0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-18 15:39:31 +00:00

Enhancements to G425 (#13159)

- Turn off bed leveling prior to calibrating.
    - This prevents lateral probes from having a Z component that
      triggers the Z endstop and causes the motion to be aborted.
- Got rid of static const float arrays "dimension" and "true_center"
    - Frees up 24 bytes of SRAM
- Changed incorrect use of "bool" for float in backlash macros.
    - Replaced arguments with 0.0f and 1.0f for clarity.
- Now only disables soft endstops (since calibration cube is outside of bed)
    - Not necessary to disable global endstops
This commit is contained in:
Marcio Teixeira 2019-02-14 15:45:31 -07:00 committed by Scott Lahteine
parent 84fc400aba
commit 31c240a8db

View file

@ -30,6 +30,8 @@
#include "../../module/planner.h" #include "../../module/planner.h"
#include "../../module/tool_change.h" #include "../../module/tool_change.h"
#include "../../module/endstops.h" #include "../../module/endstops.h"
#include "../../feature/bedlevel/bedlevel.h"
/** /**
* G425 backs away from the calibration object by various distances * G425 backs away from the calibration object by various distances
@ -60,8 +62,9 @@
enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES }; enum side_t : uint8_t { TOP, RIGHT, FRONT, LEFT, BACK, NUM_SIDES };
struct measurements_t { struct measurements_t {
static const float dimensions[XYZ]; static constexpr float dimensions[XYZ] = CALIBRATION_OBJECT_DIMENSIONS;
static const float true_center[XYZ]; // This cannot be constexpr since it is accessed by index in probe_side static constexpr float true_center[XYZ] = CALIBRATION_OBJECT_CENTER;
float obj_center[XYZ] = CALIBRATION_OBJECT_CENTER; float obj_center[XYZ] = CALIBRATION_OBJECT_CENTER;
float obj_side[NUM_SIDES]; float obj_side[NUM_SIDES];
@ -71,16 +74,13 @@ struct measurements_t {
float nozzle_outer_dimension[2] = {CALIBRATION_NOZZLE_OUTER_DIAMETER, CALIBRATION_NOZZLE_OUTER_DIAMETER}; float nozzle_outer_dimension[2] = {CALIBRATION_NOZZLE_OUTER_DIAMETER, CALIBRATION_NOZZLE_OUTER_DIAMETER};
}; };
const float measurements_t::true_center[XYZ] = CALIBRATION_OBJECT_CENTER; #define TEMPORARY_BED_LEVELING_STATE(enable) TemporaryBedLevelingState tbls(enable)
#define TEMPORARY_SOFT_ENDSTOP_STATE(enable) REMEMBER(tes, soft_endstops_enabled, enable);
const float measurements_t::dimensions[] = CALIBRATION_OBJECT_DIMENSIONS;
#define TEMPORARY_ENDSTOP_STATE(enable) REMEMBER(tes, soft_endstops_enabled, enable); TemporaryGlobalEndstopsState tges(enable)
#if ENABLED(BACKLASH_GCODE) #if ENABLED(BACKLASH_GCODE)
#define TEMPORARY_BACKLASH_STATE(enable) REMEMBER(tbst, backlash_correction, enable) #define TEMPORARY_BACKLASH_CORRECTION(value) REMEMBER(tbst, backlash_correction, value)
#else #else
#define TEMPORARY_BACKLASH_STATE(enable) #define TEMPORARY_BACKLASH_CORRECTION(value)
#endif #endif
#if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM) #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
@ -89,6 +89,20 @@ const float measurements_t::dimensions[] = CALIBRATION_OBJECT_DIMENSIONS;
#define TEMPORARY_BACKLASH_SMOOTHING(value) #define TEMPORARY_BACKLASH_SMOOTHING(value)
#endif #endif
/**
* A class to save and change the bed leveling state,
* then restore it when it goes out of scope.
*/
class TemporaryBedLevelingState {
bool saved;
public:
TemporaryBedLevelingState(const bool enable) : saved(planner.leveling_active) {
set_bed_leveling_enabled(enable);
}
~TemporaryBedLevelingState() { set_bed_leveling_enabled(saved); }
};
/** /**
* Move to a particular location. Up to three individual axes * Move to a particular location. Up to three individual axes
* and their destinations can be specified, in any order. * and their destinations can be specified, in any order.
@ -121,10 +135,10 @@ inline void move_to(
* uncertainty in - How far away from the object top to park * uncertainty in - How far away from the object top to park
*/ */
inline void park_above_object(measurements_t &m, const float uncertainty) { inline void park_above_object(measurements_t &m, const float uncertainty) {
/* Move to safe distance above calibration object */ // Move to safe distance above calibration object
move_to(Z_AXIS, m.obj_center[Z_AXIS] + m.dimensions[Z_AXIS] / 2 + uncertainty); move_to(Z_AXIS, m.obj_center[Z_AXIS] + m.dimensions[Z_AXIS] / 2 + uncertainty);
/* Move to center of calibration object in XY */ // Move to center of calibration object in XY
move_to(X_AXIS, m.obj_center[X_AXIS], Y_AXIS, m.obj_center[Y_AXIS]); move_to(X_AXIS, m.obj_center[X_AXIS], Y_AXIS, m.obj_center[Y_AXIS]);
} }
@ -228,6 +242,7 @@ inline float measure(const AxisEnum axis, const int dir, const bool stop_state,
* to find out height of edge * to find out height of edge
*/ */
inline void probe_side(measurements_t &m, const float uncertainty, const side_t side, const bool probe_top_at_edge=false) { inline void probe_side(measurements_t &m, const float uncertainty, const side_t side, const bool probe_top_at_edge=false) {
const float dimensions[] = CALIBRATION_OBJECT_DIMENSIONS;
AxisEnum axis; AxisEnum axis;
float dir; float dir;
@ -236,7 +251,7 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
switch(side) { switch(side) {
case TOP: { case TOP: {
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty); const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center[Z_AXIS] = measurement - m.dimensions[Z_AXIS] / 2; m.obj_center[Z_AXIS] = measurement - dimensions[Z_AXIS] / 2;
m.obj_side[TOP] = measurement; m.obj_side[TOP] = measurement;
return; return;
} }
@ -250,18 +265,18 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
if (probe_top_at_edge) { if (probe_top_at_edge) {
// Probe top nearest the side we are probing // Probe top nearest the side we are probing
move_to(axis, m.obj_center[axis] + (-dir) * (m.dimensions[axis] / 2 - m.nozzle_outer_dimension[axis])); move_to(axis, m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 - m.nozzle_outer_dimension[axis]));
m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty); m.obj_side[TOP] = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center[Z_AXIS] = m.obj_side[TOP] - m.dimensions[Z_AXIS] / 2; m.obj_center[Z_AXIS] = m.obj_side[TOP] - dimensions[Z_AXIS] / 2;
} }
// Move to safe distance to the side of the calibration object // Move to safe distance to the side of the calibration object
move_to(axis, m.obj_center[axis] + (-dir) * (m.dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty)); move_to(axis, m.obj_center[axis] + (-dir) * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2 + uncertainty));
// Plunge below the side of the calibration object and measure // Plunge below the side of the calibration object and measure
move_to(Z_AXIS, m.obj_side[TOP] - CALIBRATION_NOZZLE_TIP_HEIGHT * 0.7); move_to(Z_AXIS, m.obj_side[TOP] - CALIBRATION_NOZZLE_TIP_HEIGHT * 0.7);
const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty); const float measurement = measure(axis, dir, true, &m.backlash[side], uncertainty);
m.obj_center[axis] = measurement + dir * (m.dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2); m.obj_center[axis] = measurement + dir * (dimensions[axis] / 2 + m.nozzle_outer_dimension[axis] / 2);
m.obj_side[side] = measurement; m.obj_side[side] = measurement;
} }
@ -272,14 +287,11 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
* uncertainty in - How far away from the calibration object to begin probing * uncertainty in - How far away from the calibration object to begin probing
*/ */
inline void probe_sides(measurements_t &m, const float uncertainty) { inline void probe_sides(measurements_t &m, const float uncertainty) {
TEMPORARY_ENDSTOP_STATE(false);
#ifdef CALIBRATION_MEASURE_AT_TOP_EDGES #ifdef CALIBRATION_MEASURE_AT_TOP_EDGES
constexpr bool probe_top_at_edge = true; constexpr bool probe_top_at_edge = true;
#else #else
/* Probing at the exact center only works if the center is flat. Probing on a washer // Probing at the exact center only works if the center is flat. Probing on a washer
* or bolt will require probing the top near the side edges, away from the center. // or bolt will require probing the top near the side edges, away from the center.
*/
constexpr bool probe_top_at_edge = false; constexpr bool probe_top_at_edge = false;
probe_side(m, uncertainty, TOP); probe_side(m, uncertainty, TOP);
#endif #endif
@ -287,9 +299,11 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
#ifdef CALIBRATION_MEASURE_RIGHT #ifdef CALIBRATION_MEASURE_RIGHT
probe_side(m, uncertainty, RIGHT, probe_top_at_edge); probe_side(m, uncertainty, RIGHT, probe_top_at_edge);
#endif #endif
#ifdef CALIBRATION_MEASURE_FRONT #ifdef CALIBRATION_MEASURE_FRONT
probe_side(m, uncertainty, FRONT, probe_top_at_edge); probe_side(m, uncertainty, FRONT, probe_top_at_edge);
#endif #endif
#ifdef CALIBRATION_MEASURE_LEFT #ifdef CALIBRATION_MEASURE_LEFT
probe_side(m, uncertainty, LEFT, probe_top_at_edge); probe_side(m, uncertainty, LEFT, probe_top_at_edge);
#endif #endif
@ -297,7 +311,7 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
probe_side(m, uncertainty, BACK, probe_top_at_edge); probe_side(m, uncertainty, BACK, probe_top_at_edge);
#endif #endif
/* Compute the measured center of the calibration object. */ // Compute the measured center of the calibration object.
#if HAS_X_CENTER #if HAS_X_CENTER
m.obj_center[X_AXIS] = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2; m.obj_center[X_AXIS] = (m.obj_side[LEFT] + m.obj_side[RIGHT]) / 2;
#endif #endif
@ -305,8 +319,8 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
m.obj_center[Y_AXIS] = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2; m.obj_center[Y_AXIS] = (m.obj_side[FRONT] + m.obj_side[BACK]) / 2;
#endif #endif
/* Compute the outside diameter of the nozzle at the height // Compute the outside diameter of the nozzle at the height
* at which it makes contact with the calibration object */ // at which it makes contact with the calibration object
#if HAS_X_CENTER #if HAS_X_CENTER
m.nozzle_outer_dimension[X_AXIS] = m.obj_side[RIGHT] - m.obj_side[LEFT] - m.dimensions[X_AXIS]; m.nozzle_outer_dimension[X_AXIS] = m.obj_side[RIGHT] - m.obj_side[LEFT] - m.dimensions[X_AXIS];
#endif #endif
@ -316,8 +330,8 @@ inline void probe_sides(measurements_t &m, const float uncertainty) {
park_above_object(m, uncertainty); park_above_object(m, uncertainty);
/* The positional error is the difference between the known calibration // The difference between the known and the measured location
* object location and the measured calibration object location */ // of the calibration object is the positional error
m.pos_error[X_AXIS] = m.pos_error[X_AXIS] =
#if HAS_X_CENTER #if HAS_X_CENTER
m.true_center[X_AXIS] - m.obj_center[X_AXIS]; m.true_center[X_AXIS] - m.obj_center[X_AXIS];
@ -434,9 +448,9 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
// Backlash compensation should be off while measuring backlash // Backlash compensation should be off while measuring backlash
{ {
// New scope for TEMPORARY_BACKLASH_STATE // New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_STATE(false); TEMPORARY_BACKLASH_CORRECTION(0.0f);
TEMPORARY_BACKLASH_SMOOTHING(0); TEMPORARY_BACKLASH_SMOOTHING(0.0f);
probe_sides(m, uncertainty); probe_sides(m, uncertainty);
@ -466,9 +480,9 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
// directions to take up any backlash // directions to take up any backlash
{ {
// New scope for TEMPORARY_BACKLASH_STATE // New scope for TEMPORARY_BACKLASH_CORRECTION
TEMPORARY_BACKLASH_STATE(true); TEMPORARY_BACKLASH_CORRECTION(1.0f);
TEMPORARY_BACKLASH_SMOOTHING(0); TEMPORARY_BACKLASH_SMOOTHING(0.0f);
move_to( move_to(
X_AXIS, current_position[X_AXIS] + 3, X_AXIS, current_position[X_AXIS] + 3,
Y_AXIS, current_position[Y_AXIS] + 3, Y_AXIS, current_position[Y_AXIS] + 3,
@ -484,8 +498,9 @@ inline void calibrate_backlash(measurements_t &m, const float uncertainty) {
} }
inline void update_measurements(measurements_t &m, const AxisEnum axis) { inline void update_measurements(measurements_t &m, const AxisEnum axis) {
const float true_center[XYZ] = CALIBRATION_OBJECT_CENTER;
current_position[axis] += m.pos_error[axis]; current_position[axis] += m.pos_error[axis];
m.obj_center[axis] = m.true_center[axis]; m.obj_center[axis] = true_center[axis];
m.pos_error[axis] = 0; m.pos_error[axis] = 0;
} }
@ -501,8 +516,8 @@ inline void update_measurements(measurements_t &m, const AxisEnum axis) {
* - Call calibrate_backlash() beforehand for best accuracy * - Call calibrate_backlash() beforehand for best accuracy
*/ */
inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const uint8_t extruder) { inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const uint8_t extruder) {
TEMPORARY_BACKLASH_STATE(true); TEMPORARY_BACKLASH_CORRECTION(1.0f);
TEMPORARY_BACKLASH_SMOOTHING(0); TEMPORARY_BACKLASH_SMOOTHING(0.0f);
#if HOTENDS > 1 #if HOTENDS > 1
set_nozzle(m, extruder); set_nozzle(m, extruder);
@ -510,7 +525,7 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
probe_sides(m, uncertainty); probe_sides(m, uncertainty);
/* Adjust the hotend offset */ // Adjust the hotend offset
#if HOTENDS > 1 #if HOTENDS > 1
#if HAS_X_CENTER #if HAS_X_CENTER
hotend_offset[X_AXIS][extruder] += m.pos_error[X_AXIS]; hotend_offset[X_AXIS][extruder] += m.pos_error[X_AXIS];
@ -545,8 +560,8 @@ inline void calibrate_toolhead(measurements_t &m, const float uncertainty, const
* uncertainty in - How far away from the object to begin probing * uncertainty in - How far away from the object to begin probing
*/ */
inline void calibrate_all_toolheads(measurements_t &m, const float uncertainty) { inline void calibrate_all_toolheads(measurements_t &m, const float uncertainty) {
TEMPORARY_BACKLASH_STATE(true); TEMPORARY_BACKLASH_CORRECTION(1.0f);
TEMPORARY_BACKLASH_SMOOTHING(0); TEMPORARY_BACKLASH_SMOOTHING(0.0f);
HOTEND_LOOP() calibrate_toolhead(m, uncertainty, e); HOTEND_LOOP() calibrate_toolhead(m, uncertainty, e);
@ -574,23 +589,22 @@ inline void calibrate_all() {
reset_nozzle_offsets(); reset_nozzle_offsets();
#endif #endif
TEMPORARY_BACKLASH_STATE(true); TEMPORARY_BACKLASH_CORRECTION(1.0f);
TEMPORARY_BACKLASH_SMOOTHING(0); TEMPORARY_BACKLASH_SMOOTHING(0.0f);
// Do a fast and rough calibration of the toolheads
/* Do a fast and rough calibration of the toolheads */
calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNKNOWN); calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNKNOWN);
#if ENABLED(BACKLASH_GCODE) #if ENABLED(BACKLASH_GCODE)
calibrate_backlash(m, CALIBRATION_MEASUREMENT_UNCERTAIN); calibrate_backlash(m, CALIBRATION_MEASUREMENT_UNCERTAIN);
#endif #endif
/* Cycle the toolheads so the servos settle into their "natural" positions */ // Cycle the toolheads so the servos settle into their "natural" positions
#if HOTENDS > 1 #if HOTENDS > 1
HOTEND_LOOP() set_nozzle(m, e); HOTEND_LOOP() set_nozzle(m, e);
#endif #endif
/* Do a slow and precise calibration of the toolheads */ // Do a slow and precise calibration of the toolheads
calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNCERTAIN); calibrate_all_toolheads(m, CALIBRATION_MEASUREMENT_UNCERTAIN);
move_to(X_AXIS, 150); // Park nozzle away from calibration object move_to(X_AXIS, 150); // Park nozzle away from calibration object
@ -607,6 +621,9 @@ inline void calibrate_all() {
* no args - Perform entire calibration sequence (backlash + position on all toolheads) * no args - Perform entire calibration sequence (backlash + position on all toolheads)
*/ */
void GcodeSuite::G425() { void GcodeSuite::G425() {
TEMPORARY_SOFT_ENDSTOP_STATE(false);
TEMPORARY_BED_LEVELING_STATE(false);
if (axis_unhomed_error()) return; if (axis_unhomed_error()) return;
measurements_t m; measurements_t m;