1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-30 07:17:59 +00:00

🐛 Fix, improve PWM on AVR (#23463)

This commit is contained in:
Mike La Spina 2022-01-12 17:28:53 -06:00 committed by Scott Lahteine
parent 0204547c09
commit 39e4310c7b
7 changed files with 131 additions and 189 deletions

View File

@ -75,6 +75,8 @@ void HAL_init() {
#if HAS_SERVO_3 #if HAS_SERVO_3
INIT_SERVO(3); INIT_SERVO(3);
#endif #endif
init_pwm_timers(); // Init user timers to default frequency - 1000HZ
} }
void HAL_reboot() { void HAL_reboot() {

View File

@ -207,6 +207,7 @@ inline void HAL_adc_init() {
#define strtof strtod #define strtof strtod
#define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment #define HAL_CAN_SET_PWM_FREQ // This HAL supports PWM Frequency adjustment
#define PWM_FREQUENCY 1000 // Default PWM frequency when set_pwm_duty() is called without set_pwm_frequency()
/** /**
* set_pwm_frequency * set_pwm_frequency
@ -226,3 +227,9 @@ void set_pwm_frequency(const pin_t pin, const uint16_t f_desired);
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255] * Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/ */
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false); void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);
/*
* init_pwm_timers
* sets the default frequency for timers 2-5 to 1000HZ
*/
void init_pwm_timers();

View File

@ -21,10 +21,7 @@
*/ */
#ifdef __AVR__ #ifdef __AVR__
#include "../../inc/MarlinConfigPre.h" #include "../../inc/MarlinConfig.h"
#include "HAL.h"
#if NEEDS_HARDWARE_PWM // Specific meta-flag for features that mandate PWM
struct Timer { struct Timer {
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
@ -32,6 +29,8 @@ struct Timer {
volatile uint16_t* ICRn; // max 1 ICR register per timer volatile uint16_t* ICRn; // max 1 ICR register per timer
uint8_t n; // the timer number [0->5] uint8_t n; // the timer number [0->5]
uint8_t q; // the timer output [0->2] (A->C) uint8_t q; // the timer output [0->2] (A->C)
bool isPWM; // True if pin is a "hardware timer"
bool isProtected; // True if timer is protected
}; };
// Macros for the Timer structure // Macros for the Timer structure
@ -53,16 +52,13 @@ struct Timer {
#define _SET_ICRn(ICRn, V) (*(ICRn) = int(V) & 0xFFFF) #define _SET_ICRn(ICRn, V) (*(ICRn) = int(V) & 0xFFFF)
/** /**
* get_pwm_timer * Return a Timer struct describing a pin's timer.
* Get the timer information and register of the provided pin.
* Return a Timer struct containing this information.
* Used by set_pwm_frequency, set_pwm_duty
*/ */
Timer get_pwm_timer(const pin_t pin) { Timer get_pwm_timer(const pin_t pin) {
uint8_t q = 0; uint8_t q = 0;
switch (digitalPinToTimer(pin)) { switch (digitalPinToTimer(pin)) {
// Protect reserved timers (TIMER0 & TIMER1)
#ifdef TCCR0A #ifdef TCCR0A
IF_DISABLED(AVR_AT90USB1286_FAMILY, case TIMER0A:) IF_DISABLED(AVR_AT90USB1286_FAMILY, case TIMER0A:)
case TIMER0B: case TIMER0B:
@ -71,212 +67,147 @@ Timer get_pwm_timer(const pin_t pin) {
case TIMER1A: case TIMER1B: case TIMER1A: case TIMER1B:
#endif #endif
break; break; // Protect reserved timers (TIMER0 & TIMER1)
#if HAS_TCCR2 #if HAS_TCCR2
case TIMER2: { case TIMER2:
Timer timer = { return Timer({ { &TCCR2, nullptr, nullptr }, { (uint16_t*)&OCR2, nullptr, nullptr }, nullptr, 2, 0, true, false });
{ &TCCR2, nullptr, nullptr }, #elif ENABLED(USE_OCR2A_AS_TOP)
{ (uint16_t*)&OCR2, nullptr, nullptr }, case TIMER2A: break; // protect TIMER2A since its OCR is used by TIMER2B
nullptr, case TIMER2B:
2, 0 return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, 1, true, false });
};
return timer;
}
#elif defined(TCCR2A) #elif defined(TCCR2A)
#if ENABLED(USE_OCR2A_AS_TOP) case TIMER2B: ++q; case TIMER2A:
case TIMER2A: break; // protect TIMER2A return Timer({ { &TCCR2A, &TCCR2B, nullptr }, { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr }, nullptr, 2, q, true, false });
case TIMER2B: {
Timer timer = {
{ &TCCR2A, &TCCR2B, nullptr },
{ (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
nullptr,
2, 1
};
return timer;
}
#else
case TIMER2B: ++q;
case TIMER2A: {
Timer timer = {
{ &TCCR2A, &TCCR2B, nullptr },
{ (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, nullptr },
nullptr,
2, q
};
return timer;
}
#endif
#endif #endif
#ifdef OCR3C #ifdef OCR3C
case TIMER3C: ++q; case TIMER3C: ++q; case TIMER3B: ++q; case TIMER3A:
case TIMER3B: ++q; return Timer({ { &TCCR3A, &TCCR3B, &TCCR3C }, { &OCR3A, &OCR3B, &OCR3C }, &ICR3, 3, q, true, false });
case TIMER3A: {
Timer timer = {
{ &TCCR3A, &TCCR3B, &TCCR3C },
{ &OCR3A, &OCR3B, &OCR3C },
&ICR3,
3, q
};
return timer;
}
#elif defined(OCR3B) #elif defined(OCR3B)
case TIMER3B: ++q; case TIMER3B: ++q; case TIMER3A:
case TIMER3A: { return Timer({ { &TCCR3A, &TCCR3B, nullptr }, { &OCR3A, &OCR3B, nullptr }, &ICR3, 3, q, true, false });
Timer timer = {
{ &TCCR3A, &TCCR3B, nullptr },
{ &OCR3A, &OCR3B, nullptr },
&ICR3,
3, q
};
return timer;
}
#endif #endif
#ifdef TCCR4A #ifdef TCCR4A
case TIMER4C: ++q; case TIMER4C: ++q; case TIMER4B: ++q; case TIMER4A:
case TIMER4B: ++q; return Timer({ { &TCCR4A, &TCCR4B, &TCCR4C }, { &OCR4A, &OCR4B, &OCR4C }, &ICR4, 4, q, true, false });
case TIMER4A: {
Timer timer = {
{ &TCCR4A, &TCCR4B, &TCCR4C },
{ &OCR4A, &OCR4B, &OCR4C },
&ICR4,
4, q
};
return timer;
}
#endif #endif
#ifdef TCCR5A #ifdef TCCR5A
case TIMER5C: ++q; case TIMER5C: ++q; case TIMER5B: ++q; case TIMER5A:
case TIMER5B: ++q; return Timer({ { &TCCR5A, &TCCR5B, &TCCR5C }, { &OCR5A, &OCR5B, &OCR5C }, &ICR5, 5, q, true, false });
case TIMER5A: {
Timer timer = {
{ &TCCR5A, &TCCR5B, &TCCR5C },
{ &OCR5A, &OCR5B, &OCR5C },
&ICR5,
5, q
};
return timer;
}
#endif #endif
} }
Timer timer = { return Timer();
{ nullptr, nullptr, nullptr },
{ nullptr, nullptr, nullptr },
nullptr,
0, 0
};
return timer;
} }
void set_pwm_frequency(const pin_t pin, const uint16_t f_desired) { void set_pwm_frequency(const pin_t pin, const uint16_t f_desired) {
Timer timer = get_pwm_timer(pin); Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognized if (timer.isProtected || !timer.isPWM) return; // Don't proceed if protected timer or not recognized
uint16_t size;
if (timer.n == 2) size = 255; else size = 65535;
uint16_t res = 255; // resolution (TOP value) const bool is_timer2 = timer.n == 2;
uint8_t j = 0; // prescaler index const uint16_t maxtop = is_timer2 ? 0xFF : 0xFFFF;
uint8_t wgm = 1; // waveform generation mode
uint16_t res = 0xFF; // resolution (TOP value)
uint8_t j = CS_NONE; // prescaler index
uint8_t wgm = WGM_PWM_PC_8; // waveform generation mode
// Calculating the prescaler and resolution to use to achieve closest frequency // Calculating the prescaler and resolution to use to achieve closest frequency
if (f_desired != 0) { if (f_desired != 0) {
int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable constexpr uint16_t prescaler[] = { 1, 8, (32), 64, (128), 256, 1024 }; // (*) are Timer 2 only
uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 }; uint16_t f = (F_CPU) / (2 * 1024 * maxtop) + 1; // Start with the lowest non-zero frequency achievable (1 or 31)
// loop over prescaler values LOOP_L_N(i, COUNT(prescaler)) { // Loop through all prescaler values
LOOP_S_L_N(i, 1, 8) { const uint16_t p = prescaler[i];
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255; uint16_t res_fast_temp, res_pc_temp;
if (timer.n == 2) { if (is_timer2) {
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP #if ENABLED(USE_OCR2A_AS_TOP) // No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
#if ENABLED(USE_OCR2A_AS_TOP) const uint16_t rft = (F_CPU) / (p * f_desired);
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired); res_fast_temp = rft - 1;
res_temp_fast = rtf - 1; res_pc_temp = rft / 2;
res_temp_phase_correct = rtf / 2; #else
res_fast_temp = res_pc_temp = maxtop;
#endif #endif
} }
else { else {
// Skip TIMER2 specific prescalers when not TIMER2 if (p == 32 || p == 128) continue; // Skip TIMER2 specific prescalers when not TIMER2
if (i == 3 || i == 5) continue; const uint16_t rft = (F_CPU) / (p * f_desired);
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired); res_fast_temp = rft - 1;
res_temp_fast = rtf - 1; res_pc_temp = rft / 2;
res_temp_phase_correct = rtf / 2;
} }
LIMIT(res_temp_fast, 1U, size); LIMIT(res_fast_temp, 1U, maxtop);
LIMIT(res_temp_phase_correct, 1U, size); LIMIT(res_pc_temp, 1U, maxtop);
// Calculate frequencies of test prescaler and resolution values // Calculate frequencies of test prescaler and resolution values
const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)), const uint32_t f_diff = _MAX(f, f_desired) - _MIN(f, f_desired),
f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct), f_fast_temp = (F_CPU) / (p * (1 + res_fast_temp)),
f_diff = ABS(f - f_desired), f_fast_diff = _MAX(f_fast_temp, f_desired) - _MIN(f_fast_temp, f_desired),
f_fast_diff = ABS(f_temp_fast - f_desired), f_pc_temp = (F_CPU) / (2 * p * res_pc_temp),
f_phase_diff = ABS(f_temp_phase_correct - f_desired); f_pc_diff = _MAX(f_pc_temp, f_desired) - _MIN(f_pc_temp, f_desired);
// If FAST values are closest to desired f if (f_fast_diff < f_diff && f_fast_diff <= f_pc_diff) { // FAST values are closest to desired f
if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) {
// Remember this combination
f = f_temp_fast;
res = res_temp_fast;
j = i;
// Set the Wave Generation Mode to FAST PWM // Set the Wave Generation Mode to FAST PWM
if (timer.n == 2) wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_FAST_PWM_OCR2A, WGM2_FAST_PWM)) : uint8_t(WGM_FAST_PWM_ICRn);
wgm = TERN(USE_OCR2A_AS_TOP, WGM2_FAST_PWM_OCR2A, WGM2_FAST_PWM); // Remember this combination
else f = f_fast_temp; res = res_fast_temp; j = i + 1;
wgm = WGM_FAST_PWM_ICRn;
} }
// If PHASE CORRECT values are closes to desired f else if (f_pc_diff < f_diff) { // PHASE CORRECT values are closes to desired f
else if (f_phase_diff < f_diff) {
f = f_temp_phase_correct;
res = res_temp_phase_correct;
j = i;
// Set the Wave Generation Mode to PWM PHASE CORRECT // Set the Wave Generation Mode to PWM PHASE CORRECT
if (timer.n == 2) wgm = is_timer2 ? uint8_t(TERN(USE_OCR2A_AS_TOP, WGM2_PWM_PC_OCR2A, WGM2_PWM_PC)) : uint8_t(WGM_PWM_PC_ICRn);
wgm = TERN(USE_OCR2A_AS_TOP, WGM2_PWM_PC_OCR2A, WGM2_FAST_PWM); f = f_pc_temp; res = res_pc_temp; j = i + 1;
else
wgm = WGM_PWM_PC_ICRn;
} }
} }
} }
_SET_WGMnQ(timer.TCCRnQ, wgm); _SET_WGMnQ(timer.TCCRnQ, wgm);
_SET_CSn(timer.TCCRnQ, j); _SET_CSn(timer.TCCRnQ, j);
if (timer.n == 2) { if (is_timer2) {
TERN_(USE_OCR2A_AS_TOP, _SET_OCRnQ(timer.OCRnQ, 0, res)); // Set OCR2A value (TOP) = res TERN_(USE_OCR2A_AS_TOP, _SET_OCRnQ(timer.OCRnQ, 0, res)); // Set OCR2A value (TOP) = res
} }
else else
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res _SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
} }
#endif // NEEDS_HARDWARE_PWM
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) { void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
#if NEEDS_HARDWARE_PWM // If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH. if (v == 0)
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0) digitalWrite(pin, invert);
if (v == 0) else if (v == v_size)
digitalWrite(pin, invert); digitalWrite(pin, !invert);
else if (v == v_size) else {
digitalWrite(pin, !invert); Timer timer = get_pwm_timer(pin);
else { if (timer.isProtected) return; // Leave protected timer unchanged
Timer timer = get_pwm_timer(pin); if (timer.isPWM) {
if (timer.n == 0) return; // Don't proceed if protected timer or not recognized _SET_COMnQ(timer.TCCRnQ, SUM_TERN(HAS_TCCR2, timer.q, timer.q == 2), COM_CLEAR_SET + invert); // COM20 is on bit 4 of TCCR2, so +1 for q==2
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
_SET_COMnQ(timer.TCCRnQ, timer.q TERN_(HAS_TCCR2, + (timer.q == 2)), COM_CLEAR_SET + invert); // COM20 is on bit 4 of TCCR2, so +1 for q==2
const uint16_t top = timer.n == 2 ? TERN(USE_OCR2A_AS_TOP, *timer.OCRnQ[0], 255) : *timer.ICRn; const uint16_t top = timer.n == 2 ? TERN(USE_OCR2A_AS_TOP, *timer.OCRnQ[0], 255) : *timer.ICRn;
_SET_OCRnQ(timer.OCRnQ, timer.q, uint16_t(uint32_t(v) * top / v_size)); // Scale 8/16-bit v to top value _SET_OCRnQ(timer.OCRnQ, timer.q, uint16_t(uint32_t(v) * top / v_size)); // Scale 8/16-bit v to top value
} }
else
digitalWrite(pin, v < 128 ? LOW : HIGH);
}
}
#else void init_pwm_timers() {
// Init some timer frequencies to a default 1KHz
const pin_t pwm_pin[] = {
#ifdef __AVR_ATmega2560__
10, 5, 6, 46
#elif defined(__AVR_ATmega1280__)
12, 31
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega1284__)
15, 6
#elif defined(__AVR_AT90USB1286__) || defined(__AVR_mega64) || defined(__AVR_mega128)
16, 24
#endif
};
analogWrite(pin, v); LOOP_L_N(i, COUNT(pwm_pin))
UNUSED(v_size); set_pwm_frequency(pwm_pin[i], 1000);
UNUSED(invert);
#endif
} }
#endif // __AVR__ #endif // __AVR__

View File

@ -257,7 +257,7 @@ uint16_t set_pwm_frequency_hz(const_float_t hz, const float dca, const float dcb
const float pwm_top = round(count); // Get the rounded count const float pwm_top = round(count); // Get the rounded count
ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP ICR5 = (uint16_t)pwm_top - 1; // Subtract 1 for TOP
OCR5A = pwm_top * ABS(dca); // Update and scale DCs OCR5A = pwm_top * ABS(dca); // Update and scale DCs
OCR5B = pwm_top * ABS(dcb); OCR5B = pwm_top * ABS(dcb);
OCR5C = pwm_top * ABS(dcc); OCR5C = pwm_top * ABS(dcc);
_SET_COM(5, A, dca ? (dca < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); // Set compare modes _SET_COM(5, A, dca ? (dca < 0 ? COM_SET_CLEAR : COM_CLEAR_SET) : COM_NORMAL); // Set compare modes

View File

@ -677,11 +677,6 @@
#define CUTTER_UNIT_IS(V) (_CUTTER_POWER(CUTTER_POWER_UNIT) == _CUTTER_POWER(V)) #define CUTTER_UNIT_IS(V) (_CUTTER_POWER(CUTTER_POWER_UNIT) == _CUTTER_POWER(V))
#endif #endif
// Add features that need hardware PWM here
#if ANY(FAST_PWM_FAN, SPINDLE_LASER_USE_PWM)
#define NEEDS_HARDWARE_PWM 1
#endif
#if !defined(__AVR__) || !defined(USBCON) #if !defined(__AVR__) || !defined(USBCON)
// Define constants and variables for buffering serial data. // Define constants and variables for buffering serial data.
// Use only 0 or powers of 2 greater than 1 // Use only 0 or powers of 2 greater than 1

View File

@ -3257,33 +3257,33 @@ void Stepper::report_positions() {
#elif HAS_MOTOR_CURRENT_PWM #elif HAS_MOTOR_CURRENT_PWM
#define _WRITE_CURRENT_PWM(P) set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE)) #define _WRITE_CURRENT_PWM_DUTY(P) set_pwm_duty(pin_t(MOTOR_CURRENT_PWM_## P ##_PIN), 255L * current / (MOTOR_CURRENT_PWM_RANGE))
switch (driver) { switch (driver) {
case 0: case 0:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X) #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
_WRITE_CURRENT_PWM(X); _WRITE_CURRENT_PWM_DUTY(X);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y) #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
_WRITE_CURRENT_PWM(Y); _WRITE_CURRENT_PWM_DUTY(Y);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
_WRITE_CURRENT_PWM(XY); _WRITE_CURRENT_PWM_DUTY(XY);
#endif #endif
break; break;
case 1: case 1:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
_WRITE_CURRENT_PWM(Z); _WRITE_CURRENT_PWM_DUTY(Z);
#endif #endif
break; break;
case 2: case 2:
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E) #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
_WRITE_CURRENT_PWM(E); _WRITE_CURRENT_PWM_DUTY(E);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0) #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
_WRITE_CURRENT_PWM(E0); _WRITE_CURRENT_PWM_DUTY(E0);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1) #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
_WRITE_CURRENT_PWM(E1); _WRITE_CURRENT_PWM_DUTY(E1);
#endif #endif
break; break;
} }
@ -3302,34 +3302,37 @@ void Stepper::report_positions() {
#elif HAS_MOTOR_CURRENT_PWM #elif HAS_MOTOR_CURRENT_PWM
#ifdef __SAM3X8E__
#define _RESET_CURRENT_PWM_FREQ(P) NOOP
#else
#define _RESET_CURRENT_PWM_FREQ(P) set_pwm_frequency(pin_t(P), MOTOR_CURRENT_PWM_FREQUENCY)
#endif
#define INIT_CURRENT_PWM(P) do{ SET_PWM(MOTOR_CURRENT_PWM_## P ##_PIN); _RESET_CURRENT_PWM_FREQ(MOTOR_CURRENT_PWM_## P ##_PIN); }while(0)
#if PIN_EXISTS(MOTOR_CURRENT_PWM_X) #if PIN_EXISTS(MOTOR_CURRENT_PWM_X)
SET_PWM(MOTOR_CURRENT_PWM_X_PIN); INIT_CURRENT_PWM(X);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Y) #if PIN_EXISTS(MOTOR_CURRENT_PWM_Y)
SET_PWM(MOTOR_CURRENT_PWM_Y_PIN); INIT_CURRENT_PWM(Y);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
SET_PWM(MOTOR_CURRENT_PWM_XY_PIN); INIT_CURRENT_PWM(XY);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
SET_PWM(MOTOR_CURRENT_PWM_Z_PIN); INIT_CURRENT_PWM(Z);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E) #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
SET_PWM(MOTOR_CURRENT_PWM_E_PIN); INIT_CURRENT_PWM(E);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E0) #if PIN_EXISTS(MOTOR_CURRENT_PWM_E0)
SET_PWM(MOTOR_CURRENT_PWM_E0_PIN); INIT_CURRENT_PWM(E0);
#endif #endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E1) #if PIN_EXISTS(MOTOR_CURRENT_PWM_E1)
SET_PWM(MOTOR_CURRENT_PWM_E1_PIN); INIT_CURRENT_PWM(E1);
#endif #endif
refresh_motor_power(); refresh_motor_power();
// Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
#ifdef __AVR__
SET_CS5(PRESCALER_1);
#endif
#endif #endif
} }

View File

@ -317,6 +317,10 @@ class Stepper {
#ifndef PWM_MOTOR_CURRENT #ifndef PWM_MOTOR_CURRENT
#define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT #define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
#endif #endif
#ifndef MOTOR_CURRENT_PWM_FREQUENCY
#define MOTOR_CURRENT_PWM_FREQUENCY 31400
#endif
#define MOTOR_CURRENT_COUNT LINEAR_AXES #define MOTOR_CURRENT_COUNT LINEAR_AXES
#elif HAS_MOTOR_CURRENT_SPI #elif HAS_MOTOR_CURRENT_SPI
static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT; static constexpr uint32_t digipot_count[] = DIGIPOT_MOTOR_CURRENT;