deceleration than the one, true constant acceleration. - * - * 2. Go over every block in chronological order... - * - * Dial down junction speed reduction values if: - * a. The speed increase within one block would require faster - * acceleration than the one, true constant acceleration. - * - * After that, all blocks will have an entry_factor allowing all speed changes to - * be performed using only the one, true constant acceleration, and where no junction - * jerk is jerkier than the set limit, Jerky. Finally it will: - * - * 3. Recalculate "trapezoids" for all blocks. - */ void Planner::recalculate() { - reverse_pass(); - forward_pass(); + // Initialize block index to the last block in the planner buffer. + const uint8_t block_index = prev_block_index(block_buffer_head); + // If there is just one block, no planning can be done. Avoid it! + if (block_index != block_buffer_planned) { + reverse_pass(); + forward_pass(); + } recalculate_trapezoids(); } @@ -998,7 +1132,7 @@ void Planner::recalculate() { for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { block_t* block = &block_buffer[b]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { - float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; + const float se = (float)block->steps[E_AXIS] / block->step_event_count * SQRT(block->nominal_speed_sqr); // mm/sec; NOLESS(high, se); } } @@ -1299,6 +1433,53 @@ void Planner::check_axes_activity() { #endif // PLANNER_LEVELING +void Planner::quick_stop() { + + // Remove all the queued blocks. Note that this function is NOT + // called from the Stepper ISR, so we must consider tail as readonly! + // that is why we set head to tail - But there is a race condition that + // must be handled: The tail could change between the read and the assignment + // so this must be enclosed in a critical section + + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + // Drop all queue entries + block_buffer_planned = block_buffer_head = block_buffer_tail; + + // Restart the block delay for the first movement - As the queue was + // forced to empty, there's no risk the ISR will touch this. + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + + #if ENABLED(ULTRA_LCD) + // Clear the accumulated runtime + clear_block_buffer_runtime(); + #endif + + // Make sure to drop any attempt of queuing moves for at least 1 second + cleaning_buffer_counter = 1000; + + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + + // And stop the stepper ISR + stepper.quick_stop(); +} + +void Planner::endstop_triggered(const AxisEnum axis) { + // Record stepper position and discard the current block + stepper.endstop_triggered(axis); +} + +float Planner::triggered_position_mm(const AxisEnum axis) { + return stepper.triggered_position(axis) * steps_to_mm[axis]; +} + +void Planner::finish_and_disable() { + while (has_blocks_queued() || cleaning_buffer_counter) idle(); + disable_all_steppers(); +} + /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. @@ -1311,7 +1492,7 @@ float Planner::get_axis_position_mm(const AxisEnum axis) { // Protect the access to the position. const bool was_enabled = STEPPER_ISR_ENABLED(); - DISABLE_STEPPER_DRIVER_INTERRUPT(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 @@ -1333,18 +1514,79 @@ float Planner::get_axis_position_mm(const AxisEnum axis) { /** * Block until all buffered steps are executed / cleaned */ -void Planner::synchronize() { while (has_blocks_queued() || stepper.cleaning_buffer_counter) idle(); } +void Planner::synchronize() { while (has_blocks_queued() || cleaning_buffer_counter) idle(); } /** * Planner::_buffer_steps * - * Add a new linear movement to the buffer (in terms of steps). + * Add a new linear movement to the planner queue (in terms of steps). * * target - target position in steps units * fr_mm_s - (target) speed of the move * extruder - target extruder + * millimeters - the length of the movement, if known + * + * Returns true if movement was properly queued, false otherwise */ -void Planner::_buffer_steps(const int32_t (&target)[XYZE] +bool Planner::_buffer_steps(const int32_t (&target)[XYZE] + #if HAS_POSITION_FLOAT + , const float (&target_float)[XYZE] + #endif + , float fr_mm_s, const uint8_t extruder, const float &millimeters +) { + + // If we are cleaning, do not accept queuing of movements + if (cleaning_buffer_counter) return false; + + // Wait for the next available block + uint8_t next_buffer_head; + block_t * const block = get_next_free_block(next_buffer_head); + + // Fill the block with the specified movement + if (!_populate_block(block, false, target + #if HAS_POSITION_FLOAT + , target_float + #endif + , fr_mm_s, extruder, millimeters + )) { + // Movement was not queued, probably because it was too short. + // Simply accept that as movement queued and done + return true; + } + + // If this is the first added movement, reload the delay, otherwise, cancel it. + if (block_buffer_head == block_buffer_tail) { + // If it was the first queued block, restart the 1st block delivery delay, to + // give the planner an opportunity to queue more movements and plan them + // As there are no queued movements, the Stepper ISR will not touch this + // variable, so there is no risk setting this here (but it MUST be done + // before the following line!!) + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + } + + // Move buffer head + block_buffer_head = next_buffer_head; + + // Recalculate and optimize trapezoidal speed profiles + recalculate(); + + // Movement successfully queued! + return true; +} + +/** + * Planner::_populate_block + * + * Fills a new linear movement in the block (in terms of steps). + * + * target - target position in steps units + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * + * Returns true is movement is acceptable, false otherwise + */ +bool Planner::_populate_block(block_t * const block, bool split_move, + const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif @@ -1358,7 +1600,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] int32_t de = target[E_AXIS] - position[E_AXIS]; /* <-- add a slash to enable - SERIAL_ECHOPAIR(" _buffer_steps FR:", fr_mm_s); + SERIAL_ECHOPAIR(" _populate_block FR:", fr_mm_s); SERIAL_ECHOPAIR(" A:", target[A_AXIS]); SERIAL_ECHOPAIR(" (", da); SERIAL_ECHOPAIR(" steps) B:", target[B_AXIS]); @@ -1425,11 +1667,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] if (de < 0) SBI(dm, E_AXIS); const float esteps_float = de * e_factor[extruder]; - const int32_t esteps = ABS(esteps_float) + 0.5; - - // Wait for the next available block - uint8_t next_buffer_head; - block_t * const block = get_next_free_block(next_buffer_head); + const uint32_t esteps = ABS(esteps_float) + 0.5; // Clear all flags, including the "busy" bit block->flag = 0x00; @@ -1466,7 +1704,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] block->step_event_count = MAX4(block->steps[A_AXIS], block->steps[B_AXIS], block->steps[C_AXIS], esteps); // Bail if this is a zero-length block - if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return; + if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return false; // For a mixing extruder, get a magnified step_event_count for each #if ENABLED(MIXING_EXTRUDER) @@ -1706,12 +1944,16 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] #endif #if ENABLED(ULTRA_LCD) - CRITICAL_SECTION_START - block_buffer_runtime_us += segment_time_us; - CRITICAL_SECTION_END + // Protect the access to the position. + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + + block_buffer_runtime_us += segment_time_us; + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); #endif - block->nominal_speed = block->millimeters * inverse_secs; // (mm/sec) Always > 0 + block->nominal_speed_sqr = sq(block->millimeters * inverse_secs); // (mm/sec)^2 Always > 0 block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 #if ENABLED(FILAMENT_WIDTH_SENSOR) @@ -1799,8 +2041,8 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // Correct the speed if (speed_factor < 1.0) { LOOP_XYZE(i) current_speed[i] *= speed_factor; - block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; + block->nominal_speed_sqr = block->nominal_speed_sqr * sq(speed_factor); } // Compute and limit the acceleration rate for the trapezoid generator. @@ -1895,13 +2137,13 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] block->acceleration_steps_per_s2 = accel; block->acceleration = accel / steps_per_mm; #if DISABLED(BEZIER_JERK_CONTROL) - block->acceleration_rate = (long)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); + block->acceleration_rate = (uint32_t)(accel * (4096.0 * 4096.0 / (HAL_STEPPER_TIMER_RATE))); #endif #if ENABLED(LIN_ADVANCE) if (block->use_advance_lead) { block->advance_speed = (HAL_STEPPER_TIMER_RATE) / (extruder_advance_K * block->e_D_ratio * block->acceleration * axis_steps_per_mm[E_AXIS_N]); #if ENABLED(LA_DEBUG) - if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < block->nominal_speed * block->e_D_ratio) + if (extruder_advance_K * block->e_D_ratio * block->acceleration * 2 < SQRT(block->nominal_speed_sqr) * block->e_D_ratio) SERIAL_ECHOLNPGM("More than 2 steps per eISR loop executed."); if (block->advance_speed < 200) SERIAL_ECHOLNPGM("eISR running at > 10kHz."); @@ -1909,7 +2151,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] } #endif - float vmax_junction; // Initial limit on the segment entry velocity + float vmax_junction_sqr; // Initial limit on the segment entry velocity (mm/s)^2 #if ENABLED(JUNCTION_DEVIATION) @@ -1935,7 +2177,17 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] * changed dynamically during operation nor can the line move geometry. This must be kept in * memory in the event of a feedrate override changing the nominal speeds of blocks, which can * change the overall maximum entry speed conditions of all blocks. - */ + * + * ####### + * https://github.com/MarlinFirmware/Marlin/issues/10341#issuecomment-388191754 + * + * hoffbaked: on May 10 2018 tuned and improved the GRBL algorithm for Marlin: + Okay! It seems to be working good. I somewhat arbitrarily cut it off at 1mm + on then on anything with less sides than an octagon. With this, and the + reverse pass actually recalculating things, a corner acceleration value + of 1000 junction deviation of .05 are pretty reasonable. If the cycles + can be spared, a better acos could be used. For all I know, it may be + already calculated in a different place. */ // Unit vector of previous path line segment static float previous_unit_vec[ @@ -1956,7 +2208,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] }; // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. - if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { + if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. float junction_cos_theta = -previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] @@ -1970,21 +2222,33 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // NOTE: Computed without any expensive trig, sin() or acos(), by trig half angle identity of cos(theta). if (junction_cos_theta > 0.999999) { // For a 0 degree acute junction, just set minimum junction speed. - vmax_junction = MINIMUM_PLANNER_SPEED; + vmax_junction_sqr = sq(MINIMUM_PLANNER_SPEED); } else { - junction_cos_theta = MAX(junction_cos_theta, -0.999999); // Check for numerical round-off to avoid divide by zero. + NOLESS(junction_cos_theta, -0.999999); // Check for numerical round-off to avoid divide by zero. const float sin_theta_d2 = SQRT(0.5 * (1.0 - junction_cos_theta)); // Trig half angle identity. Always positive. // TODO: Technically, the acceleration used in calculation needs to be limited by the minimum of the // two junctions. However, this shouldn't be a significant problem except in extreme circumstances. - vmax_junction = SQRT((block->acceleration * JUNCTION_DEVIATION_FACTOR * sin_theta_d2) / (1.0 - sin_theta_d2)); + vmax_junction_sqr = (JUNCTION_ACCELERATION_FACTOR * JUNCTION_DEVIATION_FACTOR * sin_theta_d2) / (1.0 - sin_theta_d2); + if (block->millimeters < 1.0) { + + // Fast acos approximation, minus the error bar to be safe + float junction_theta = (RADIANS(-40) * sq(junction_cos_theta) - RADIANS(50)) * junction_cos_theta + RADIANS(90) - 0.18; + + // If angle is greater than 135 degrees (octagon), find speed for approximate arc + if (junction_theta > RADIANS(135)) { + const float limit_sqr = block->millimeters / (RADIANS(180) - junction_theta) * JUNCTION_ACCELERATION_FACTOR; + NOMORE(vmax_junction_sqr, limit_sqr); + } + } } - vmax_junction = MIN3(vmax_junction, block->nominal_speed, previous_nominal_speed); + // Get the lowest speed + vmax_junction_sqr = MIN3(vmax_junction_sqr, block->nominal_speed_sqr, previous_nominal_speed_sqr); } else // Init entry speed to zero. Assume it starts from rest. Planner will correct this later. - vmax_junction = 0.0; + vmax_junction_sqr = 0.0; COPY(previous_unit_vec, unit_vec); @@ -2000,13 +2264,15 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // Exit speed limited by a jerk to full halt of a previous last segment static float previous_safe_speed; - float safe_speed = block->nominal_speed; + const float nominal_speed = SQRT(block->nominal_speed_sqr); + float safe_speed = nominal_speed; + uint8_t limited = 0; LOOP_XYZE(i) { const float jerk = ABS(current_speed[i]), maxj = max_jerk[i]; if (jerk > maxj) { if (limited) { - const float mjerk = maxj * block->nominal_speed; + const float mjerk = maxj * nominal_speed; if (jerk * safe_speed > mjerk) safe_speed = mjerk / jerk; } else { @@ -2016,19 +2282,21 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] } } - if (moves_queued && !UNEAR_ZERO(previous_nominal_speed)) { + float vmax_junction; + if (moves_queued && !UNEAR_ZERO(previous_nominal_speed_sqr)) { // Estimate a maximum velocity allowed at a joint of two successive segments. // If this maximum velocity allowed is lower than the minimum of the entry / exit safe velocities, // then the machine is not coasting anymore and the safe entry / exit velocities shall be used. - // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. - // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. - vmax_junction = MIN(block->nominal_speed, previous_nominal_speed); - // Factor to multiply the previous / current nominal velocities to get componentwise limited velocities. float v_factor = 1; limited = 0; + // The junction velocity will be shared between successive segments. Limit the junction velocity to their minimum. + // Pick the smaller of the nominal speeds. Higher speed shall not be achieved at the junction during coasting. + const float previous_nominal_speed = SQRT(previous_nominal_speed_sqr); + vmax_junction = MIN(nominal_speed, previous_nominal_speed); + // Now limit the jerk in all axes. const float smaller_speed_factor = vmax_junction / previous_nominal_speed; LOOP_XYZE(axis) { @@ -2063,16 +2331,19 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] vmax_junction = safe_speed; previous_safe_speed = safe_speed; + vmax_junction_sqr = sq(vmax_junction); + #endif // Classic Jerk Limiting // Max entry speed of this block equals the max exit speed of the previous block. - block->max_entry_speed = vmax_junction; + block->max_entry_speed_sqr = vmax_junction_sqr; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. - const float v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); - // If stepper ISR is disabled, this indicates buffer_segment wants to add a split block. - // In this case start with the max. allowed speed to avoid an interrupted first move. - block->entry_speed = STEPPER_ISR_ENABLED() ? MINIMUM_PLANNER_SPEED : MIN(vmax_junction, v_allowable); + const float v_allowable_sqr = max_allowable_speed_sqr(-block->acceleration, sq(MINIMUM_PLANNER_SPEED), block->millimeters); + + // If we are trying to add a split block, start with the + // max. allowed speed to avoid an interrupted first move. + block->entry_speed_sqr = !split_move ? sq(MINIMUM_PLANNER_SPEED) : MIN(vmax_junction_sqr, v_allowable_sqr); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. @@ -2082,25 +2353,22 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE] // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. - block->flag |= block->nominal_speed <= v_allowable ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE; + block->flag |= block->nominal_speed_sqr <= v_allowable_sqr ? BLOCK_FLAG_RECALCULATE | BLOCK_FLAG_NOMINAL_LENGTH : BLOCK_FLAG_RECALCULATE; // Update previous path unit_vector and nominal speed COPY(previous_speed, current_speed); - previous_nominal_speed = block->nominal_speed; + previous_nominal_speed_sqr = block->nominal_speed_sqr; - // Move buffer head - block_buffer_head = next_buffer_head; - - // Update the position (only when a move was queued) + // Update the position static_assert(COUNT(target) > 1, "Parameter to _buffer_steps must be (&target)[XYZE]!"); COPY(position, target); #if HAS_POSITION_FLOAT COPY(position_float, target_float); #endif - recalculate(); - -} // _buffer_steps() + // Movement was accepted + return true; +} // _populate_block() /** * Planner::buffer_sync_block @@ -2111,31 +2379,28 @@ void Planner::buffer_sync_block() { uint8_t next_buffer_head; block_t * const block = get_next_free_block(next_buffer_head); + // Clear block + memset(block, 0, sizeof(block_t)); + block->flag = BLOCK_FLAG_SYNC_POSITION; - block->steps[A_AXIS] = position[A_AXIS]; - block->steps[B_AXIS] = position[B_AXIS]; - block->steps[C_AXIS] = position[C_AXIS]; - block->steps[E_AXIS] = position[E_AXIS]; + block->position[A_AXIS] = position[A_AXIS]; + block->position[B_AXIS] = position[B_AXIS]; + block->position[C_AXIS] = position[C_AXIS]; + block->position[E_AXIS] = position[E_AXIS]; - #if ENABLED(LIN_ADVANCE) - block->use_advance_lead = false; - #endif - - block->nominal_speed = - block->entry_speed = - block->max_entry_speed = - block->millimeters = - block->acceleration = 0; - - block->step_event_count = - block->nominal_rate = - block->initial_rate = - block->final_rate = - block->acceleration_steps_per_s2 = - block->segment_time_us = 0; + // If this is the first added movement, reload the delay, otherwise, cancel it. + if (block_buffer_head == block_buffer_tail) { + // If it was the first queued block, restart the 1st block delivery delay, to + // give the planner an opportunity to queue more movements and plan them + // As there are no queued movements, the Stepper ISR will not touch this + // variable, so there is no risk setting this here (but it MUST be done + // before the following line!!) + delay_before_delivering = BLOCK_DELAY_FOR_1ST_MOVE; + } block_buffer_head = next_buffer_head; + stepper.wake_up(); } // buffer_sync_block() @@ -2151,7 +2416,11 @@ void Planner::buffer_sync_block() { * extruder - target extruder * millimeters - the length of the movement, if known */ -void Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/) { +bool Planner::buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters/*=0.0*/) { + + // If we are cleaning, do not accept queuing of movements + if (cleaning_buffer_counter) return false; + // When changing extruders recalculate steps corresponding to the E position #if ENABLED(DISTINCT_E_FACTORS) if (last_extruder != extruder && axis_steps_per_mm[E_AXIS_N] != axis_steps_per_mm[E_AXIS + last_extruder]) { @@ -2209,48 +2478,18 @@ void Planner::buffer_segment(const float &a, const float &b, const float &c, con SERIAL_ECHOLNPGM(")"); //*/ - // Always split the first move into two (if not homing or probing) - if (!has_blocks_queued()) { - - #define _BETWEEN(A) (position[_AXIS(A)] + target[_AXIS(A)]) >> 1 - const int32_t between[ABCE] = { _BETWEEN(A), _BETWEEN(B), _BETWEEN(C), _BETWEEN(E) }; - - #if HAS_POSITION_FLOAT - #define _BETWEEN_F(A) (position_float[_AXIS(A)] + target_float[_AXIS(A)]) * 0.5 - const float between_float[ABCE] = { _BETWEEN_F(A), _BETWEEN_F(B), _BETWEEN_F(C), _BETWEEN_F(E) }; - #endif - - DISABLE_STEPPER_DRIVER_INTERRUPT(); - - _buffer_steps(between - #if HAS_POSITION_FLOAT - , between_float - #endif - , fr_mm_s, extruder, millimeters * 0.5 - ); - - const uint8_t next = block_buffer_head; - - _buffer_steps(target - #if HAS_POSITION_FLOAT - , target_float - #endif - , fr_mm_s, extruder, millimeters * 0.5 - ); - - SBI(block_buffer[next].flag, BLOCK_BIT_CONTINUED); - ENABLE_STEPPER_DRIVER_INTERRUPT(); - } - else - _buffer_steps(target + // Queue the movement + if ( + !_buffer_steps(target #if HAS_POSITION_FLOAT , target_float #endif , fr_mm_s, extruder, millimeters - ); + ) + ) return false; stepper.wake_up(); - + return true; } // buffer_segment() /** @@ -2277,7 +2516,7 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c position_float[C_AXIS] = c; position_float[E_AXIS] = e; #endif - previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. + previous_nominal_speed_sqr = 0.0; // Resets planner junction speeds. Assumes start from rest. ZERO(previous_speed); buffer_sync_block(); } @@ -2297,22 +2536,6 @@ void Planner::set_position_mm_kinematic(const float (&cart)[XYZE]) { #endif } -/** - * Sync from the stepper positions. (e.g., after an interrupted move) - */ -void Planner::sync_from_steppers() { - LOOP_XYZE(i) { - position[i] = stepper.position((AxisEnum)i); - #if HAS_POSITION_FLOAT - position_float[i] = position[i] * steps_to_mm[i - #if ENABLED(DISTINCT_E_FACTORS) - + (i == E_AXIS ? active_extruder : 0) - #endif - ]; - #endif - } -} - /** * Setters for planner position (also setting stepper position). */ diff --git a/Marlin/src/module/planner.h b/Marlin/src/module/planner.h index 89a3716305..86707610ba 100644 --- a/Marlin/src/module/planner.h +++ b/Marlin/src/module/planner.h @@ -35,6 +35,7 @@ #include "../Marlin.h" #include "motion.h" +#include "../gcode/queue.h" #if ENABLED(DELTA) #include "delta.h" @@ -53,7 +54,7 @@ enum BlockFlagBit : char { // from a safe speed (in consideration of jerking from zero speed). BLOCK_BIT_NOMINAL_LENGTH, - // The block is busy + // The block is busy, being interpreted by the stepper ISR BLOCK_BIT_BUSY, // The block is segment 2+ of a longer move @@ -84,19 +85,35 @@ typedef struct { uint8_t flag; // Block flags (See BlockFlag enum above) - unsigned char active_extruder; // The extruder to move (if E move) + // Fields used by the motion planner to manage acceleration + float nominal_speed_sqr, // The nominal speed for this block in (mm/sec)^2 + entry_speed_sqr, // Entry speed at previous-current junction in (mm/sec)^2 + max_entry_speed_sqr, // Maximum allowable junction entry speed in (mm/sec)^2 + millimeters, // The total travel of this block in mm + acceleration; // acceleration mm/sec^2 - // Fields used by the Bresenham algorithm for tracing the line - int32_t steps[NUM_AXIS]; // Step count along each axis + union { + // Data used by all move blocks + struct { + // Fields used by the Bresenham algorithm for tracing the line + uint32_t steps[NUM_AXIS]; // Step count along each axis + }; + // Data used by all sync blocks + struct { + int32_t position[NUM_AXIS]; // New position to force when this sync block is executed + }; + }; uint32_t step_event_count; // The number of step events required to complete this block + uint8_t active_extruder; // The extruder to move (if E move) + #if ENABLED(MIXING_EXTRUDER) uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers #endif // Settings for the trapezoid generator - int32_t accelerate_until, // The index of the step event on which to stop acceleration - decelerate_after; // The index of the step event on which to start decelerating + uint32_t accelerate_until, // The index of the step event on which to stop acceleration + decelerate_after; // The index of the step event on which to start decelerating #if ENABLED(BEZIER_JERK_CONTROL) uint32_t cruise_rate; // The actual cruise rate to use, between end of the acceleration phase and start of deceleration phase @@ -105,7 +122,7 @@ typedef struct { uint32_t acceleration_time_inverse, // Inverse of acceleration and deceleration periods, expressed as integer. Scale depends on CPU being used deceleration_time_inverse; #else - int32_t acceleration_rate; // The acceleration rate used for acceleration calculation + uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation #endif uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) @@ -119,13 +136,6 @@ typedef struct { float e_D_ratio; #endif - // Fields used by the motion planner to manage acceleration - float nominal_speed, // The nominal speed for this block in mm/sec - entry_speed, // Entry speed at previous-current junction in mm/sec - max_entry_speed, // Maximum allowable junction entry speed in mm/sec - millimeters, // The total travel of this block in mm - acceleration; // acceleration mm/sec^2 - uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec initial_rate, // The jerk-adjusted step rate at start of block final_rate, // The minimal rate at exit @@ -166,6 +176,10 @@ class Planner { static block_t block_buffer[BLOCK_BUFFER_SIZE]; static volatile uint8_t block_buffer_head, // Index of the next block to be pushed block_buffer_tail; // Index of the busy block, if any + static uint16_t cleaning_buffer_counter; // A counter to disable queuing of blocks + static uint8_t delay_before_delivering, // This counter delays delivery of blocks when queue becomes empty to allow the opportunity of merging blocks + block_buffer_planned; // Index of the optimally planned block + #if ENABLED(DISTINCT_E_FACTORS) static uint8_t last_extruder; // Respond to extruder change @@ -233,6 +247,10 @@ class Planner { #endif #endif + #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) + static bool abort_on_endstop_hit; + #endif + private: /** @@ -247,9 +265,9 @@ class Planner { static float previous_speed[NUM_AXIS]; /** - * Nominal speed of previous path line segment + * Nominal speed of previous path line segment (mm/s)^2 */ - static float previous_nominal_speed; + static float previous_nominal_speed_sqr; /** * Limit where 64bit math is necessary for acceleration calculation @@ -308,15 +326,6 @@ class Planner { // Manage fans, paste pressure, etc. static void check_axes_activity(); - /** - * Number of moves currently in the planner - */ - FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); } - - FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; } - - FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); } - // Update multipliers based on new diameter measurements static void calculate_volumetric_multipliers(); @@ -424,16 +433,32 @@ class Planner { #define ARG_Z const float &rz #endif + // Number of moves currently in the planner + FORCE_INLINE static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail); } + + // Remove all blocks from the buffer + FORCE_INLINE static void clear_block_buffer() { block_buffer_head = block_buffer_tail = 0; } + + // Check if movement queue is full + FORCE_INLINE static bool is_full() { return block_buffer_tail == next_block_index(block_buffer_head); } + + // Get count of movement slots free + FORCE_INLINE static uint8_t moves_free() { return BLOCK_BUFFER_SIZE - 1 - movesplanned(); } + /** * Planner::get_next_free_block * - * - Get the next head index (passed by reference) - * - Wait for a space to open up in the planner - * - Return the head block + * - Get the next head indices (passed by reference) + * - Wait for the number of spaces to open up in the planner + * - Return the first head block */ - FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head) { + FORCE_INLINE static block_t* get_next_free_block(uint8_t &next_buffer_head, uint8_t count = 1) { + + // Wait until there are enough slots free + while (moves_free() < count) { idle(); } + + // Return the first available block next_buffer_head = next_block_index(block_buffer_head); - while (block_buffer_tail == next_buffer_head) idle(); // while (is_full) return &block_buffer[block_buffer_head]; } @@ -446,8 +471,30 @@ class Planner { * fr_mm_s - (target) speed of the move * extruder - target extruder * millimeters - the length of the movement, if known + * + * Returns true if movement was buffered, false otherwise */ - static void _buffer_steps(const int32_t (&target)[XYZE] + static bool _buffer_steps(const int32_t (&target)[XYZE] + #if HAS_POSITION_FLOAT + , const float (&target_float)[XYZE] + #endif + , float fr_mm_s, const uint8_t extruder, const float &millimeters=0.0 + ); + + /** + * Planner::_populate_block + * + * Fills a new linear movement in the block (in terms of steps). + * + * target - target position in steps units + * fr_mm_s - (target) speed of the move + * extruder - target extruder + * millimeters - the length of the movement, if known + * + * Returns true is movement is acceptable, false otherwise + */ + static bool _populate_block(block_t * const block, bool split_move, + const int32_t (&target)[XYZE] #if HAS_POSITION_FLOAT , const float (&target_float)[XYZE] #endif @@ -472,7 +519,7 @@ class Planner { * extruder - target extruder * millimeters - the length of the movement, if known */ - static void buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0); + static bool buffer_segment(const float &a, const float &b, const float &c, const float &e, const float &fr_mm_s, const uint8_t extruder, const float &millimeters=0.0); static void _set_position_mm(const float &a, const float &b, const float &c, const float &e); @@ -489,11 +536,11 @@ class Planner { * extruder - target extruder * millimeters - the length of the movement, if known */ - FORCE_INLINE static void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { + FORCE_INLINE static bool buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { #if PLANNER_LEVELING && IS_CARTESIAN apply_leveling(rx, ry, rz); #endif - buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters); + return buffer_segment(rx, ry, rz, e, fr_mm_s, extruder, millimeters); } /** @@ -506,7 +553,7 @@ class Planner { * extruder - target extruder * millimeters - the length of the movement, if known */ - FORCE_INLINE static void buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { + FORCE_INLINE static bool buffer_line_kinematic(const float (&cart)[XYZE], const float &fr_mm_s, const uint8_t extruder, const float millimeters = 0.0) { #if PLANNER_LEVELING float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] }; apply_leveling(raw); @@ -515,9 +562,9 @@ class Planner { #endif #if IS_KINEMATIC inverse_kinematics(raw); - buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); + return buffer_segment(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); #else - buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); + return buffer_segment(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder, millimeters); #endif } @@ -541,11 +588,6 @@ class Planner { FORCE_INLINE static void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); } FORCE_INLINE static void set_e_position_mm(const float &e) { set_position_mm(E_AXIS, e); } - /** - * Sync from the stepper positions. (e.g., after an interrupted move) - */ - static void sync_from_steppers(); - /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. @@ -557,73 +599,116 @@ class Planner { FORCE_INLINE static float get_axis_position_degrees(const AxisEnum axis) { return get_axis_position_mm(axis); } #endif + // Called to force a quick stop of the machine (for example, when an emergency + // stop is required, or when endstops are hit) + static void quick_stop(); + + // Called when an endstop is triggered. Causes the machine to stop inmediately + static void endstop_triggered(const AxisEnum axis); + + // Triggered position of an axis in mm (not core-savvy) + static float triggered_position_mm(const AxisEnum axis); + + // Block until all buffered steps are executed / cleaned + static void synchronize(); + + // Wait for moves to finish and disable all steppers + static void finish_and_disable(); + + // Periodic tick to handle cleaning timeouts + // Called from the Temperature ISR at ~1kHz + static void tick() { + if (cleaning_buffer_counter) { + --cleaning_buffer_counter; + #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) + if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); + #endif + } + } + /** * Does the buffer have any blocks queued? */ FORCE_INLINE static bool has_blocks_queued() { return (block_buffer_head != block_buffer_tail); } - // - // Block until all buffered steps are executed - // - static void synchronize(); - - /** - * "Discard" the block and "release" the memory. - * Called when the current block is no longer needed. - */ - FORCE_INLINE static void discard_current_block() { - if (has_blocks_queued()) - block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1); - } - - /** - * "Discard" the next block if it's continued. - * Called after an interrupted move to throw away the rest of the move. - */ - FORCE_INLINE static bool discard_continued_block() { - const bool discard = has_blocks_queued() && TEST(block_buffer[block_buffer_tail].flag, BLOCK_BIT_CONTINUED); - if (discard) discard_current_block(); - return discard; - } - /** * The current block. NULL if the buffer is empty. * This also marks the block as busy. * WARNING: Called from Stepper ISR context! */ static block_t* get_current_block() { - if (has_blocks_queued()) { + + // Get the number of moves in the planner queue so far + uint8_t nr_moves = movesplanned(); + + // If there are any moves queued ... + if (nr_moves) { + + // If there is still delay of delivery of blocks running, decrement it + if (delay_before_delivering) { + --delay_before_delivering; + // If the number of movements queued is less than 3, and there is still time + // to wait, do not deliver anything + if (nr_moves < 3 && delay_before_delivering) return NULL; + delay_before_delivering = 0; + } + + // If we are here, there is no excuse to deliver the block block_t * const block = &block_buffer[block_buffer_tail]; - // If the block has no trapezoid calculated, it's unsafe to execute. - if (movesplanned() > 1) { - const block_t * const next = &block_buffer[next_block_index(block_buffer_tail)]; - if (TEST(block->flag, BLOCK_BIT_RECALCULATE) || TEST(next->flag, BLOCK_BIT_RECALCULATE)) - return NULL; - } - else if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) - return NULL; + // No trapezoid calculated? Don't execute yet. + if (TEST(block->flag, BLOCK_BIT_RECALCULATE)) return NULL; #if ENABLED(ULTRA_LCD) block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it. #endif + + // Mark the block as busy, so the planner does not attempt to replan it SBI(block->flag, BLOCK_BIT_BUSY); return block; } - else { - #if ENABLED(ULTRA_LCD) - clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero. - #endif - return NULL; + + // The queue became empty + #if ENABLED(ULTRA_LCD) + clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero. + #endif + + return NULL; + } + + /** + * "Discard" the block and "release" the memory. + * Called when the current block is no longer needed. + * NB: There MUST be a current block to call this function!! + */ + FORCE_INLINE static void discard_current_block() { + if (has_blocks_queued()) { // Discard non-empty buffer. + uint8_t block_index = next_block_index( block_buffer_tail ); + + // Push block_buffer_planned pointer, if encountered. + if (!has_blocks_queued()) block_buffer_planned = block_index; + + block_buffer_tail = block_index; } } #if ENABLED(ULTRA_LCD) static uint16_t block_buffer_runtime() { - CRITICAL_SECTION_START - millis_t bbru = block_buffer_runtime_us; - CRITICAL_SECTION_END + #ifdef __AVR__ + // Protect the access to the variable. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + #endif + + millis_t bbru = block_buffer_runtime_us; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + #endif + // To translate µs to ms a division by 1000 would be required. // We introduce 2.4% error here by dividing by 1024. // Doesn't matter because block_buffer_runtime_us is already too small an estimation. @@ -634,9 +719,19 @@ class Planner { } static void clear_block_buffer_runtime() { - CRITICAL_SECTION_START - block_buffer_runtime_us = 0; - CRITICAL_SECTION_END + #ifdef __AVR__ + // Protect the access to the variable. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + #endif + + block_buffer_runtime_us = 0; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + #endif } #endif @@ -653,8 +748,8 @@ class Planner { /** * Get the index of the next / previous block in the ring buffer */ - static constexpr int8_t next_block_index(const int8_t block_index) { return BLOCK_MOD(block_index + 1); } - static constexpr int8_t prev_block_index(const int8_t block_index) { return BLOCK_MOD(block_index - 1); } + static constexpr uint8_t next_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index + 1); } + static constexpr uint8_t prev_block_index(const uint8_t block_index) { return BLOCK_MOD(block_index - 1); } /** * Calculate the distance (not time) it takes to accelerate @@ -679,12 +774,12 @@ class Planner { } /** - * Calculate the maximum allowable speed at this point, in order - * to reach 'target_velocity' using 'acceleration' within a given + * Calculate the maximum allowable speed squared at this point, in order + * to reach 'target_velocity_sqr' using 'acceleration' within a given * 'distance'. */ - static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) { - return SQRT(sq(target_velocity) - 2 * accel * distance); + static float max_allowable_speed_sqr(const float &accel, const float &target_velocity_sqr, const float &distance) { + return target_velocity_sqr - 2 * accel * distance; } #if ENABLED(BEZIER_JERK_CONTROL) @@ -699,7 +794,7 @@ class Planner { static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor); static void reverse_pass_kernel(block_t* const current, const block_t * const next); - static void forward_pass_kernel(const block_t * const previous, block_t* const current); + static void forward_pass_kernel(const block_t * const previous, block_t* const current, uint8_t block_index); static void reverse_pass(); static void forward_pass(); diff --git a/Marlin/src/module/planner_bezier.cpp b/Marlin/src/module/planner_bezier.cpp index bbd1e82625..caf2528895 100644 --- a/Marlin/src/module/planner_bezier.cpp +++ b/Marlin/src/module/planner_bezier.cpp @@ -194,9 +194,11 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS] #if HAS_UBL_AND_CURVES float pos[XYZ] = { bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS] }; planner.apply_leveling(pos); - planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], bez_target[E_AXIS], fr_mm_s, active_extruder); + if (!planner.buffer_segment(pos[X_AXIS], pos[Y_AXIS], pos[Z_AXIS], bez_target[E_AXIS], fr_mm_s, active_extruder)) + break; #else - planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder); + if (!planner.buffer_line_kinematic(bez_target, fr_mm_s, extruder)) + break; #endif } } diff --git a/Marlin/src/module/stepper.cpp b/Marlin/src/module/stepper.cpp index baa50c2992..23a4acd3d4 100644 --- a/Marlin/src/module/stepper.cpp +++ b/Marlin/src/module/stepper.cpp @@ -86,10 +86,6 @@ Stepper stepper; // Singleton block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced -#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - bool Stepper::abort_on_endstop_hit = false; -#endif - #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) bool Stepper::performing_homing = false; #endif @@ -100,8 +96,10 @@ block_t* Stepper::current_block = NULL; // A pointer to the block currently bei // private: -uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output -int16_t Stepper::cleaning_buffer_counter = 0; +uint8_t Stepper::last_direction_bits = 0, // The next stepping-bits to be output + Stepper::last_movement_extruder = 0xFF; // Last movement extruder, as computed when the last movement was fetched from planner +bool Stepper::abort_current_block, // Signals to the stepper that current block should be aborted + Stepper::last_movement_non_null[NUM_AXIS]; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner #if ENABLED(X_DUAL_ENDSTOPS) bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false; @@ -118,7 +116,7 @@ int32_t Stepper::counter_X = 0, Stepper::counter_Z = 0, Stepper::counter_E = 0; -volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block +uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block #if ENABLED(BEZIER_JERK_CONTROL) int32_t __attribute__((used)) Stepper::bezier_A __asm__("bezier_A"); // A coefficient in Bézier speed curve with alias for assembler @@ -132,15 +130,16 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even bool Stepper::bezier_2nd_half; // =false If Bézier curve has been initialized or not #endif +uint32_t Stepper::nextMainISR = 0; +bool Stepper::all_steps_done = false; + #if ENABLED(LIN_ADVANCE) uint32_t Stepper::LA_decelerate_after; - constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX; - - hal_timer_t Stepper::nextMainISR = 0, - Stepper::nextAdvanceISR = ADV_NEVER, - Stepper::eISR_Rate = ADV_NEVER; + constexpr uint32_t ADV_NEVER = 0xFFFFFFFF; + uint32_t Stepper::nextAdvanceISR = ADV_NEVER, + Stepper::eISR_Rate = ADV_NEVER; uint16_t Stepper::current_adv_steps = 0, Stepper::final_adv_steps, Stepper::max_adv_steps; @@ -157,7 +156,7 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even #endif // LIN_ADVANCE -int32_t Stepper::acceleration_time, Stepper::deceleration_time; +uint32_t Stepper::acceleration_time, Stepper::deceleration_time; volatile int32_t Stepper::count_position[NUM_AXIS] = { 0 }; volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; @@ -166,11 +165,11 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; int32_t Stepper::counter_m[MIXING_STEPPERS]; #endif +uint32_t Stepper::ticks_nominal; uint8_t Stepper::step_loops, Stepper::step_loops_nominal; -hal_timer_t Stepper::OCR1A_nominal; #if DISABLED(BEZIER_JERK_CONTROL) - hal_timer_t Stepper::acc_step_rate; // needed for deceleration start point + uint32_t Stepper::acc_step_rate; // needed for deceleration start point #endif volatile int32_t Stepper::endstops_trigsteps[XYZ]; @@ -185,12 +184,12 @@ volatile int32_t Stepper::endstops_trigsteps[XYZ]; #define DUAL_ENDSTOP_APPLY_STEP(A,V) \ if (performing_homing) { \ if (A##_HOME_DIR < 0) { \ - if (!(TEST(endstops.old_endstop_bits, A##_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \ - if (!(TEST(endstops.old_endstop_bits, A##2_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \ + if (!(TEST(endstops.current_endstop_bits, A##_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.current_endstop_bits, A##2_MIN) && count_direction[_AXIS(A)] < 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \ } \ else { \ - if (!(TEST(endstops.old_endstop_bits, A##_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \ - if (!(TEST(endstops.old_endstop_bits, A##2_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \ + if (!(TEST(endstops.current_endstop_bits, A##_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##_MOTOR) A##_STEP_WRITE(V); \ + if (!(TEST(endstops.current_endstop_bits, A##2_MAX) && count_direction[_AXIS(A)] > 0) && !LOCKED_##A##2_MOTOR) A##2_STEP_WRITE(V); \ } \ } \ else { \ @@ -319,10 +318,6 @@ void Stepper::set_directions() { #endif // !LIN_ADVANCE } -#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - extern volatile uint8_t e_hit; -#endif - #if ENABLED(BEZIER_JERK_CONTROL) /** * We are using a quintic (fifth-degree) Bézier polynomial for the velocity curve. @@ -379,7 +374,7 @@ void Stepper::set_directions() { * * Floating point arithmetic execution time cost is prohibitive, so we will transform the math to * use fixed point values to be able to evaluate it in realtime. Assuming a maximum of 250000 steps - * per second (driver pulses should at least be 2uS hi/2uS lo), and allocating 2 bits to avoid + * per second (driver pulses should at least be 2µS hi/2µS lo), and allocating 2 bits to avoid * overflows on the evaluation of the Bézier curve, means we can use * * t: unsigned Q0.32 (0 <= t < 1) |range 0 to 0xFFFFFFFF unsigned @@ -1149,11 +1144,27 @@ void Stepper::set_directions() { HAL_STEP_TIMER_ISR { HAL_timer_isr_prologue(STEP_TIMER_NUM); - #if ENABLED(LIN_ADVANCE) - Stepper::advance_isr_scheduler(); - #else - Stepper::isr(); - #endif + // Program timer compare for the maximum period, so it does NOT + // flag an interrupt while this ISR is running - So changes from small + // periods to big periods are respected and the timer does not reset to 0 + HAL_timer_set_compare(STEP_TIMER_NUM, HAL_TIMER_TYPE_MAX); + + // Call the ISR scheduler + hal_timer_t ticks = Stepper::isr_scheduler(); + + // Now 'ticks' contains the period to the next Stepper ISR. + // Potential problem: Since the timer continues to run, the requested + // compare value may already have passed. + // + // Assuming at least 6µs between calls to this ISR... + // On AVR the ISR epilogue is estimated at 40 instructions - close to 2.5µS. + // On ARM the ISR epilogue is estimated at 10 instructions - close to 200nS. + // In either case leave at least 4µS for other tasks to execute. + const hal_timer_t minticks = HAL_timer_get_count(STEP_TIMER_NUM) + hal_timer_t((HAL_TICKS_PER_US) * 4); // ISR never takes more than 1ms, so this shouldn't cause trouble + NOLESS(ticks, MAX(minticks, hal_timer_t((STEP_TIMER_MIN_INTERVAL) * (HAL_TICKS_PER_US)))); + + // Set the next ISR to fire at the proper time + HAL_timer_set_compare(STEP_TIMER_NUM, ticks); HAL_timer_isr_epilogue(STEP_TIMER_NUM); } @@ -1164,168 +1175,73 @@ HAL_STEP_TIMER_ISR { #define STEP_MULTIPLY(A,B) MultiU24X32toH16(A, B) #endif -void Stepper::isr() { +hal_timer_t Stepper::isr_scheduler() { + uint32_t interval; - #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // Check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch - #define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms + // Run main stepping pulse phase ISR if we have to + if (!nextMainISR) Stepper::stepper_pulse_phase_isr(); - hal_timer_t ocr_val; - static uint32_t step_remaining = 0; // SPLIT function always runs. This allows 16 bit timers to be - // used to generate the stepper ISR. - #define SPLIT(L) do { \ - if (L > ENDSTOP_NOMINAL_OCR_VAL) { \ - const uint32_t remainder = (uint32_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \ - ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \ - step_remaining = (uint32_t)L - ocr_val; \ - } \ - else \ - ocr_val = L;\ - }while(0) - - // Time remaining before the next step? - if (step_remaining) { - - // Make sure endstops are updated - if (ENDSTOPS_ENABLED) endstops.update(); - - // Next ISR either for endstops or stepping - ocr_val = step_remaining <= ENDSTOP_NOMINAL_OCR_VAL ? step_remaining : ENDSTOP_NOMINAL_OCR_VAL; - step_remaining -= ocr_val; - _NEXT_ISR(ocr_val); - - #if DISABLED(LIN_ADVANCE) - HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US); - #endif - - return; - } - - // - // When cleaning, discard the current block and run fast - // - if (cleaning_buffer_counter) { - if (cleaning_buffer_counter < 0) { // Count up for endstop hit - if (current_block) planner.discard_current_block(); // Discard the active block that led to the trigger - if (!planner.discard_continued_block()) // Discard next CONTINUED block - cleaning_buffer_counter = 0; // Keep discarding until non-CONTINUED - } - else { - planner.discard_current_block(); - --cleaning_buffer_counter; // Count down for abort print - #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) - if (!cleaning_buffer_counter) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); - #endif - } - current_block = NULL; // Prep to get a new block after cleaning - _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz - return; - } - - // If there is no current block, attempt to pop one from the buffer - if (!current_block) { - - // Anything in the buffer? - if ((current_block = planner.get_current_block())) { - - // Sync block? Sync the stepper counts and return - while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) { - _set_position( - current_block->steps[A_AXIS], current_block->steps[B_AXIS], - current_block->steps[C_AXIS], current_block->steps[E_AXIS] - ); - planner.discard_current_block(); - if (!(current_block = planner.get_current_block())) return; - } - - // Initialize the trapezoid generator from the current block. - static int8_t last_extruder = -1; - - #if ENABLED(LIN_ADVANCE) - #if E_STEPPERS > 1 - if (current_block->active_extruder != last_extruder) { - current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone. - LA_active_extruder = current_block->active_extruder; - } - #endif - - if ((use_advance_lead = current_block->use_advance_lead)) { - LA_decelerate_after = current_block->decelerate_after; - final_adv_steps = current_block->final_adv_steps; - max_adv_steps = current_block->max_adv_steps; - } - #endif - - if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_extruder) { - last_direction_bits = current_block->direction_bits; - last_extruder = current_block->active_extruder; - set_directions(); - } - - // No acceleration / deceleration time elapsed so far - acceleration_time = deceleration_time = 0; - - // No step events completed so far - step_events_completed = 0; - - // step_rate to timer interval - OCR1A_nominal = calc_timer_interval(current_block->nominal_rate); - - // make a note of the number of step loops required at nominal speed - step_loops_nominal = step_loops; - - #if DISABLED(BEZIER_JERK_CONTROL) - // Set as deceleration point the initial rate of the block - acc_step_rate = current_block->initial_rate; - #endif - - #if ENABLED(BEZIER_JERK_CONTROL) - // Initialize the Bézier speed curve - _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse); - - // We have not started the 2nd half of the trapezoid - bezier_2nd_half = false; - #endif - - // Initialize Bresenham counters to 1/2 the ceiling - counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1); - #if ENABLED(MIXING_EXTRUDER) - MIXING_STEPPERS_LOOP(i) - counter_m[i] = -(current_block->mix_event_count[i] >> 1); - #endif - - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins. - // No 'change' can be detected. - #endif - - #if ENABLED(Z_LATE_ENABLE) - // If delayed Z enable, postpone move for 1mS - if (current_block->steps[Z_AXIS] > 0) { - enable_Z(); - _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz - return; - } - #endif - } - else { - // If no more queued moves, postpone next check for 1mS - _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz - return; - } - } - - // Update endstops state, if enabled - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - if (e_hit && ENDSTOPS_ENABLED) { - endstops.update(); - e_hit--; - } - #else - if (ENDSTOPS_ENABLED) endstops.update(); + #if ENABLED(LIN_ADVANCE) + // Run linear advance stepper ISR if we have to + if (!nextAdvanceISR) nextAdvanceISR = Stepper::advance_isr(); #endif + // ^== Time critical. NOTHING besides pulse generation should be above here!!! + + // Run main stepping block processing ISR if we have to + if (!nextMainISR) nextMainISR = Stepper::stepper_block_phase_isr(); + + #if ENABLED(LIN_ADVANCE) + // Select the closest interval in time + interval = (nextAdvanceISR <= nextMainISR) + ? nextAdvanceISR + : nextMainISR; + + #else // !ENABLED(LIN_ADVANCE) + + // The interval is just the remaining time to the stepper ISR + interval = nextMainISR; + #endif + + // Limit the value to the maximum possible value of the timer + if (interval > HAL_TIMER_TYPE_MAX) + interval = HAL_TIMER_TYPE_MAX; + + // Compute the time remaining for the main isr + nextMainISR -= interval; + + #if ENABLED(LIN_ADVANCE) + // Compute the time remaining for the advance isr + if (nextAdvanceISR != ADV_NEVER) + nextAdvanceISR -= interval; + #endif + + return (hal_timer_t)interval; +} + +// This part of the ISR should ONLY create the pulses for the steppers +// -- Nothing more, nothing less -- We want to avoid jitter from where +// the pulses should be generated (when the interrupt triggers) to the +// time pulses are actually created. So, PLEASE DO NOT PLACE ANY CODE +// above this line that can conditionally change that time (we are trying +// to keep the delay between the interrupt triggering and pulse generation +// as constant as possible!!!! +void Stepper::stepper_pulse_phase_isr() { + + // If we must abort the current block, do so! + if (abort_current_block) { + abort_current_block = false; + if (current_block) { + current_block = NULL; + planner.discard_current_block(); + } + } + + // If there is no current block, do nothing + if (!current_block) return; + // Take multiple steps per interrupt (For high speed moves) - bool all_steps_done = false; + all_steps_done = false; for (uint8_t i = step_loops; i--;) { #define _COUNTER(AXIS) counter_## AXIS @@ -1520,116 +1436,213 @@ void Stepper::isr() { #endif } // steps_loop +} - // Calculate new timer value - if (step_events_completed <= (uint32_t)current_block->accelerate_until) { +// This is the last half of the stepper interrupt: This one processes and +// properly schedules blocks from the planner. This is executed after creating +// the step pulses, so it is not time critical, as pulses are already done. - #if ENABLED(BEZIER_JERK_CONTROL) - // Get the next speed to use (Jerk limited!) - hal_timer_t acc_step_rate = - acceleration_time < current_block->acceleration_time - ? _eval_bezier_curve(acceleration_time) - : current_block->cruise_rate; - #else - acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate; - NOMORE(acc_step_rate, current_block->nominal_rate); - #endif +uint32_t Stepper::stepper_block_phase_isr() { - // step_rate to timer interval - const hal_timer_t interval = calc_timer_interval(acc_step_rate); + // If no queued movements, just wait 1ms for the next move + uint32_t interval = (HAL_STEPPER_TIMER_RATE / 1000); - SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL - _NEXT_ISR(ocr_val); + // If there is a current block + if (current_block) { - acceleration_time += interval; + // Calculate new timer value + if (step_events_completed <= current_block->accelerate_until) { - #if ENABLED(LIN_ADVANCE) - if (current_block->use_advance_lead) { - if (step_events_completed == step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { - nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached - eISR_Rate = current_block->advance_speed; + #if ENABLED(BEZIER_JERK_CONTROL) + // Get the next speed to use (Jerk limited!) + uint32_t acc_step_rate = + acceleration_time < current_block->acceleration_time + ? _eval_bezier_curve(acceleration_time) + : current_block->cruise_rate; + #else + acc_step_rate = STEP_MULTIPLY(acceleration_time, current_block->acceleration_rate) + current_block->initial_rate; + NOMORE(acc_step_rate, current_block->nominal_rate); + #endif + + // step_rate to timer interval + interval = calc_timer_interval(acc_step_rate); + acceleration_time += interval; + + #if ENABLED(LIN_ADVANCE) + if (current_block->use_advance_lead) { + if (step_events_completed == step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { + nextAdvanceISR = 0; // Wake up eISR on first acceleration loop and fire ISR if final adv_rate is reached + eISR_Rate = current_block->advance_speed; + } } - } - else { - eISR_Rate = ADV_NEVER; - if (e_steps) nextAdvanceISR = 0; - } - #endif // LIN_ADVANCE + else { + eISR_Rate = ADV_NEVER; + if (e_steps) nextAdvanceISR = 0; + } + #endif // LIN_ADVANCE + } + else if (step_events_completed > current_block->decelerate_after) { + uint32_t step_rate; + + #if ENABLED(BEZIER_JERK_CONTROL) + // If this is the 1st time we process the 2nd half of the trapezoid... + if (!bezier_2nd_half) { + // Initialize the Bézier speed curve + _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse); + bezier_2nd_half = true; + } + + // Calculate the next speed to use + step_rate = deceleration_time < current_block->deceleration_time + ? _eval_bezier_curve(deceleration_time) + : current_block->final_rate; + #else + + // Using the old trapezoidal control + step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate); + if (step_rate < acc_step_rate) { // Still decelerating? + step_rate = acc_step_rate - step_rate; + NOLESS(step_rate, current_block->final_rate); + } + else + step_rate = current_block->final_rate; + #endif + + // step_rate to timer interval + interval = calc_timer_interval(step_rate); + deceleration_time += interval; + + #if ENABLED(LIN_ADVANCE) + if (current_block->use_advance_lead) { + if (step_events_completed <= current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { + nextAdvanceISR = 0; // Wake up eISR on first deceleration loop + eISR_Rate = current_block->advance_speed; + } + } + else { + eISR_Rate = ADV_NEVER; + if (e_steps) nextAdvanceISR = 0; + } + #endif // LIN_ADVANCE + } + else { + + #if ENABLED(LIN_ADVANCE) + // If there are any esteps, fire the next advance_isr "now" + if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0; + #endif + + // The timer interval is just the nominal value for the nominal speed + interval = ticks_nominal; + + // Ensure this runs at the correct step rate, even if it just came off an acceleration + step_loops = step_loops_nominal; + } + + // If current block is finished, reset pointer + if (all_steps_done) { + current_block = NULL; + planner.discard_current_block(); + } } - else if (step_events_completed > (uint32_t)current_block->decelerate_after) { - hal_timer_t step_rate; - #if ENABLED(BEZIER_JERK_CONTROL) - // If this is the 1st time we process the 2nd half of the trapezoid... - if (!bezier_2nd_half) { + // If there is no current block at this point, attempt to pop one from the buffer + // and prepare its movement + if (!current_block) { + // Anything in the buffer? + if ((current_block = planner.get_current_block())) { + + // Sync block? Sync the stepper counts and return + while (TEST(current_block->flag, BLOCK_BIT_SYNC_POSITION)) { + _set_position( + current_block->position[A_AXIS], current_block->position[B_AXIS], + current_block->position[C_AXIS], current_block->position[E_AXIS] + ); + planner.discard_current_block(); + + // Try to get a new block + if (!(current_block = planner.get_current_block())) + return interval; // No more queued movements! + } + + // Compute movement direction for proper endstop handling + LOOP_NA(i) last_movement_non_null[i] = !!current_block->steps[i]; + + // Initialize the trapezoid generator from the current block. + #if ENABLED(LIN_ADVANCE) + #if E_STEPPERS > 1 + if (current_block->active_extruder != last_movement_extruder) { + current_adv_steps = 0; // If the now active extruder wasn't in use during the last move, its pressure is most likely gone. + LA_active_extruder = current_block->active_extruder; + } + #endif + + if ((use_advance_lead = current_block->use_advance_lead)) { + LA_decelerate_after = current_block->decelerate_after; + final_adv_steps = current_block->final_adv_steps; + max_adv_steps = current_block->max_adv_steps; + } + #endif + + if (current_block->direction_bits != last_direction_bits || current_block->active_extruder != last_movement_extruder) { + last_direction_bits = current_block->direction_bits; + last_movement_extruder = current_block->active_extruder; + set_directions(); + } + + // At this point, we must ensure the movement about to execute isn't + // trying to force the head against a limit switch. If using interrupt- + // driven change detection, and already against a limit then no call to + // the endstop_triggered method will be done and the movement will be + // done against the endstop. So, check the limits here: If the movement + // is against the limits, the block will be marked as to be killed, and + // on the next call to this ISR, will be discarded. + endstops.check_possible_change(); + + // No acceleration / deceleration time elapsed so far + acceleration_time = deceleration_time = 0; + + // No step events completed so far + step_events_completed = 0; + + // step_rate to timer interval for the nominal speed + ticks_nominal = calc_timer_interval(current_block->nominal_rate); + + // make a note of the number of step loops required at nominal speed + step_loops_nominal = step_loops; + + #if DISABLED(BEZIER_JERK_CONTROL) + // Set as deceleration point the initial rate of the block + acc_step_rate = current_block->initial_rate; + #endif + + #if ENABLED(BEZIER_JERK_CONTROL) // Initialize the Bézier speed curve - _calc_bezier_curve_coeffs(current_block->cruise_rate, current_block->final_rate, current_block->deceleration_time_inverse); - bezier_2nd_half = true; - } + _calc_bezier_curve_coeffs(current_block->initial_rate, current_block->cruise_rate, current_block->acceleration_time_inverse); - // Calculate the next speed to use - step_rate = deceleration_time < current_block->deceleration_time - ? _eval_bezier_curve(deceleration_time) - : current_block->final_rate; - #else + // We have not started the 2nd half of the trapezoid + bezier_2nd_half = false; + #endif - // Using the old trapezoidal control - step_rate = STEP_MULTIPLY(deceleration_time, current_block->acceleration_rate); - if (step_rate < acc_step_rate) { // Still decelerating? - step_rate = acc_step_rate - step_rate; - NOLESS(step_rate, current_block->final_rate); - } - else - step_rate = current_block->final_rate; + // Initialize Bresenham counters to 1/2 the ceiling + counter_X = counter_Y = counter_Z = counter_E = -((int32_t)(current_block->step_event_count >> 1)); + #if ENABLED(MIXING_EXTRUDER) + MIXING_STEPPERS_LOOP(i) + counter_m[i] = -(current_block->mix_event_count[i] >> 1); + #endif - #endif - - // step_rate to timer interval - const hal_timer_t interval = calc_timer_interval(step_rate); - - SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL - _NEXT_ISR(ocr_val); - - deceleration_time += interval; - - #if ENABLED(LIN_ADVANCE) - if (current_block->use_advance_lead) { - if (step_events_completed <= (uint32_t)current_block->decelerate_after + step_loops || (e_steps && eISR_Rate != current_block->advance_speed)) { - nextAdvanceISR = 0; // Wake up eISR on first deceleration loop - eISR_Rate = current_block->advance_speed; - } - } - else { - eISR_Rate = ADV_NEVER; - if (e_steps) nextAdvanceISR = 0; - } - #endif // LIN_ADVANCE - } - else { - - #if ENABLED(LIN_ADVANCE) - // If we have esteps to execute, fire the next advance_isr "now" - if (e_steps && eISR_Rate != current_block->advance_speed) nextAdvanceISR = 0; - #endif - - SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL - _NEXT_ISR(ocr_val); - - // ensure we're running at the correct step rate, even if we just came off an acceleration - step_loops = step_loops_nominal; + #if ENABLED(Z_LATE_ENABLE) + // If delayed Z enable, enable it now. This option will severely interfere with + // timing between pulses when chaining motion between blocks, and it could lead + // to lost steps in both X and Y axis, so avoid using it unless strictly necessary!! + if (current_block->steps[Z_AXIS]) enable_Z(); + #endif + } } - #if DISABLED(LIN_ADVANCE) - // Make sure stepper ISR doesn't monopolize the CPU - HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US); - #endif - - // If current block is finished, reset pointer - if (all_steps_done) { - current_block = NULL; - planner.discard_current_block(); - } + // Return the interval to wait + return interval; } #if ENABLED(LIN_ADVANCE) @@ -1638,8 +1651,8 @@ void Stepper::isr() { #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E)) // Timer interrupt for E. e_steps is set in the main routine; - - void Stepper::advance_isr() { + uint32_t Stepper::advance_isr() { + uint32_t interval; #if ENABLED(MK2_MULTIPLEXER) // For SNMM even-numbered steppers are reversed #define SET_E_STEP_DIR(INDEX) do{ if (e_steps) E0_DIR_WRITE(e_steps < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0)); }while(0) @@ -1700,21 +1713,21 @@ void Stepper::isr() { if (step_events_completed > LA_decelerate_after && current_adv_steps > final_adv_steps) { e_steps--; current_adv_steps--; - nextAdvanceISR = eISR_Rate; + interval = eISR_Rate; } else if (step_events_completed < LA_decelerate_after && current_adv_steps < max_adv_steps) { //step_events_completed <= (uint32_t)current_block->accelerate_until) { e_steps++; current_adv_steps++; - nextAdvanceISR = eISR_Rate; + interval = eISR_Rate; } else { - nextAdvanceISR = ADV_NEVER; + interval = ADV_NEVER; eISR_Rate = ADV_NEVER; } } else - nextAdvanceISR = ADV_NEVER; + interval = ADV_NEVER; switch (LA_active_extruder) { case 0: SET_E_STEP_DIR(0); break; @@ -1787,39 +1800,9 @@ void Stepper::isr() { #endif } // e_steps + + return interval; } - - void Stepper::advance_isr_scheduler() { - - // Run main stepping ISR if flagged - if (!nextMainISR) isr(); - - // Run Advance stepping ISR if flagged - if (!nextAdvanceISR) advance_isr(); - - // Is the next advance ISR scheduled before the next main ISR? - if (nextAdvanceISR <= nextMainISR) { - // Set up the next interrupt - HAL_timer_set_compare(STEP_TIMER_NUM, nextAdvanceISR); - // New interval for the next main ISR - if (nextMainISR) nextMainISR -= nextAdvanceISR; - // Will call Stepper::advance_isr on the next interrupt - nextAdvanceISR = 0; - } - else { - // The next main ISR comes first - HAL_timer_set_compare(STEP_TIMER_NUM, nextMainISR); - // New interval for the next advance ISR, if any - if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER) - nextAdvanceISR -= nextMainISR; - // Will call Stepper::isr on the next interrupt - nextMainISR = 0; - } - - // Make sure stepper ISR doesn't monopolize the CPU - HAL_timer_restrain(STEP_TIMER_NUM, STEP_TIMER_MIN_INTERVAL * HAL_TICKS_PER_US); - } - #endif // LIN_ADVANCE void Stepper::init() { @@ -1924,9 +1907,6 @@ void Stepper::init() { if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH); #endif - // Init endstops and pullups - endstops.init(); - #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW) #define _DISABLE(AXIS) disable_## AXIS() @@ -2048,31 +2028,33 @@ void Stepper::_set_position(const int32_t &a, const int32_t &b, const int32_t &c * Get a stepper's position in steps. */ int32_t Stepper::position(const AxisEnum axis) { - CRITICAL_SECTION_START; - const int32_t count_pos = count_position[axis]; - CRITICAL_SECTION_END; - return count_pos; -} - -void Stepper::finish_and_disable() { - planner.synchronize(); - disable_all_steppers(); -} - -void Stepper::quick_stop() { - DISABLE_STEPPER_DRIVER_INTERRUPT(); - kill_current_block(); - current_block = NULL; - cleaning_buffer_counter = 5000; - planner.clear_block_buffer(); - ENABLE_STEPPER_DRIVER_INTERRUPT(); - #if ENABLED(ULTRA_LCD) - planner.clear_block_buffer_runtime(); + #ifdef __AVR__ + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); #endif + + int32_t v = count_position[axis]; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + #endif + return v; } +// Signal endstops were triggered - This function can be called from +// an ISR context (Temperature, Stepper or limits ISR), so we must +// be very careful here. If the interrupt being preempted was the +// Stepper ISR (this CAN happen with the endstop limits ISR) then +// when the stepper ISR resumes, we must be very sure that the movement +// is properly cancelled void Stepper::endstop_triggered(const AxisEnum axis) { + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + #if IS_CORE endstops_trigsteps[axis] = 0.5f * ( @@ -2086,16 +2068,41 @@ void Stepper::endstop_triggered(const AxisEnum axis) { #endif // !COREXY && !COREXZ && !COREYZ - kill_current_block(); - cleaning_buffer_counter = -1; // Discard the rest of the move + // Discard the rest of the move if there is a current block + quick_stop(); + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); +} + +int32_t Stepper::triggered_position(const AxisEnum axis) { + #ifdef __AVR__ + // Protect the access to the position. Only required for AVR, as + // any 32bit CPU offers atomic access to 32bit variables + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + #endif + + const int32_t v = endstops_trigsteps[axis]; + + #ifdef __AVR__ + // Reenable Stepper ISR + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); + #endif + + return v; } void Stepper::report_positions() { - CRITICAL_SECTION_START; + + // Protect the access to the position. + const bool was_enabled = STEPPER_ISR_ENABLED(); + if (was_enabled) DISABLE_STEPPER_DRIVER_INTERRUPT(); + const int32_t xpos = count_position[X_AXIS], ypos = count_position[Y_AXIS], zpos = count_position[Z_AXIS]; - CRITICAL_SECTION_END; + + if (was_enabled) ENABLE_STEPPER_DRIVER_INTERRUPT(); #if CORE_IS_XY || CORE_IS_XZ || IS_DELTA || IS_SCARA SERIAL_PROTOCOLPGM(MSG_COUNT_A); diff --git a/Marlin/src/module/stepper.h b/Marlin/src/module/stepper.h index 6a03ed3948..bda1bd5b07 100644 --- a/Marlin/src/module/stepper.h +++ b/Marlin/src/module/stepper.h @@ -62,10 +62,6 @@ class Stepper { static block_t* current_block; // A pointer to the block currently being traced - #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) - static bool abort_on_endstop_hit; - #endif - #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) static bool performing_homing; #endif @@ -77,11 +73,12 @@ class Stepper { static uint32_t motor_current_setting[3]; #endif - static int16_t cleaning_buffer_counter; - private: - static uint8_t last_direction_bits; // The next stepping-bits to be output + static uint8_t last_direction_bits, // The next stepping-bits to be output + last_movement_extruder; // Last movement extruder, as computed when the last movement was fetched from planner + static bool abort_current_block, // Signals to the stepper that current block should be aborted + last_movement_non_null[NUM_AXIS]; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner #if ENABLED(X_DUAL_ENDSTOPS) static bool locked_x_motor, locked_x2_motor; @@ -95,7 +92,7 @@ class Stepper { // Counter variables for the Bresenham line tracer static int32_t counter_X, counter_Y, counter_Z, counter_E; - static volatile uint32_t step_events_completed; // The number of step events executed in the current block + static uint32_t step_events_completed; // The number of step events executed in the current block #if ENABLED(BEZIER_JERK_CONTROL) static int32_t bezier_A, // A coefficient in Bézier speed curve @@ -109,12 +106,14 @@ class Stepper { static bool bezier_2nd_half; // If Bézier curve has been initialized or not #endif + static uint32_t nextMainISR; // time remaining for the next Step ISR + static bool all_steps_done; // all steps done + #if ENABLED(LIN_ADVANCE) static uint32_t LA_decelerate_after; // Copy from current executed block. Needed because current_block is set to NULL "too early". - static hal_timer_t nextMainISR, nextAdvanceISR, eISR_Rate; + static uint32_t nextAdvanceISR, eISR_Rate; static uint16_t current_adv_steps, final_adv_steps, max_adv_steps; // Copy from current executed block. Needed because current_block is set to NULL "too early". - #define _NEXT_ISR(T) nextMainISR = T static int8_t e_steps; static bool use_advance_lead; #if E_STEPPERS > 1 @@ -123,18 +122,14 @@ class Stepper { static constexpr int8_t LA_active_extruder = 0; #endif - #else // !LIN_ADVANCE + #endif // LIN_ADVANCE - #define _NEXT_ISR(T) HAL_timer_set_compare(STEP_TIMER_NUM, T); - - #endif // !LIN_ADVANCE - - static int32_t acceleration_time, deceleration_time; + static uint32_t acceleration_time, deceleration_time; static uint8_t step_loops, step_loops_nominal; - static hal_timer_t OCR1A_nominal; + static uint32_t ticks_nominal; #if DISABLED(BEZIER_JERK_CONTROL) - static hal_timer_t acc_step_rate; // needed for deceleration start point + static uint32_t acc_step_rate; // needed for deceleration start point #endif static volatile int32_t endstops_trigsteps[XYZ]; @@ -167,88 +162,53 @@ class Stepper { // Stepper() { }; - // // Initialize stepper hardware - // static void init(); - // // Interrupt Service Routines - // - static void isr(); + // The ISR scheduler + static hal_timer_t isr_scheduler(); + + // The stepper pulse phase ISR + static void stepper_pulse_phase_isr(); + + // The stepper block processing phase ISR + static uint32_t stepper_block_phase_isr(); #if ENABLED(LIN_ADVANCE) - static void advance_isr(); - static void advance_isr_scheduler(); + // The Linear advance stepper ISR + static uint32_t advance_isr(); #endif - // - // Set the current position in steps - // - static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); - - FORCE_INLINE static void _set_position(const AxisEnum a, const int32_t &v) { count_position[a] = v; } - - FORCE_INLINE static void set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e) { - planner.synchronize(); - CRITICAL_SECTION_START; - _set_position(a, b, c, e); - CRITICAL_SECTION_END; - } - - static void set_position(const AxisEnum a, const int32_t &v) { - planner.synchronize(); - CRITICAL_SECTION_START; - count_position[a] = v; - CRITICAL_SECTION_END; - } - - FORCE_INLINE static void _set_e_position(const int32_t &e) { count_position[E_AXIS] = e; } - - static void set_e_position(const int32_t &e) { - planner.synchronize(); - CRITICAL_SECTION_START; - count_position[E_AXIS] = e; - CRITICAL_SECTION_END; - } - - // - // Set direction bits for all steppers - // - static void set_directions(); - - // // Get the position of a stepper, in steps - // static int32_t position(const AxisEnum axis); - // // Report the positions of the steppers, in steps - // static void report_positions(); - // // The stepper subsystem goes to sleep when it runs out of things to execute. Call this // to notify the subsystem that it is time to go to work. - // static void wake_up(); - // - // Wait for moves to finish and disable all steppers - // - static void finish_and_disable(); + // Quickly stop all steppers + FORCE_INLINE static void quick_stop() { abort_current_block = true; } - // - // Quickly stop all steppers and clear the blocks queue - // - static void quick_stop(); - - // // The direction of a single motor - // FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); } + // The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same. + FORCE_INLINE static bool movement_non_null(const AxisEnum axis) { return last_movement_non_null[axis]; } + + // The extruder associated to the last movement + FORCE_INLINE static uint8_t movement_extruder() { return last_movement_extruder; } + + // Handle a triggered endstop + static void endstop_triggered(const AxisEnum axis); + + // Triggered position of an axis in steps + static int32_t triggered_position(const AxisEnum axis); + #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM static void digitalPotWrite(const int16_t address, const int16_t value); static void digipot_current(const uint8_t driver, const int16_t current); @@ -280,34 +240,24 @@ class Stepper { static void babystep(const AxisEnum axis, const bool direction); // perform a short step with a single stepper motor, outside of any convention #endif - static inline void kill_current_block() { - step_events_completed = current_block->step_event_count; - } - - // - // Handle a triggered endstop - // - static void endstop_triggered(const AxisEnum axis); - - // - // Triggered position of an axis in mm (not core-savvy) - // - FORCE_INLINE static float triggered_position_mm(const AxisEnum axis) { - return endstops_trigsteps[axis] * planner.steps_to_mm[axis]; - } - #if HAS_MOTOR_CURRENT_PWM static void refresh_motor_power(); #endif private: - FORCE_INLINE static hal_timer_t calc_timer_interval(hal_timer_t step_rate) { - hal_timer_t timer; + // Set the current position in steps + static void _set_position(const int32_t &a, const int32_t &b, const int32_t &c, const int32_t &e); - NOMORE(step_rate, MAX_STEP_FREQUENCY); + // Set direction bits for all steppers + static void set_directions(); - // TODO: HAL: tidy this up, use condtionals_post.h + FORCE_INLINE static uint32_t calc_timer_interval(uint32_t step_rate) { + uint32_t timer; + + NOMORE(step_rate, uint32_t(MAX_STEP_FREQUENCY)); + + // TODO: HAL: tidy this up, use Conditionals_post.h #ifdef CPU_32_BIT #if ENABLED(DISABLE_MULTI_STEPPING) step_loops = 1; @@ -344,20 +294,20 @@ class Stepper { timer = uint32_t(HAL_STEPPER_TIMER_RATE) / step_rate; NOLESS(timer, min_time_per_step); // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen) #else - NOLESS(step_rate, F_CPU / 500000); + NOLESS(step_rate, uint32_t(F_CPU / 500000U)); step_rate -= F_CPU / 500000; // Correct for minimal speed if (step_rate >= (8 * 256)) { // higher step rate uint8_t tmp_step_rate = (step_rate & 0x00FF); - uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0]; - uint16_t gain = (uint16_t)pgm_read_word_near(table_address + 2); + uint16_t table_address = (uint16_t)&speed_lookuptable_fast[(uint8_t)(step_rate >> 8)][0], + gain = (uint16_t)pgm_read_word_near(table_address + 2); timer = MultiU16X8toH16(tmp_step_rate, gain); timer = (uint16_t)pgm_read_word_near(table_address) - timer; } else { // lower step rates uint16_t table_address = (uint16_t)&speed_lookuptable_slow[0][0]; table_address += ((step_rate) >> 1) & 0xFFFC; - timer = (uint16_t)pgm_read_word_near(table_address); - timer -= (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3); + timer = (uint16_t)pgm_read_word_near(table_address) + - (((uint16_t)pgm_read_word_near(table_address + 2) * (uint8_t)(step_rate & 0x0007)) >> 3); } if (timer < 100) { // (20kHz - this should never happen) timer = 100; diff --git a/Marlin/src/module/temperature.cpp b/Marlin/src/module/temperature.cpp index ad944476e3..a32ed91293 100644 --- a/Marlin/src/module/temperature.cpp +++ b/Marlin/src/module/temperature.cpp @@ -25,6 +25,7 @@ */ #include "temperature.h" +#include "endstops.h" #include "../Marlin.h" #include "../lcd/ultralcd.h" @@ -40,10 +41,6 @@ #include "stepper.h" #endif -#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) || ENABLED(PINS_DEBUGGING) - #include "endstops.h" -#endif - #include "printcounter.h" #if ENABLED(FILAMENT_WIDTH_SENSOR) @@ -1085,9 +1082,7 @@ void Temperature::updateTemperaturesFromRawValues() { watchdog_reset(); #endif - CRITICAL_SECTION_START; temp_meas_ready = false; - CRITICAL_SECTION_END; } @@ -1727,6 +1722,7 @@ void Temperature::set_current_temp_raw() { * - Step the babysteps value for each axis towards 0 * - For PINS_DEBUGGING, monitor and report endstop pins * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged + * - Call planner.tick to count down its "ignore" time */ HAL_TEMP_TIMER_ISR { HAL_timer_isr_prologue(TEMP_TIMER_NUM); @@ -2247,19 +2243,11 @@ void Temperature::isr() { } #endif // BABYSTEPPING - #if ENABLED(PINS_DEBUGGING) - endstops.run_monitor(); // report changes in endstop status - #endif + // Poll endstops state, if required + endstops.poll(); - #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) - - extern volatile uint8_t e_hit; - - if (e_hit && ENDSTOPS_ENABLED) { - endstops.update(); // call endstop update routine - e_hit--; - } - #endif + // Periodically call the planner timer + planner.tick(); } #if HAS_TEMP_SENSOR diff --git a/Marlin/src/sd/cardreader.cpp b/Marlin/src/sd/cardreader.cpp index 11e2e8561c..c0aa3c3caf 100644 --- a/Marlin/src/sd/cardreader.cpp +++ b/Marlin/src/sd/cardreader.cpp @@ -29,7 +29,6 @@ #include "../Marlin.h" #include "../lcd/ultralcd.h" #include "../module/planner.h" -#include "../module/stepper.h" #include "../module/printcounter.h" #include "../core/language.h" #include "../gcode/queue.h" @@ -983,7 +982,7 @@ void CardReader::printingHasFinished() { #endif #if ENABLED(SD_FINISHED_STEPPERRELEASE) && defined(SD_FINISHED_RELEASECOMMAND) - stepper.cleaning_buffer_counter = 1; // The command will fire from the Stepper ISR + planner.finish_and_disable(); #endif print_job_timer.stop(); if (print_job_timer.duration() > 60)