0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-18 15:39:31 +00:00

🧑‍💻 Move DIR inverting to *_DIR_WRITE

This commit is contained in:
Scott Lahteine 2023-04-29 21:28:12 -05:00
parent 1234e6af52
commit 2538a7c4d6
6 changed files with 186 additions and 153 deletions

View file

@ -109,7 +109,7 @@ void BDS_Leveling::process() {
#endif
}
else {
babystep.set_mm(Z_AXIS, 0); //if (old_cur_z <= cur_z) Z_DIR_WRITE(INVERT_DIR(Z, HIGH));
babystep.set_mm(Z_AXIS, 0); //if (old_cur_z <= cur_z) Z_DIR_WRITE(HIGH);
stepper.apply_directions();
}
#endif

View file

@ -246,7 +246,7 @@ typedef struct PlannerBlock {
uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
#endif
axis_bits_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
axis_bits_t direction_bits; // Direction bits set for this block, where 1 is negative motion
// Advance extrusion
#if ENABLED(LIN_ADVANCE)

View file

@ -477,6 +477,15 @@ xyze_int8_t Stepper::count_direction{0};
#define W_APPLY_STEP(v,Q) W_STEP_WRITE(v)
#endif
#define E0_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(0) : REV_E_DIR(0); }while(0)
#define E1_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(1) : REV_E_DIR(1); }while(0)
#define E2_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(2) : REV_E_DIR(2); }while(0)
#define E3_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(3) : REV_E_DIR(3); }while(0)
#define E4_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(4) : REV_E_DIR(4); }while(0)
#define E5_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(5) : REV_E_DIR(5); }while(0)
#define E6_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(6) : REV_E_DIR(6); }while(0)
#define E7_APPLY_DIR(REV) do{ (REV) ? FWD_E_DIR(7) : REV_E_DIR(7); }while(0)
#if DISABLED(MIXING_EXTRUDER)
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(stepper_extruder, v)
#endif
@ -592,14 +601,16 @@ void Stepper::disable_all_steppers() {
TERN_(EXTENSIBLE_UI, ExtUI::onSteppersDisabled());
}
#define SET_STEP_DIR(A) \
if (motor_direction(_AXIS(A))) { \
A##_APPLY_DIR(INVERT_DIR(A, LOW), false); \
count_direction[_AXIS(A)] = -1; \
} \
else { \
A##_APPLY_DIR(INVERT_DIR(A, HIGH), false); \
count_direction[_AXIS(A)] = 1; \
// Set a single axis direction based on the last set flags.
// A direction bit of "1" indicates reverse or negative motion.
#define SET_STEP_DIR(A) \
if (motor_direction(_AXIS(A))) { \
A##_APPLY_DIR(LOW, false); \
count_direction[_AXIS(A)] = -1; \
} \
else { \
A##_APPLY_DIR(HIGH, false); \
count_direction[_AXIS(A)] = 1; \
}
/**
@ -2402,7 +2413,7 @@ hal_timer_t Stepper::block_phase_isr() {
if (la_active) {
const uint32_t la_step_rate = la_advance_steps > current_block->final_adv_steps ? current_block->la_advance_rate : 0;
if (la_step_rate != step_rate) {
bool reverse_e = la_step_rate > step_rate;
const bool reverse_e = la_step_rate > step_rate;
la_interval = calc_timer_interval((reverse_e ? la_step_rate - step_rate : step_rate - la_step_rate) >> current_block->la_scaling);
if (reverse_e != motor_direction(E_AXIS)) {
@ -3163,21 +3174,6 @@ void Stepper::init() {
sei();
#endif
// Init direction bits for first moves
set_directions(0
NUM_AXIS_GANG(
| TERN0(INVERT_X_DIR, _BV(X_AXIS)),
| TERN0(INVERT_Y_DIR, _BV(Y_AXIS)),
| TERN0(INVERT_Z_DIR, _BV(Z_AXIS)),
| TERN0(INVERT_I_DIR, _BV(I_AXIS)),
| TERN0(INVERT_J_DIR, _BV(J_AXIS)),
| TERN0(INVERT_K_DIR, _BV(K_AXIS)),
| TERN0(INVERT_U_DIR, _BV(U_AXIS)),
| TERN0(INVERT_V_DIR, _BV(V_AXIS)),
| TERN0(INVERT_W_DIR, _BV(W_AXIS))
)
);
#if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
initialized = true;
digipot_init();
@ -3472,10 +3468,10 @@ void Stepper::report_positions() {
#endif
if (applyDir) {
TERN_(HAS_X_AXIS, X_DIR_WRITE(INVERT_DIR(X, TEST(command, FT_BIT_DIR_X))));
TERN_(HAS_Y_AXIS, Y_DIR_WRITE(INVERT_DIR(Y, TEST(command, FT_BIT_DIR_Y))));
TERN_(HAS_Z_AXIS, Z_DIR_WRITE(INVERT_DIR(Z, z_dir)));
TERN_(HAS_EXTRUDERS, E0_DIR_WRITE(INVERT_DIR(E0, TEST(command, FT_BIT_DIR_E))));
TERN_(HAS_X_AXIS, X_DIR_WRITE(TEST(command, FT_BIT_DIR_X)));
TERN_(HAS_Y_AXIS, Y_DIR_WRITE(TEST(command, FT_BIT_DIR_Y)));
TERN_(HAS_Z_AXIS, Z_DIR_WRITE(z_dir));
TERN_(HAS_EXTRUDERS, E0_DIR_WRITE(TEST(command, FT_BIT_DIR_E)));
DIR_WAIT_AFTER();
}
@ -3632,7 +3628,7 @@ void Stepper::report_positions() {
const uint8_t old_dir = _READ_DIR(AXIS); \
_ENABLE_AXIS(AXIS); \
DIR_WAIT_BEFORE(); \
_APPLY_DIR(AXIS, INVERT_DIR(AXIS, (DIR)^(INV))); \
_APPLY_DIR(AXIS, (DIR)^(INV)); \
DIR_WAIT_AFTER(); \
_SAVE_START(); \
_APPLY_STEP(AXIS, _STEP_STATE(AXIS), true); \
@ -3651,8 +3647,8 @@ void Stepper::report_positions() {
const xy_byte_t old_dir = { _READ_DIR(A), _READ_DIR(B) }; \
_ENABLE_AXIS(A); _ENABLE_AXIS(B); \
DIR_WAIT_BEFORE(); \
_APPLY_DIR(A, INVERT_DIR(A, (DIR)^(INV))); \
_APPLY_DIR(B, INVERT_DIR(B, (DIR)^(INV)^(ALT))); \
_APPLY_DIR(A, (DIR)^(INV)); \
_APPLY_DIR(B, (DIR)^(INV)^(ALT)); \
DIR_WAIT_AFTER(); \
_SAVE_START(); \
_APPLY_STEP(A, _STEP_STATE(A), true); \
@ -3710,7 +3706,7 @@ void Stepper::report_positions() {
#else // DELTA
const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
const bool z_direction = TERN_(BABYSTEP_INVERT_Z, !) direction;
NUM_AXIS_CODE(
enable_axis(X_AXIS), enable_axis(Y_AXIS), enable_axis(Z_AXIS),
@ -3727,13 +3723,13 @@ void Stepper::report_positions() {
);
#ifdef X_DIR_WRITE
X_DIR_WRITE(INVERT_DIR(X, z_direction));
X_DIR_WRITE(z_direction);
#endif
#ifdef Y_DIR_WRITE
Y_DIR_WRITE(INVERT_DIR(Y, z_direction));
Y_DIR_WRITE(z_direction);
#endif
#ifdef Z_DIR_WRITE
Z_DIR_WRITE(INVERT_DIR(Z, z_direction));
Z_DIR_WRITE(z_direction);
#endif
DIR_WAIT_AFTER();

View file

@ -522,7 +522,7 @@ class Stepper {
// Quickly stop all steppers
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
// The direction of a single motor
// The direction of a single motor. A true result indicates reversed or negative motion.
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.

View file

@ -42,6 +42,6 @@ void reset_stepper_drivers() {
}
#if ENABLED(SOFTWARE_DRIVER_ENABLE)
// Flags to optimize XYZ Enabled state
// Flags to optimize axis enabled state
xyz_bool_t axis_sw_enabled; // = { false, false, false }
#endif

View file

@ -22,14 +22,51 @@
#pragma once
/**
* stepper/indirection.h
* stepper/indirection.h - Stepper Indirection Macros
*
* Stepper motor driver indirection to allow some stepper functions to
* be done via SPI/I2c instead of direct pin manipulation.
* Each axis in a machine may have between 1 and 4 stepper motors.
* Currently X and Y allow for 1 or 2 steppers. Z can have up to 4.
* Extruders usually have one E stepper per nozzle.
*
* XYZ Special Cases
* - Delta: 3 steppers contribute to X, Y, and Z.
* - SCARA: A and B steppers contribute to X and Y by angular transformation.
* - CoreXY: A and B steppers contribute to X and Y in combination.
* - CoreXZ: A and B steppers contribute to X and Z in combination.
* - CoreYZ: A and B steppers contribute to Y and Z in combination.
*
* E Special Cases
* - SINGLENOZZLE: All Extruders have a single nozzle so there is one heater and no XYZ offset.
* - Switching Extruder: One stepper is used for each pair of nozzles with a switching mechanism.
* - Duplication Mode: Two or more steppers move in sync when `extruder_duplication_enabled` is set.
* With MULTI_NOZZLE_DUPLICATION a `duplication_e_mask` is also used.
* - Průša MMU1: One stepper is used with a switching mechanism. Odd numbered E indexes are reversed.
* - Průša MMU2: One stepper is used with a switching mechanism.
* - E_DUAL_STEPPER_DRIVERS: Two steppers always move in sync, possibly with opposite DIR states.
*
* Direct Stepper Control
* Where "Q" represents X Y Z I J K U V W / X2 Y2 Z2 Z3 Z4 / E0 E1 E2 E3 E4 E5 E6 E7
* Here each E index corresponds to a single E stepper driver.
*
* Q_ENABLE_INIT() Q_ENABLE_WRITE(S) Q_ENABLE_READ()
* Q_DIR_INIT() Q_DIR_WRITE(S) Q_DIR_READ()
* Q_STEP_INIT() Q_STEP_WRITE(S) Q_STEP_READ()
*
* Steppers may not have an enable state or may be enabled by other methods
* beyond a single pin (SOFTWARE_DRIVER_ENABLE) so these can be overriden:
* ENABLE_STEPPER_Q() DISABLE_STEPPER_Q()
*
* Axis Stepper Control (X Y Z I J K U V W)
* SOFTWARE_DRIVER_ENABLE gives all axes a status flag, so these macros will
* skip sending commands to steppers that are already in the desired state:
* ENABLE_AXIS_Q() DISABLE_AXIS_Q()
*
* E-Axis Stepper Control (0..n)
* For these macros the E index indicates a logical extruder (e.g., active_extruder).
*
* E_STEP_WRITE(E,V) FWD_E_DIR(E) REV_E_DIR(E)
*
* Copyright (c) 2015 Dominik Wenger
*/
#include "../../inc/MarlinConfig.h"
#if HAS_TMC26X
@ -43,6 +80,8 @@
void restore_stepper_drivers(); // Called by powerManager.power_on()
void reset_stepper_drivers(); // Called by settings.load / settings.reset
#define INVERT_DIR(AXIS, D) (TERN_(INVERT_## AXIS ##_DIR, !)(D))
// X Stepper
#ifndef X_ENABLE_INIT
#define X_ENABLE_INIT() SET_OUTPUT(X_ENABLE_PIN)
@ -51,7 +90,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef X_DIR_INIT
#define X_DIR_INIT() SET_OUTPUT(X_DIR_PIN)
#define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,STATE)
#define X_DIR_WRITE(STATE) WRITE(X_DIR_PIN,INVERT_DIR(X, STATE))
#define X_DIR_READ() bool(READ(X_DIR_PIN))
#endif
#define X_STEP_INIT() SET_OUTPUT(X_STEP_PIN)
@ -69,7 +108,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef Y_DIR_INIT
#define Y_DIR_INIT() SET_OUTPUT(Y_DIR_PIN)
#define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,STATE)
#define Y_DIR_WRITE(STATE) WRITE(Y_DIR_PIN,INVERT_DIR(Y, STATE))
#define Y_DIR_READ() bool(READ(Y_DIR_PIN))
#endif
#define Y_STEP_INIT() SET_OUTPUT(Y_STEP_PIN)
@ -88,7 +127,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef Z_DIR_INIT
#define Z_DIR_INIT() SET_OUTPUT(Z_DIR_PIN)
#define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,STATE)
#define Z_DIR_WRITE(STATE) WRITE(Z_DIR_PIN,INVERT_DIR(Z, STATE))
#define Z_DIR_READ() bool(READ(Z_DIR_PIN))
#endif
#define Z_STEP_INIT() SET_OUTPUT(Z_STEP_PIN)
@ -107,7 +146,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef X2_DIR_INIT
#define X2_DIR_INIT() SET_OUTPUT(X2_DIR_PIN)
#define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,STATE)
#define X2_DIR_WRITE(STATE) WRITE(X2_DIR_PIN,INVERT_DIR(X2, STATE))
#define X2_DIR_READ() bool(READ(X2_DIR_PIN))
#endif
#define X2_STEP_INIT() SET_OUTPUT(X2_STEP_PIN)
@ -126,7 +165,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef Y2_DIR_INIT
#define Y2_DIR_INIT() SET_OUTPUT(Y2_DIR_PIN)
#define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,STATE)
#define Y2_DIR_WRITE(STATE) WRITE(Y2_DIR_PIN,INVERT_DIR(Y2, STATE))
#define Y2_DIR_READ() bool(READ(Y2_DIR_PIN))
#endif
#define Y2_STEP_INIT() SET_OUTPUT(Y2_STEP_PIN)
@ -147,7 +186,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef Z2_DIR_INIT
#define Z2_DIR_INIT() SET_OUTPUT(Z2_DIR_PIN)
#define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,STATE)
#define Z2_DIR_WRITE(STATE) WRITE(Z2_DIR_PIN,INVERT_DIR(Z2, STATE))
#define Z2_DIR_READ() bool(READ(Z2_DIR_PIN))
#endif
#define Z2_STEP_INIT() SET_OUTPUT(Z2_STEP_PIN)
@ -168,7 +207,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef Z3_DIR_INIT
#define Z3_DIR_INIT() SET_OUTPUT(Z3_DIR_PIN)
#define Z3_DIR_WRITE(STATE) WRITE(Z3_DIR_PIN,STATE)
#define Z3_DIR_WRITE(STATE) WRITE(Z3_DIR_PIN,INVERT_DIR(Z3, STATE))
#define Z3_DIR_READ() bool(READ(Z3_DIR_PIN))
#endif
#define Z3_STEP_INIT() SET_OUTPUT(Z3_STEP_PIN)
@ -189,7 +228,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef Z4_DIR_INIT
#define Z4_DIR_INIT() SET_OUTPUT(Z4_DIR_PIN)
#define Z4_DIR_WRITE(STATE) WRITE(Z4_DIR_PIN,STATE)
#define Z4_DIR_WRITE(STATE) WRITE(Z4_DIR_PIN,INVERT_DIR(Z4, STATE))
#define Z4_DIR_READ() bool(READ(Z4_DIR_PIN))
#endif
#define Z4_STEP_INIT() SET_OUTPUT(Z4_STEP_PIN)
@ -210,7 +249,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef I_DIR_INIT
#define I_DIR_INIT() SET_OUTPUT(I_DIR_PIN)
#define I_DIR_WRITE(STATE) WRITE(I_DIR_PIN,STATE)
#define I_DIR_WRITE(STATE) WRITE(I_DIR_PIN,INVERT_DIR(I, STATE))
#define I_DIR_READ() bool(READ(I_DIR_PIN))
#endif
#define I_STEP_INIT() SET_OUTPUT(I_STEP_PIN)
@ -229,7 +268,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef J_DIR_INIT
#define J_DIR_INIT() SET_OUTPUT(J_DIR_PIN)
#define J_DIR_WRITE(STATE) WRITE(J_DIR_PIN,STATE)
#define J_DIR_WRITE(STATE) WRITE(J_DIR_PIN,INVERT_DIR(J, STATE))
#define J_DIR_READ() bool(READ(J_DIR_PIN))
#endif
#define J_STEP_INIT() SET_OUTPUT(J_STEP_PIN)
@ -248,7 +287,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef K_DIR_INIT
#define K_DIR_INIT() SET_OUTPUT(K_DIR_PIN)
#define K_DIR_WRITE(STATE) WRITE(K_DIR_PIN,STATE)
#define K_DIR_WRITE(STATE) WRITE(K_DIR_PIN,INVERT_DIR(K, STATE))
#define K_DIR_READ() bool(READ(K_DIR_PIN))
#endif
#define K_STEP_INIT() SET_OUTPUT(K_STEP_PIN)
@ -267,7 +306,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef U_DIR_INIT
#define U_DIR_INIT() SET_OUTPUT(U_DIR_PIN)
#define U_DIR_WRITE(STATE) WRITE(U_DIR_PIN,STATE)
#define U_DIR_WRITE(STATE) WRITE(U_DIR_PIN,INVERT_DIR(U, STATE))
#define U_DIR_READ() bool(READ(U_DIR_PIN))
#endif
#define U_STEP_INIT() SET_OUTPUT(U_STEP_PIN)
@ -286,7 +325,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef V_DIR_INIT
#define V_DIR_INIT() SET_OUTPUT(V_DIR_PIN)
#define V_DIR_WRITE(STATE) WRITE(V_DIR_PIN,STATE)
#define V_DIR_WRITE(STATE) WRITE(V_DIR_PIN,INVERT_DIR(V, STATE))
#define V_DIR_READ() bool(READ(V_DIR_PIN))
#endif
#define V_STEP_INIT() SET_OUTPUT(V_STEP_PIN)
@ -305,7 +344,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef W_DIR_INIT
#define W_DIR_INIT() SET_OUTPUT(W_DIR_PIN)
#define W_DIR_WRITE(STATE) WRITE(W_DIR_PIN,STATE)
#define W_DIR_WRITE(STATE) WRITE(W_DIR_PIN,INVERT_DIR(W, STATE))
#define W_DIR_READ() bool(READ(W_DIR_PIN))
#endif
#define W_STEP_INIT() SET_OUTPUT(W_STEP_PIN)
@ -323,7 +362,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E0_DIR_INIT
#define E0_DIR_INIT() SET_OUTPUT(E0_DIR_PIN)
#define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,STATE)
#define E0_DIR_WRITE(STATE) WRITE(E0_DIR_PIN,INVERT_DIR(E0, STATE))
#define E0_DIR_READ() bool(READ(E0_DIR_PIN))
#endif
#define E0_STEP_INIT() SET_OUTPUT(E0_STEP_PIN)
@ -340,7 +379,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E1_DIR_INIT
#define E1_DIR_INIT() SET_OUTPUT(E1_DIR_PIN)
#define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,STATE)
#define E1_DIR_WRITE(STATE) WRITE(E1_DIR_PIN,INVERT_DIR(E1, STATE))
#define E1_DIR_READ() bool(READ(E1_DIR_PIN))
#endif
#define E1_STEP_INIT() SET_OUTPUT(E1_STEP_PIN)
@ -357,7 +396,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E2_DIR_INIT
#define E2_DIR_INIT() SET_OUTPUT(E2_DIR_PIN)
#define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,STATE)
#define E2_DIR_WRITE(STATE) WRITE(E2_DIR_PIN,INVERT_DIR(E2, STATE))
#define E2_DIR_READ() bool(READ(E2_DIR_PIN))
#endif
#define E2_STEP_INIT() SET_OUTPUT(E2_STEP_PIN)
@ -374,7 +413,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E3_DIR_INIT
#define E3_DIR_INIT() SET_OUTPUT(E3_DIR_PIN)
#define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,STATE)
#define E3_DIR_WRITE(STATE) WRITE(E3_DIR_PIN,INVERT_DIR(E3, STATE))
#define E3_DIR_READ() bool(READ(E3_DIR_PIN))
#endif
#define E3_STEP_INIT() SET_OUTPUT(E3_STEP_PIN)
@ -391,7 +430,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E4_DIR_INIT
#define E4_DIR_INIT() SET_OUTPUT(E4_DIR_PIN)
#define E4_DIR_WRITE(STATE) WRITE(E4_DIR_PIN,STATE)
#define E4_DIR_WRITE(STATE) WRITE(E4_DIR_PIN,INVERT_DIR(E4, STATE))
#define E4_DIR_READ() bool(READ(E4_DIR_PIN))
#endif
#define E4_STEP_INIT() SET_OUTPUT(E4_STEP_PIN)
@ -408,7 +447,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E5_DIR_INIT
#define E5_DIR_INIT() SET_OUTPUT(E5_DIR_PIN)
#define E5_DIR_WRITE(STATE) WRITE(E5_DIR_PIN,STATE)
#define E5_DIR_WRITE(STATE) WRITE(E5_DIR_PIN,INVERT_DIR(E5, STATE))
#define E5_DIR_READ() bool(READ(E5_DIR_PIN))
#endif
#define E5_STEP_INIT() SET_OUTPUT(E5_STEP_PIN)
@ -425,7 +464,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E6_DIR_INIT
#define E6_DIR_INIT() SET_OUTPUT(E6_DIR_PIN)
#define E6_DIR_WRITE(STATE) WRITE(E6_DIR_PIN,STATE)
#define E6_DIR_WRITE(STATE) WRITE(E6_DIR_PIN,INVERT_DIR(E6, STATE))
#define E6_DIR_READ() bool(READ(E6_DIR_PIN))
#endif
#define E6_STEP_INIT() SET_OUTPUT(E6_STEP_PIN)
@ -442,7 +481,7 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#ifndef E7_DIR_INIT
#define E7_DIR_INIT() SET_OUTPUT(E7_DIR_PIN)
#define E7_DIR_WRITE(STATE) WRITE(E7_DIR_PIN,STATE)
#define E7_DIR_WRITE(STATE) WRITE(E7_DIR_PIN,INVERT_DIR(E7, STATE))
#define E7_DIR_READ() bool(READ(E7_DIR_PIN))
#endif
#define E7_STEP_INIT() SET_OUTPUT(E7_STEP_PIN)
@ -451,8 +490,6 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#endif
#define E7_STEP_READ() bool(READ(E7_STEP_PIN))
#define INVERT_DIR(AXIS, D) (TERN_(INVERT_## AXIS ##_DIR, !)(D))
/**
* Extruder indirection for the single E axis
*/
@ -460,91 +497,91 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#if EXTRUDERS > 7
#define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else if (E < 6) { E2_STEP_WRITE(V); } else { E3_STEP_WRITE(V); } }while(0)
#define FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 5: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; \
case 6: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; case 7: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E0_DIR_WRITE(LOW ); break; \
case 2: E1_DIR_WRITE(HIGH); break; case 3: E1_DIR_WRITE(LOW ); break; \
case 4: E2_DIR_WRITE(HIGH); break; case 5: E2_DIR_WRITE(LOW ); break; \
case 6: E3_DIR_WRITE(HIGH); break; case 7: E3_DIR_WRITE(LOW ); break; \
} }while(0)
#define REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 5: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; \
case 6: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; case 7: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E0_DIR_WRITE(HIGH); break; \
case 2: E1_DIR_WRITE(LOW ); break; case 3: E1_DIR_WRITE(HIGH); break; \
case 4: E2_DIR_WRITE(LOW ); break; case 5: E2_DIR_WRITE(HIGH); break; \
case 6: E3_DIR_WRITE(LOW ); break; case 7: E3_DIR_WRITE(HIGH); break; \
} }while(0)
#elif EXTRUDERS > 6
#define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else if (E < 6) { E2_STEP_WRITE(V); } else { E3_STEP_WRITE(V); } }while(0)
#define FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 5: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; \
case 6: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E0_DIR_WRITE(LOW ); break; \
case 2: E1_DIR_WRITE(HIGH); break; case 3: E1_DIR_WRITE(LOW ); break; \
case 4: E2_DIR_WRITE(HIGH); break; case 5: E2_DIR_WRITE(LOW ); break; \
case 6: E3_DIR_WRITE(HIGH); break; \
} }while(0)
#define REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 5: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; \
case 6: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); } }while(0)
case 0: E0_DIR_WRITE(LOW ); break; case 1: E0_DIR_WRITE(HIGH); break; \
case 2: E1_DIR_WRITE(LOW ); break; case 3: E1_DIR_WRITE(HIGH); break; \
case 4: E2_DIR_WRITE(LOW ); break; case 5: E2_DIR_WRITE(HIGH); break; \
case 6: E3_DIR_WRITE(LOW ); } }while(0)
#elif EXTRUDERS > 5
#define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0)
#define FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 5: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E0_DIR_WRITE(LOW ); break; \
case 2: E1_DIR_WRITE(HIGH); break; case 3: E1_DIR_WRITE(LOW ); break; \
case 4: E2_DIR_WRITE(HIGH); break; case 5: E2_DIR_WRITE(LOW ); break; \
} }while(0)
#define REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 5: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E0_DIR_WRITE(HIGH); break; \
case 2: E1_DIR_WRITE(LOW ); break; case 3: E1_DIR_WRITE(HIGH); break; \
case 4: E2_DIR_WRITE(LOW ); break; case 5: E2_DIR_WRITE(HIGH); break; \
} }while(0)
#elif EXTRUDERS > 4
#define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else if (E < 4) { E1_STEP_WRITE(V); } else { E2_STEP_WRITE(V); } }while(0)
#define FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E0_DIR_WRITE(LOW ); break; \
case 2: E1_DIR_WRITE(HIGH); break; case 3: E1_DIR_WRITE(LOW ); break; \
case 4: E2_DIR_WRITE(HIGH); break; \
} }while(0)
#define REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 4: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E0_DIR_WRITE(HIGH); break; \
case 2: E1_DIR_WRITE(LOW ); break; case 3: E1_DIR_WRITE(HIGH); break; \
case 4: E2_DIR_WRITE(LOW ); break; \
} }while(0)
#elif EXTRUDERS > 3
#define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
#define FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E0_DIR_WRITE(LOW ); break; \
case 2: E1_DIR_WRITE(HIGH); break; case 3: E1_DIR_WRITE(LOW ); break; \
} }while(0)
#define REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; case 3: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E0_DIR_WRITE(HIGH); break; \
case 2: E1_DIR_WRITE(LOW ); break; case 3: E1_DIR_WRITE(HIGH); break; \
} }while(0)
#elif EXTRUDERS > 2
#define E_STEP_WRITE(E,V) do{ if (E < 2) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
#define FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E0_DIR_WRITE(LOW ); break; \
case 2: E1_DIR_WRITE(HIGH); break; \
} }while(0)
#define REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; \
case 2: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E0_DIR_WRITE(HIGH); break; \
case 2: E1_DIR_WRITE(LOW ); break; \
} }while(0)
#else
#define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
#define FWD_E_DIR(E) do{ E0_DIR_WRITE(INVERT_DIR(E0, (E) ? LOW : HIGH)); }while(0)
#define REV_E_DIR(E) do{ E0_DIR_WRITE(INVERT_DIR(E0, (E) ? HIGH : LOW )); }while(0)
#define FWD_E_DIR(E) do{ E0_DIR_WRITE((E) ? LOW : HIGH); }while(0)
#define REV_E_DIR(E) do{ E0_DIR_WRITE((E) ? HIGH : LOW ); }while(0)
#endif
#elif HAS_PRUSA_MMU2 // One multiplexed stepper driver
#define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
#define FWD_E_DIR(E) E0_DIR_WRITE(INVERT_DIR(E0, HIGH))
#define REV_E_DIR(E) E0_DIR_WRITE(INVERT_DIR(E0, LOW ))
#define FWD_E_DIR(E) E0_DIR_WRITE(HIGH)
#define REV_E_DIR(E) E0_DIR_WRITE(LOW )
#elif HAS_PRUSA_MMU1 // One multiplexed stepper driver, reversed on odd index
#define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
#define FWD_E_DIR(E) do{ E0_DIR_WRITE(INVERT_DIR(E0, TEST(E, 0) ? HIGH : LOW )); }while(0)
#define REV_E_DIR(E) do{ E0_DIR_WRITE(INVERT_DIR(E0, TEST(E, 0) ? LOW : HIGH)); }while(0)
#define FWD_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? HIGH : LOW ); }while(0)
#define REV_E_DIR(E) do{ E0_DIR_WRITE(TEST(E, 0) ? LOW : HIGH); }while(0)
#elif E_STEPPERS > 1
@ -555,16 +592,16 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
case 4: E4_STEP_WRITE(V); break; case 5: E5_STEP_WRITE(V); break; case 6: E6_STEP_WRITE(V); break; case 7: E7_STEP_WRITE(V); break; \
} }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, HIGH)); break; case 5: E5_DIR_WRITE(INVERT_DIR(E5, HIGH)); break; \
case 6: E6_DIR_WRITE(INVERT_DIR(E6, HIGH)); break; case 7: E7_DIR_WRITE(INVERT_DIR(E7, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E1_DIR_WRITE(HIGH); break; \
case 2: E2_DIR_WRITE(HIGH); break; case 3: E3_DIR_WRITE(HIGH); break; \
case 4: E4_DIR_WRITE(HIGH); break; case 5: E5_DIR_WRITE(HIGH); break; \
case 6: E6_DIR_WRITE(HIGH); break; case 7: E7_DIR_WRITE(HIGH); break; \
} }while(0)
#define _REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, LOW )); break; case 5: E5_DIR_WRITE(INVERT_DIR(E5, LOW )); break; \
case 6: E6_DIR_WRITE(INVERT_DIR(E6, LOW )); break; case 7: E7_DIR_WRITE(INVERT_DIR(E7, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E1_DIR_WRITE(LOW ); break; \
case 2: E2_DIR_WRITE(LOW ); break; case 3: E3_DIR_WRITE(LOW ); break; \
case 4: E4_DIR_WRITE(LOW ); break; case 5: E5_DIR_WRITE(LOW ); break; \
case 6: E6_DIR_WRITE(LOW ); break; case 7: E7_DIR_WRITE(LOW ); break; \
} }while(0)
#elif E_STEPPERS > 6
@ -574,16 +611,16 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
case 4: E4_STEP_WRITE(V); break; case 5: E5_STEP_WRITE(V); break; case 6: E6_STEP_WRITE(V); break; \
} }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, HIGH)); break; case 5: E5_DIR_WRITE(INVERT_DIR(E5, HIGH)); break; \
case 6: E6_DIR_WRITE(INVERT_DIR(E6, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E1_DIR_WRITE(HIGH); break; \
case 2: E2_DIR_WRITE(HIGH); break; case 3: E3_DIR_WRITE(HIGH); break; \
case 4: E4_DIR_WRITE(HIGH); break; case 5: E5_DIR_WRITE(HIGH); break; \
case 6: E6_DIR_WRITE(HIGH); break; \
} }while(0)
#define _REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, LOW )); break; case 5: E5_DIR_WRITE(INVERT_DIR(E5, LOW )); break; \
case 6: E6_DIR_WRITE(INVERT_DIR(E6, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E1_DIR_WRITE(LOW ); break; \
case 2: E2_DIR_WRITE(LOW ); break; case 3: E3_DIR_WRITE(LOW ); break; \
case 4: E4_DIR_WRITE(LOW ); break; case 5: E5_DIR_WRITE(LOW ); break; \
case 6: E6_DIR_WRITE(LOW ); break; \
} }while(0)
#elif E_STEPPERS > 5
@ -593,14 +630,14 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
case 4: E4_STEP_WRITE(V); break; case 5: E5_STEP_WRITE(V); break; \
} }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, HIGH)); break; case 5: E5_DIR_WRITE(INVERT_DIR(E5, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E1_DIR_WRITE(HIGH); break; \
case 2: E2_DIR_WRITE(HIGH); break; case 3: E3_DIR_WRITE(HIGH); break; \
case 4: E4_DIR_WRITE(HIGH); break; case 5: E5_DIR_WRITE(HIGH); break; \
} }while(0)
#define _REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, LOW )); break; case 5: E5_DIR_WRITE(INVERT_DIR(E5, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E1_DIR_WRITE(LOW ); break; \
case 2: E2_DIR_WRITE(LOW ); break; case 3: E3_DIR_WRITE(LOW ); break; \
case 4: E4_DIR_WRITE(LOW ); break; case 5: E5_DIR_WRITE(LOW ); break; \
} }while(0)
#elif E_STEPPERS > 4
@ -610,14 +647,14 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
case 4: E4_STEP_WRITE(V); break; \
} }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E1_DIR_WRITE(HIGH); break; \
case 2: E2_DIR_WRITE(HIGH); break; case 3: E3_DIR_WRITE(HIGH); break; \
case 4: E4_DIR_WRITE(HIGH); break; \
} }while(0)
#define _REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; \
case 4: E4_DIR_WRITE(INVERT_DIR(E4, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E1_DIR_WRITE(LOW ); break; \
case 2: E2_DIR_WRITE(LOW ); break; case 3: E3_DIR_WRITE(LOW ); break; \
case 4: E4_DIR_WRITE(LOW ); break; \
} }while(0)
#elif E_STEPPERS > 3
@ -626,25 +663,25 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); break; case 3: E3_STEP_WRITE(V); break; \
} }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, HIGH)); break; \
case 0: E0_DIR_WRITE(HIGH); break; case 1: E1_DIR_WRITE(HIGH); break; \
case 2: E2_DIR_WRITE(HIGH); break; case 3: E3_DIR_WRITE(HIGH); break; \
} }while(0)
#define _REV_E_DIR(E) do{ switch (E) { \
case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; \
case 2: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); break; case 3: E3_DIR_WRITE(INVERT_DIR(E3, LOW )); break; \
case 0: E0_DIR_WRITE(LOW ); break; case 1: E1_DIR_WRITE(LOW ); break; \
case 2: E2_DIR_WRITE(LOW ); break; case 3: E3_DIR_WRITE(LOW ); break; \
} }while(0)
#elif E_STEPPERS > 2
#define _E_STEP_WRITE(E,V) do{ switch (E) { case 0: E0_STEP_WRITE(V); break; case 1: E1_STEP_WRITE(V); break; case 2: E2_STEP_WRITE(V); } }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); break; case 2: E2_DIR_WRITE(INVERT_DIR(E2, HIGH)); } }while(0)
#define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(INVERT_DIR(E0, LOW )); break; case 1: E1_DIR_WRITE(INVERT_DIR(E1, LOW )); break; case 2: E2_DIR_WRITE(INVERT_DIR(E2, LOW )); } }while(0)
#define _FWD_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(HIGH); break; case 1: E1_DIR_WRITE(HIGH); break; case 2: E2_DIR_WRITE(HIGH); } }while(0)
#define _REV_E_DIR(E) do{ switch (E) { case 0: E0_DIR_WRITE(LOW ); break; case 1: E1_DIR_WRITE(LOW ); break; case 2: E2_DIR_WRITE(LOW ); } }while(0)
#else
#define _E_STEP_WRITE(E,V) do{ if (E == 0) { E0_STEP_WRITE(V); } else { E1_STEP_WRITE(V); } }while(0)
#define _FWD_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(INVERT_DIR(E0, HIGH)); } else { E1_DIR_WRITE(INVERT_DIR(E1, HIGH)); } }while(0)
#define _REV_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(INVERT_DIR(E0, LOW )); } else { E1_DIR_WRITE(INVERT_DIR(E1, LOW )); } }while(0)
#define _FWD_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(HIGH); } else { E1_DIR_WRITE(HIGH); } }while(0)
#define _REV_E_DIR(E) do{ if (E == 0) { E0_DIR_WRITE(LOW ); } else { E1_DIR_WRITE(LOW ); } }while(0)
#endif
#if HAS_DUPLICATION_MODE
@ -655,8 +692,8 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#define DUPE(N,T,V) E##N##_##T##_WRITE(V);
#endif
#define NDIR(N) DUPE(N,DIR,INVERT_DIR(E, HIGH));
#define RDIR(N) DUPE(N,DIR,INVERT_DIR(E, LOW ));
#define NDIR(N) DUPE(N,DIR,HIGH);
#define RDIR(N) DUPE(N,DIR,LOW );
#define E_STEP_WRITE(E,V) do{ if (extruder_duplication_enabled) { REPEAT2(E_STEPPERS, DUPE, STEP, V); } else _E_STEP_WRITE(E,V); }while(0)
#define FWD_E_DIR(E) do{ if (extruder_duplication_enabled) { REPEAT(E_STEPPERS, NDIR); } else _FWD_E_DIR(E); }while(0)
@ -672,13 +709,13 @@ void reset_stepper_drivers(); // Called by settings.load / settings.reset
#elif ENABLED(E_DUAL_STEPPER_DRIVERS)
#define E_STEP_WRITE(E,V) do{ E0_STEP_WRITE(V); E1_STEP_WRITE(V); }while(0)
#define FWD_E_DIR(E) do{ constexpr bool d = INVERT_DIR(E0, HIGH); E0_DIR_WRITE(d); E1_DIR_WRITE(INVERT_DIR(E1_VS_E0, d)); }while(0)
#define REV_E_DIR(E) do{ constexpr bool d = INVERT_DIR(E0, LOW ); E0_DIR_WRITE(d); E1_DIR_WRITE(INVERT_DIR(E1_VS_E0, d)); }while(0)
#define FWD_E_DIR(E) do{ E0_DIR_WRITE(HIGH); E1_DIR_WRITE(INVERT_DIR(E1_VS_E0, HIGH)); }while(0)
#define REV_E_DIR(E) do{ E0_DIR_WRITE(LOW ); E1_DIR_WRITE(INVERT_DIR(E1_VS_E0, LOW )); }while(0)
#elif E_STEPPERS
#elif E_STEPPERS == 1
#define E_STEP_WRITE(E,V) E0_STEP_WRITE(V)
#define FWD_E_DIR(E) E0_DIR_WRITE(INVERT_DIR(E0, HIGH))
#define REV_E_DIR(E) E0_DIR_WRITE(INVERT_DIR(E0, LOW ))
#define FWD_E_DIR(E) E0_DIR_WRITE(HIGH)
#define REV_E_DIR(E) E0_DIR_WRITE(LOW )
#else
#define E_STEP_WRITE(E,V) NOOP