1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-27 22:08:02 +00:00

Calculate dm and e-steps earlier in planner

This commit is contained in:
Scott Lahteine 2016-10-30 16:07:23 -05:00
parent 75dbb71dd7
commit 1cf878fdb1

View File

@ -656,64 +656,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
}
#endif
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Clear all flags, including the "busy" bit
block->flag = 0;
// Number of steps for each axis
#if ENABLED(COREXY)
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps[A_AXIS] = labs(da + db);
block->steps[B_AXIS] = labs(da - db);
block->steps[Z_AXIS] = labs(dc);
#elif ENABLED(COREXZ)
// corexz planning
block->steps[A_AXIS] = labs(da + dc);
block->steps[Y_AXIS] = labs(db);
block->steps[C_AXIS] = labs(da - dc);
#elif ENABLED(COREYZ)
// coreyz planning
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(da);
block->steps[Y_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], block->steps[E_AXIS]);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i];
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
// Compute direction bit-mask for this block
uint8_t dm = 0;
#if ENABLED(COREXY)
@ -740,8 +682,70 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (dc < 0) SBI(dm, Z_AXIS);
#endif
if (de < 0) SBI(dm, E_AXIS);
int32_t esteps = labs(de) * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01 + 0.5;
// Calculate the buffer head after we push this byte
int next_buffer_head = next_block_index(block_buffer_head);
// If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer.
while (block_buffer_tail == next_buffer_head) idle();
// Prepare to set up new block
block_t* block = &block_buffer[block_buffer_head];
// Clear all flags, including the "busy" bit
block->flag = 0;
// Set direction bits
block->direction_bits = dm;
// Number of steps for each axis
#if ENABLED(COREXY)
// corexy planning
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps[A_AXIS] = labs(da + db);
block->steps[B_AXIS] = labs(da - db);
block->steps[Z_AXIS] = labs(dc);
#elif ENABLED(COREXZ)
// corexz planning
block->steps[A_AXIS] = labs(da + dc);
block->steps[Y_AXIS] = labs(db);
block->steps[C_AXIS] = labs(da - dc);
#elif ENABLED(COREYZ)
// coreyz planning
block->steps[X_AXIS] = labs(da);
block->steps[B_AXIS] = labs(db + dc);
block->steps[C_AXIS] = labs(db - dc);
#else
// default non-h-bot planning
block->steps[X_AXIS] = labs(da);
block->steps[Y_AXIS] = labs(db);
block->steps[Z_AXIS] = labs(dc);
#endif
block->steps[E_AXIS] = esteps;
block->step_event_count = MAX4(block->steps[X_AXIS], block->steps[Y_AXIS], block->steps[Z_AXIS], esteps);
// Bail if this is a zero-length block
if (block->step_event_count < MIN_STEPS_PER_SEGMENT) return;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = UNEAR_ZERO(mixing_factor[i]) ? 0 : block->step_event_count / mixing_factor[i];
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif
#if ENABLED(BARICUDA)
block->valve_pressure = baricuda_valve_pressure;
block->e_to_p_pressure = baricuda_e_to_p_pressure;
#endif
block->active_extruder = extruder;
//enable active axes
@ -768,7 +772,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif
// Enable extruder(s)
if (block->steps[E_AXIS]) {
if (esteps) {
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) // Enable only the selected extruder
@ -837,7 +841,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif
}
if (block->steps[E_AXIS])
if (esteps)
NOLESS(fr_mm_s, min_feedrate_mm_s);
else
NOLESS(fr_mm_s, min_travel_feedrate_mm_s);
@ -1035,7 +1039,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
}while(0)
// Start with print or travel acceleration
accel = ceil((block->steps[E_AXIS] ? acceleration : travel_acceleration) * steps_per_mm);
accel = ceil((esteps ? acceleration : travel_acceleration) * steps_per_mm);
// Limit acceleration per axis
if (block->step_event_count <= cutoff_long){
@ -1222,18 +1226,18 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// This leads to an enormous number of advance steps due to a huge e_acceleration.
// The math is correct, but you don't want a retract move done with advance!
// So this situation is filtered out here.
if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t) block->steps[E_AXIS] == block->step_event_count) {
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS]) || stepper.get_advance_k() == 0 || (uint32_t)esteps == block->step_event_count) {
block->use_advance_lead = false;
}
else {
block->use_advance_lead = true;
block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
block->e_speed_multiplier8 = (esteps << 8) / block->step_event_count;
}
#elif ENABLED(ADVANCE)
// Calculate advance rate
if (!block->steps[E_AXIS] || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
if (!esteps || (!block->steps[X_AXIS] && !block->steps[Y_AXIS] && !block->steps[Z_AXIS])) {
block->advance_rate = 0;
block->advance = 0;
}