1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-26 13:25:54 +00:00

changed end of line to windows, which seems to be the majority of developers main platform.

This commit is contained in:
Bernhard Kubicek 2011-11-05 14:19:57 +01:00
parent 00674af3a8
commit 40e8081623
22 changed files with 9923 additions and 9923 deletions

View File

@ -1,418 +1,418 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef FatStructs_h
#define FatStructs_h
/**
* \file
* FAT file structures
*/
/*
* mostly from Microsoft document fatgen103.doc
* http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
*/
//------------------------------------------------------------------------------
/** Value for byte 510 of boot block or MBR */
uint8_t const BOOTSIG0 = 0X55;
/** Value for byte 511 of boot block or MBR */
uint8_t const BOOTSIG1 = 0XAA;
//------------------------------------------------------------------------------
/**
* \struct partitionTable
* \brief MBR partition table entry
*
* A partition table entry for a MBR formatted storage device.
* The MBR partition table has four entries.
*/
struct partitionTable {
/**
* Boot Indicator . Indicates whether the volume is the active
* partition. Legal values include: 0X00. Do not use for booting.
* 0X80 Active partition.
*/
uint8_t boot;
/**
* Head part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t beginHead;
/**
* Sector part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned beginSector : 6;
/** High bits cylinder for first block in partition. */
unsigned beginCylinderHigh : 2;
/**
* Combine beginCylinderLow with beginCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t beginCylinderLow;
/**
* Partition type. See defines that begin with PART_TYPE_ for
* some Microsoft partition types.
*/
uint8_t type;
/**
* head part of cylinder-head-sector address of the last sector in the
* partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t endHead;
/**
* Sector part of cylinder-head-sector address of the last sector in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned endSector : 6;
/** High bits of end cylinder */
unsigned endCylinderHigh : 2;
/**
* Combine endCylinderLow with endCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t endCylinderLow;
/** Logical block address of the first block in the partition. */
uint32_t firstSector;
/** Length of the partition, in blocks. */
uint32_t totalSectors;
};
/** Type name for partitionTable */
typedef struct partitionTable part_t;
//------------------------------------------------------------------------------
/**
* \struct masterBootRecord
*
* \brief Master Boot Record
*
* The first block of a storage device that is formatted with a MBR.
*/
struct masterBootRecord {
/** Code Area for master boot program. */
uint8_t codeArea[440];
/** Optional WindowsNT disk signature. May contain more boot code. */
uint32_t diskSignature;
/** Usually zero but may be more boot code. */
uint16_t usuallyZero;
/** Partition tables. */
part_t part[4];
/** First MBR signature byte. Must be 0X55 */
uint8_t mbrSig0;
/** Second MBR signature byte. Must be 0XAA */
uint8_t mbrSig1;
};
/** Type name for masterBootRecord */
typedef struct masterBootRecord mbr_t;
//------------------------------------------------------------------------------
/**
* \struct biosParmBlock
*
* \brief BIOS parameter block
*
* The BIOS parameter block describes the physical layout of a FAT volume.
*/
struct biosParmBlock {
/**
* Count of bytes per sector. This value may take on only the
* following values: 512, 1024, 2048 or 4096
*/
uint16_t bytesPerSector;
/**
* Number of sectors per allocation unit. This value must be a
* power of 2 that is greater than 0. The legal values are
* 1, 2, 4, 8, 16, 32, 64, and 128.
*/
uint8_t sectorsPerCluster;
/**
* Number of sectors before the first FAT.
* This value must not be zero.
*/
uint16_t reservedSectorCount;
/** The count of FAT data structures on the volume. This field should
* always contain the value 2 for any FAT volume of any type.
*/
uint8_t fatCount;
/**
* For FAT12 and FAT16 volumes, this field contains the count of
* 32-byte directory entries in the root directory. For FAT32 volumes,
* this field must be set to 0. For FAT12 and FAT16 volumes, this
* value should always specify a count that when multiplied by 32
* results in a multiple of bytesPerSector. FAT16 volumes should
* use the value 512.
*/
uint16_t rootDirEntryCount;
/**
* This field is the old 16-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then totalSectors32
* must be non-zero. For FAT32 volumes, this field must be 0. For
* FAT12 and FAT16 volumes, this field contains the sector count, and
* totalSectors32 is 0 if the total sector count fits
* (is less than 0x10000).
*/
uint16_t totalSectors16;
/**
* This dates back to the old MS-DOS 1.x media determination and is
* no longer usually used for anything. 0xF8 is the standard value
* for fixed (non-removable) media. For removable media, 0xF0 is
* frequently used. Legal values are 0xF0 or 0xF8-0xFF.
*/
uint8_t mediaType;
/**
* Count of sectors occupied by one FAT on FAT12/FAT16 volumes.
* On FAT32 volumes this field must be 0, and sectorsPerFat32
* contains the FAT size count.
*/
uint16_t sectorsPerFat16;
/** Sectors per track for interrupt 0x13. Not used otherwise. */
uint16_t sectorsPerTrtack;
/** Number of heads for interrupt 0x13. Not used otherwise. */
uint16_t headCount;
/**
* Count of hidden sectors preceding the partition that contains this
* FAT volume. This field is generally only relevant for media
* visible on interrupt 0x13.
*/
uint32_t hidddenSectors;
/**
* This field is the new 32-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then
* totalSectors16 must be non-zero.
*/
uint32_t totalSectors32;
/**
* Count of sectors occupied by one FAT on FAT32 volumes.
*/
uint32_t sectorsPerFat32;
/**
* This field is only defined for FAT32 media and does not exist on
* FAT12 and FAT16 media.
* Bits 0-3 -- Zero-based number of active FAT.
* Only valid if mirroring is disabled.
* Bits 4-6 -- Reserved.
* Bit 7 -- 0 means the FAT is mirrored at runtime into all FATs.
* -- 1 means only one FAT is active; it is the one referenced in bits 0-3.
* Bits 8-15 -- Reserved.
*/
uint16_t fat32Flags;
/**
* FAT32 version. High byte is major revision number.
* Low byte is minor revision number. Only 0.0 define.
*/
uint16_t fat32Version;
/**
* Cluster number of the first cluster of the root directory for FAT32.
* This usually 2 but not required to be 2.
*/
uint32_t fat32RootCluster;
/**
* Sector number of FSINFO structure in the reserved area of the
* FAT32 volume. Usually 1.
*/
uint16_t fat32FSInfo;
/**
* If non-zero, indicates the sector number in the reserved area
* of the volume of a copy of the boot record. Usually 6.
* No value other than 6 is recommended.
*/
uint16_t fat32BackBootBlock;
/**
* Reserved for future expansion. Code that formats FAT32 volumes
* should always set all of the bytes of this field to 0.
*/
uint8_t fat32Reserved[12];
};
/** Type name for biosParmBlock */
typedef struct biosParmBlock bpb_t;
//------------------------------------------------------------------------------
/**
* \struct fat32BootSector
*
* \brief Boot sector for a FAT16 or FAT32 volume.
*
*/
struct fat32BootSector {
/** X86 jmp to boot program */
uint8_t jmpToBootCode[3];
/** informational only - don't depend on it */
char oemName[8];
/** BIOS Parameter Block */
bpb_t bpb;
/** for int0x13 use value 0X80 for hard drive */
uint8_t driveNumber;
/** used by Windows NT - should be zero for FAT */
uint8_t reserved1;
/** 0X29 if next three fields are valid */
uint8_t bootSignature;
/** usually generated by combining date and time */
uint32_t volumeSerialNumber;
/** should match volume label in root dir */
char volumeLabel[11];
/** informational only - don't depend on it */
char fileSystemType[8];
/** X86 boot code */
uint8_t bootCode[420];
/** must be 0X55 */
uint8_t bootSectorSig0;
/** must be 0XAA */
uint8_t bootSectorSig1;
};
//------------------------------------------------------------------------------
// End Of Chain values for FAT entries
/** FAT16 end of chain value used by Microsoft. */
uint16_t const FAT16EOC = 0XFFFF;
/** Minimum value for FAT16 EOC. Use to test for EOC. */
uint16_t const FAT16EOC_MIN = 0XFFF8;
/** FAT32 end of chain value used by Microsoft. */
uint32_t const FAT32EOC = 0X0FFFFFFF;
/** Minimum value for FAT32 EOC. Use to test for EOC. */
uint32_t const FAT32EOC_MIN = 0X0FFFFFF8;
/** Mask a for FAT32 entry. Entries are 28 bits. */
uint32_t const FAT32MASK = 0X0FFFFFFF;
/** Type name for fat32BootSector */
typedef struct fat32BootSector fbs_t;
//------------------------------------------------------------------------------
/**
* \struct directoryEntry
* \brief FAT short directory entry
*
* Short means short 8.3 name, not the entry size.
*
* Date Format. A FAT directory entry date stamp is a 16-bit field that is
* basically a date relative to the MS-DOS epoch of 01/01/1980. Here is the
* format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the
* 16-bit word):
*
* Bits 9-15: Count of years from 1980, valid value range 0-127
* inclusive (1980-2107).
*
* Bits 5-8: Month of year, 1 = January, valid value range 1-12 inclusive.
*
* Bits 0-4: Day of month, valid value range 1-31 inclusive.
*
* Time Format. A FAT directory entry time stamp is a 16-bit field that has
* a granularity of 2 seconds. Here is the format (bit 0 is the LSB of the
* 16-bit word, bit 15 is the MSB of the 16-bit word).
*
* Bits 11-15: Hours, valid value range 0-23 inclusive.
*
* Bits 5-10: Minutes, valid value range 0-59 inclusive.
*
* Bits 0-4: 2-second count, valid value range 0-29 inclusive (0 - 58 seconds).
*
* The valid time range is from Midnight 00:00:00 to 23:59:58.
*/
struct directoryEntry {
/**
* Short 8.3 name.
* The first eight bytes contain the file name with blank fill.
* The last three bytes contain the file extension with blank fill.
*/
uint8_t name[11];
/** Entry attributes.
*
* The upper two bits of the attribute byte are reserved and should
* always be set to 0 when a file is created and never modified or
* looked at after that. See defines that begin with DIR_ATT_.
*/
uint8_t attributes;
/**
* Reserved for use by Windows NT. Set value to 0 when a file is
* created and never modify or look at it after that.
*/
uint8_t reservedNT;
/**
* The granularity of the seconds part of creationTime is 2 seconds
* so this field is a count of tenths of a second and its valid
* value range is 0-199 inclusive. (WHG note - seems to be hundredths)
*/
uint8_t creationTimeTenths;
/** Time file was created. */
uint16_t creationTime;
/** Date file was created. */
uint16_t creationDate;
/**
* Last access date. Note that there is no last access time, only
* a date. This is the date of last read or write. In the case of
* a write, this should be set to the same date as lastWriteDate.
*/
uint16_t lastAccessDate;
/**
* High word of this entry's first cluster number (always 0 for a
* FAT12 or FAT16 volume).
*/
uint16_t firstClusterHigh;
/** Time of last write. File creation is considered a write. */
uint16_t lastWriteTime;
/** Date of last write. File creation is considered a write. */
uint16_t lastWriteDate;
/** Low word of this entry's first cluster number. */
uint16_t firstClusterLow;
/** 32-bit unsigned holding this file's size in bytes. */
uint32_t fileSize;
};
//------------------------------------------------------------------------------
// Definitions for directory entries
//
/** Type name for directoryEntry */
typedef struct directoryEntry dir_t;
/** escape for name[0] = 0XE5 */
uint8_t const DIR_NAME_0XE5 = 0X05;
/** name[0] value for entry that is free after being "deleted" */
uint8_t const DIR_NAME_DELETED = 0XE5;
/** name[0] value for entry that is free and no allocated entries follow */
uint8_t const DIR_NAME_FREE = 0X00;
/** file is read-only */
uint8_t const DIR_ATT_READ_ONLY = 0X01;
/** File should hidden in directory listings */
uint8_t const DIR_ATT_HIDDEN = 0X02;
/** Entry is for a system file */
uint8_t const DIR_ATT_SYSTEM = 0X04;
/** Directory entry contains the volume label */
uint8_t const DIR_ATT_VOLUME_ID = 0X08;
/** Entry is for a directory */
uint8_t const DIR_ATT_DIRECTORY = 0X10;
/** Old DOS archive bit for backup support */
uint8_t const DIR_ATT_ARCHIVE = 0X20;
/** Test value for long name entry. Test is
(d->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME. */
uint8_t const DIR_ATT_LONG_NAME = 0X0F;
/** Test mask for long name entry */
uint8_t const DIR_ATT_LONG_NAME_MASK = 0X3F;
/** defined attribute bits */
uint8_t const DIR_ATT_DEFINED_BITS = 0X3F;
/** Directory entry is part of a long name */
static inline uint8_t DIR_IS_LONG_NAME(const dir_t* dir) {
return (dir->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME;
}
/** Mask for file/subdirectory tests */
uint8_t const DIR_ATT_FILE_TYPE_MASK = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY);
/** Directory entry is for a file */
static inline uint8_t DIR_IS_FILE(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == 0;
}
/** Directory entry is for a subdirectory */
static inline uint8_t DIR_IS_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == DIR_ATT_DIRECTORY;
}
/** Directory entry is for a file or subdirectory */
static inline uint8_t DIR_IS_FILE_OR_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_VOLUME_ID) == 0;
}
#endif // FatStructs_h
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef FatStructs_h
#define FatStructs_h
/**
* \file
* FAT file structures
*/
/*
* mostly from Microsoft document fatgen103.doc
* http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
*/
//------------------------------------------------------------------------------
/** Value for byte 510 of boot block or MBR */
uint8_t const BOOTSIG0 = 0X55;
/** Value for byte 511 of boot block or MBR */
uint8_t const BOOTSIG1 = 0XAA;
//------------------------------------------------------------------------------
/**
* \struct partitionTable
* \brief MBR partition table entry
*
* A partition table entry for a MBR formatted storage device.
* The MBR partition table has four entries.
*/
struct partitionTable {
/**
* Boot Indicator . Indicates whether the volume is the active
* partition. Legal values include: 0X00. Do not use for booting.
* 0X80 Active partition.
*/
uint8_t boot;
/**
* Head part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t beginHead;
/**
* Sector part of Cylinder-head-sector address of the first block in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned beginSector : 6;
/** High bits cylinder for first block in partition. */
unsigned beginCylinderHigh : 2;
/**
* Combine beginCylinderLow with beginCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t beginCylinderLow;
/**
* Partition type. See defines that begin with PART_TYPE_ for
* some Microsoft partition types.
*/
uint8_t type;
/**
* head part of cylinder-head-sector address of the last sector in the
* partition. Legal values are 0-255. Only used in old PC BIOS.
*/
uint8_t endHead;
/**
* Sector part of cylinder-head-sector address of the last sector in
* the partition. Legal values are 1-63. Only used in old PC BIOS.
*/
unsigned endSector : 6;
/** High bits of end cylinder */
unsigned endCylinderHigh : 2;
/**
* Combine endCylinderLow with endCylinderHigh. Legal values
* are 0-1023. Only used in old PC BIOS.
*/
uint8_t endCylinderLow;
/** Logical block address of the first block in the partition. */
uint32_t firstSector;
/** Length of the partition, in blocks. */
uint32_t totalSectors;
};
/** Type name for partitionTable */
typedef struct partitionTable part_t;
//------------------------------------------------------------------------------
/**
* \struct masterBootRecord
*
* \brief Master Boot Record
*
* The first block of a storage device that is formatted with a MBR.
*/
struct masterBootRecord {
/** Code Area for master boot program. */
uint8_t codeArea[440];
/** Optional WindowsNT disk signature. May contain more boot code. */
uint32_t diskSignature;
/** Usually zero but may be more boot code. */
uint16_t usuallyZero;
/** Partition tables. */
part_t part[4];
/** First MBR signature byte. Must be 0X55 */
uint8_t mbrSig0;
/** Second MBR signature byte. Must be 0XAA */
uint8_t mbrSig1;
};
/** Type name for masterBootRecord */
typedef struct masterBootRecord mbr_t;
//------------------------------------------------------------------------------
/**
* \struct biosParmBlock
*
* \brief BIOS parameter block
*
* The BIOS parameter block describes the physical layout of a FAT volume.
*/
struct biosParmBlock {
/**
* Count of bytes per sector. This value may take on only the
* following values: 512, 1024, 2048 or 4096
*/
uint16_t bytesPerSector;
/**
* Number of sectors per allocation unit. This value must be a
* power of 2 that is greater than 0. The legal values are
* 1, 2, 4, 8, 16, 32, 64, and 128.
*/
uint8_t sectorsPerCluster;
/**
* Number of sectors before the first FAT.
* This value must not be zero.
*/
uint16_t reservedSectorCount;
/** The count of FAT data structures on the volume. This field should
* always contain the value 2 for any FAT volume of any type.
*/
uint8_t fatCount;
/**
* For FAT12 and FAT16 volumes, this field contains the count of
* 32-byte directory entries in the root directory. For FAT32 volumes,
* this field must be set to 0. For FAT12 and FAT16 volumes, this
* value should always specify a count that when multiplied by 32
* results in a multiple of bytesPerSector. FAT16 volumes should
* use the value 512.
*/
uint16_t rootDirEntryCount;
/**
* This field is the old 16-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then totalSectors32
* must be non-zero. For FAT32 volumes, this field must be 0. For
* FAT12 and FAT16 volumes, this field contains the sector count, and
* totalSectors32 is 0 if the total sector count fits
* (is less than 0x10000).
*/
uint16_t totalSectors16;
/**
* This dates back to the old MS-DOS 1.x media determination and is
* no longer usually used for anything. 0xF8 is the standard value
* for fixed (non-removable) media. For removable media, 0xF0 is
* frequently used. Legal values are 0xF0 or 0xF8-0xFF.
*/
uint8_t mediaType;
/**
* Count of sectors occupied by one FAT on FAT12/FAT16 volumes.
* On FAT32 volumes this field must be 0, and sectorsPerFat32
* contains the FAT size count.
*/
uint16_t sectorsPerFat16;
/** Sectors per track for interrupt 0x13. Not used otherwise. */
uint16_t sectorsPerTrtack;
/** Number of heads for interrupt 0x13. Not used otherwise. */
uint16_t headCount;
/**
* Count of hidden sectors preceding the partition that contains this
* FAT volume. This field is generally only relevant for media
* visible on interrupt 0x13.
*/
uint32_t hidddenSectors;
/**
* This field is the new 32-bit total count of sectors on the volume.
* This count includes the count of all sectors in all four regions
* of the volume. This field can be 0; if it is 0, then
* totalSectors16 must be non-zero.
*/
uint32_t totalSectors32;
/**
* Count of sectors occupied by one FAT on FAT32 volumes.
*/
uint32_t sectorsPerFat32;
/**
* This field is only defined for FAT32 media and does not exist on
* FAT12 and FAT16 media.
* Bits 0-3 -- Zero-based number of active FAT.
* Only valid if mirroring is disabled.
* Bits 4-6 -- Reserved.
* Bit 7 -- 0 means the FAT is mirrored at runtime into all FATs.
* -- 1 means only one FAT is active; it is the one referenced in bits 0-3.
* Bits 8-15 -- Reserved.
*/
uint16_t fat32Flags;
/**
* FAT32 version. High byte is major revision number.
* Low byte is minor revision number. Only 0.0 define.
*/
uint16_t fat32Version;
/**
* Cluster number of the first cluster of the root directory for FAT32.
* This usually 2 but not required to be 2.
*/
uint32_t fat32RootCluster;
/**
* Sector number of FSINFO structure in the reserved area of the
* FAT32 volume. Usually 1.
*/
uint16_t fat32FSInfo;
/**
* If non-zero, indicates the sector number in the reserved area
* of the volume of a copy of the boot record. Usually 6.
* No value other than 6 is recommended.
*/
uint16_t fat32BackBootBlock;
/**
* Reserved for future expansion. Code that formats FAT32 volumes
* should always set all of the bytes of this field to 0.
*/
uint8_t fat32Reserved[12];
};
/** Type name for biosParmBlock */
typedef struct biosParmBlock bpb_t;
//------------------------------------------------------------------------------
/**
* \struct fat32BootSector
*
* \brief Boot sector for a FAT16 or FAT32 volume.
*
*/
struct fat32BootSector {
/** X86 jmp to boot program */
uint8_t jmpToBootCode[3];
/** informational only - don't depend on it */
char oemName[8];
/** BIOS Parameter Block */
bpb_t bpb;
/** for int0x13 use value 0X80 for hard drive */
uint8_t driveNumber;
/** used by Windows NT - should be zero for FAT */
uint8_t reserved1;
/** 0X29 if next three fields are valid */
uint8_t bootSignature;
/** usually generated by combining date and time */
uint32_t volumeSerialNumber;
/** should match volume label in root dir */
char volumeLabel[11];
/** informational only - don't depend on it */
char fileSystemType[8];
/** X86 boot code */
uint8_t bootCode[420];
/** must be 0X55 */
uint8_t bootSectorSig0;
/** must be 0XAA */
uint8_t bootSectorSig1;
};
//------------------------------------------------------------------------------
// End Of Chain values for FAT entries
/** FAT16 end of chain value used by Microsoft. */
uint16_t const FAT16EOC = 0XFFFF;
/** Minimum value for FAT16 EOC. Use to test for EOC. */
uint16_t const FAT16EOC_MIN = 0XFFF8;
/** FAT32 end of chain value used by Microsoft. */
uint32_t const FAT32EOC = 0X0FFFFFFF;
/** Minimum value for FAT32 EOC. Use to test for EOC. */
uint32_t const FAT32EOC_MIN = 0X0FFFFFF8;
/** Mask a for FAT32 entry. Entries are 28 bits. */
uint32_t const FAT32MASK = 0X0FFFFFFF;
/** Type name for fat32BootSector */
typedef struct fat32BootSector fbs_t;
//------------------------------------------------------------------------------
/**
* \struct directoryEntry
* \brief FAT short directory entry
*
* Short means short 8.3 name, not the entry size.
*
* Date Format. A FAT directory entry date stamp is a 16-bit field that is
* basically a date relative to the MS-DOS epoch of 01/01/1980. Here is the
* format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the
* 16-bit word):
*
* Bits 9-15: Count of years from 1980, valid value range 0-127
* inclusive (1980-2107).
*
* Bits 5-8: Month of year, 1 = January, valid value range 1-12 inclusive.
*
* Bits 0-4: Day of month, valid value range 1-31 inclusive.
*
* Time Format. A FAT directory entry time stamp is a 16-bit field that has
* a granularity of 2 seconds. Here is the format (bit 0 is the LSB of the
* 16-bit word, bit 15 is the MSB of the 16-bit word).
*
* Bits 11-15: Hours, valid value range 0-23 inclusive.
*
* Bits 5-10: Minutes, valid value range 0-59 inclusive.
*
* Bits 0-4: 2-second count, valid value range 0-29 inclusive (0 - 58 seconds).
*
* The valid time range is from Midnight 00:00:00 to 23:59:58.
*/
struct directoryEntry {
/**
* Short 8.3 name.
* The first eight bytes contain the file name with blank fill.
* The last three bytes contain the file extension with blank fill.
*/
uint8_t name[11];
/** Entry attributes.
*
* The upper two bits of the attribute byte are reserved and should
* always be set to 0 when a file is created and never modified or
* looked at after that. See defines that begin with DIR_ATT_.
*/
uint8_t attributes;
/**
* Reserved for use by Windows NT. Set value to 0 when a file is
* created and never modify or look at it after that.
*/
uint8_t reservedNT;
/**
* The granularity of the seconds part of creationTime is 2 seconds
* so this field is a count of tenths of a second and its valid
* value range is 0-199 inclusive. (WHG note - seems to be hundredths)
*/
uint8_t creationTimeTenths;
/** Time file was created. */
uint16_t creationTime;
/** Date file was created. */
uint16_t creationDate;
/**
* Last access date. Note that there is no last access time, only
* a date. This is the date of last read or write. In the case of
* a write, this should be set to the same date as lastWriteDate.
*/
uint16_t lastAccessDate;
/**
* High word of this entry's first cluster number (always 0 for a
* FAT12 or FAT16 volume).
*/
uint16_t firstClusterHigh;
/** Time of last write. File creation is considered a write. */
uint16_t lastWriteTime;
/** Date of last write. File creation is considered a write. */
uint16_t lastWriteDate;
/** Low word of this entry's first cluster number. */
uint16_t firstClusterLow;
/** 32-bit unsigned holding this file's size in bytes. */
uint32_t fileSize;
};
//------------------------------------------------------------------------------
// Definitions for directory entries
//
/** Type name for directoryEntry */
typedef struct directoryEntry dir_t;
/** escape for name[0] = 0XE5 */
uint8_t const DIR_NAME_0XE5 = 0X05;
/** name[0] value for entry that is free after being "deleted" */
uint8_t const DIR_NAME_DELETED = 0XE5;
/** name[0] value for entry that is free and no allocated entries follow */
uint8_t const DIR_NAME_FREE = 0X00;
/** file is read-only */
uint8_t const DIR_ATT_READ_ONLY = 0X01;
/** File should hidden in directory listings */
uint8_t const DIR_ATT_HIDDEN = 0X02;
/** Entry is for a system file */
uint8_t const DIR_ATT_SYSTEM = 0X04;
/** Directory entry contains the volume label */
uint8_t const DIR_ATT_VOLUME_ID = 0X08;
/** Entry is for a directory */
uint8_t const DIR_ATT_DIRECTORY = 0X10;
/** Old DOS archive bit for backup support */
uint8_t const DIR_ATT_ARCHIVE = 0X20;
/** Test value for long name entry. Test is
(d->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME. */
uint8_t const DIR_ATT_LONG_NAME = 0X0F;
/** Test mask for long name entry */
uint8_t const DIR_ATT_LONG_NAME_MASK = 0X3F;
/** defined attribute bits */
uint8_t const DIR_ATT_DEFINED_BITS = 0X3F;
/** Directory entry is part of a long name */
static inline uint8_t DIR_IS_LONG_NAME(const dir_t* dir) {
return (dir->attributes & DIR_ATT_LONG_NAME_MASK) == DIR_ATT_LONG_NAME;
}
/** Mask for file/subdirectory tests */
uint8_t const DIR_ATT_FILE_TYPE_MASK = (DIR_ATT_VOLUME_ID | DIR_ATT_DIRECTORY);
/** Directory entry is for a file */
static inline uint8_t DIR_IS_FILE(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == 0;
}
/** Directory entry is for a subdirectory */
static inline uint8_t DIR_IS_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_FILE_TYPE_MASK) == DIR_ATT_DIRECTORY;
}
/** Directory entry is for a file or subdirectory */
static inline uint8_t DIR_IS_FILE_OR_SUBDIR(const dir_t* dir) {
return (dir->attributes & DIR_ATT_VOLUME_ID) == 0;
}
#endif // FatStructs_h

File diff suppressed because it is too large Load Diff

View File

@ -1,233 +1,233 @@
/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef Sd2Card_h
#define Sd2Card_h
/**
* \file
* Sd2Card class
*/
#include "Sd2PinMap.h"
#include "SdInfo.h"
/** Set SCK to max rate of F_CPU/2. See Sd2Card::setSckRate(). */
uint8_t const SPI_FULL_SPEED = 0;
/** Set SCK rate to F_CPU/4. See Sd2Card::setSckRate(). */
uint8_t const SPI_HALF_SPEED = 1;
/** Set SCK rate to F_CPU/8. Sd2Card::setSckRate(). */
uint8_t const SPI_QUARTER_SPEED = 2;
/**
* Define MEGA_SOFT_SPI non-zero to use software SPI on Mega Arduinos.
* Pins used are SS 10, MOSI 11, MISO 12, and SCK 13.
*
* MEGA_SOFT_SPI allows an unmodified Adafruit GPS Shield to be used
* on Mega Arduinos. Software SPI works well with GPS Shield V1.1
* but many SD cards will fail with GPS Shield V1.0.
*/
#define MEGA_SOFT_SPI 0
//------------------------------------------------------------------------------
#if MEGA_SOFT_SPI && (defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__))
#define SOFTWARE_SPI
#endif // MEGA_SOFT_SPI
//------------------------------------------------------------------------------
// SPI pin definitions
//
#ifndef SOFTWARE_SPI
// hardware pin defs
/**
* SD Chip Select pin
*
* Warning if this pin is redefined the hardware SS will pin will be enabled
* as an output by init(). An avr processor will not function as an SPI
* master unless SS is set to output mode.
*/
/** The default chip select pin for the SD card is SS. */
uint8_t const SD_CHIP_SELECT_PIN = SS_PIN;
// The following three pins must not be redefined for hardware SPI.
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = MOSI_PIN;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = MISO_PIN;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = SCK_PIN;
/** optimize loops for hardware SPI */
#define OPTIMIZE_HARDWARE_SPI
#else // SOFTWARE_SPI
// define software SPI pins so Mega can use unmodified GPS Shield
/** SPI chip select pin */
uint8_t const SD_CHIP_SELECT_PIN = 10;
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = 11;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = 12;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = 13;
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
/** Protect block zero from write if nonzero */
#define SD_PROTECT_BLOCK_ZERO 1
/** init timeout ms */
uint16_t const SD_INIT_TIMEOUT = 2000;
/** erase timeout ms */
uint16_t const SD_ERASE_TIMEOUT = 10000;
/** read timeout ms */
uint16_t const SD_READ_TIMEOUT = 300;
/** write time out ms */
uint16_t const SD_WRITE_TIMEOUT = 600;
//------------------------------------------------------------------------------
// SD card errors
/** timeout error for command CMD0 */
uint8_t const SD_CARD_ERROR_CMD0 = 0X1;
/** CMD8 was not accepted - not a valid SD card*/
uint8_t const SD_CARD_ERROR_CMD8 = 0X2;
/** card returned an error response for CMD17 (read block) */
uint8_t const SD_CARD_ERROR_CMD17 = 0X3;
/** card returned an error response for CMD24 (write block) */
uint8_t const SD_CARD_ERROR_CMD24 = 0X4;
/** WRITE_MULTIPLE_BLOCKS command failed */
uint8_t const SD_CARD_ERROR_CMD25 = 0X05;
/** card returned an error response for CMD58 (read OCR) */
uint8_t const SD_CARD_ERROR_CMD58 = 0X06;
/** SET_WR_BLK_ERASE_COUNT failed */
uint8_t const SD_CARD_ERROR_ACMD23 = 0X07;
/** card's ACMD41 initialization process timeout */
uint8_t const SD_CARD_ERROR_ACMD41 = 0X08;
/** card returned a bad CSR version field */
uint8_t const SD_CARD_ERROR_BAD_CSD = 0X09;
/** erase block group command failed */
uint8_t const SD_CARD_ERROR_ERASE = 0X0A;
/** card not capable of single block erase */
uint8_t const SD_CARD_ERROR_ERASE_SINGLE_BLOCK = 0X0B;
/** Erase sequence timed out */
uint8_t const SD_CARD_ERROR_ERASE_TIMEOUT = 0X0C;
/** card returned an error token instead of read data */
uint8_t const SD_CARD_ERROR_READ = 0X0D;
/** read CID or CSD failed */
uint8_t const SD_CARD_ERROR_READ_REG = 0X0E;
/** timeout while waiting for start of read data */
uint8_t const SD_CARD_ERROR_READ_TIMEOUT = 0X0F;
/** card did not accept STOP_TRAN_TOKEN */
uint8_t const SD_CARD_ERROR_STOP_TRAN = 0X10;
/** card returned an error token as a response to a write operation */
uint8_t const SD_CARD_ERROR_WRITE = 0X11;
/** attempt to write protected block zero */
uint8_t const SD_CARD_ERROR_WRITE_BLOCK_ZERO = 0X12;
/** card did not go ready for a multiple block write */
uint8_t const SD_CARD_ERROR_WRITE_MULTIPLE = 0X13;
/** card returned an error to a CMD13 status check after a write */
uint8_t const SD_CARD_ERROR_WRITE_PROGRAMMING = 0X14;
/** timeout occurred during write programming */
uint8_t const SD_CARD_ERROR_WRITE_TIMEOUT = 0X15;
/** incorrect rate selected */
uint8_t const SD_CARD_ERROR_SCK_RATE = 0X16;
//------------------------------------------------------------------------------
// card types
/** Standard capacity V1 SD card */
uint8_t const SD_CARD_TYPE_SD1 = 1;
/** Standard capacity V2 SD card */
uint8_t const SD_CARD_TYPE_SD2 = 2;
/** High Capacity SD card */
uint8_t const SD_CARD_TYPE_SDHC = 3;
//------------------------------------------------------------------------------
/**
* \class Sd2Card
* \brief Raw access to SD and SDHC flash memory cards.
*/
class Sd2Card {
public:
/** Construct an instance of Sd2Card. */
Sd2Card(void) : errorCode_(0), inBlock_(0), partialBlockRead_(0), type_(0) {}
uint32_t cardSize(void);
uint8_t erase(uint32_t firstBlock, uint32_t lastBlock);
uint8_t eraseSingleBlockEnable(void);
/**
* \return error code for last error. See Sd2Card.h for a list of error codes.
*/
uint8_t errorCode(void) const {return errorCode_;}
/** \return error data for last error. */
uint8_t errorData(void) const {return status_;}
/**
* Initialize an SD flash memory card with default clock rate and chip
* select pin. See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(void) {
return init(SPI_FULL_SPEED, SD_CHIP_SELECT_PIN);
}
/**
* Initialize an SD flash memory card with the selected SPI clock rate
* and the default SD chip select pin.
* See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(uint8_t sckRateID) {
return init(sckRateID, SD_CHIP_SELECT_PIN);
}
uint8_t init(uint8_t sckRateID, uint8_t chipSelectPin);
void partialBlockRead(uint8_t value);
/** Returns the current value, true or false, for partial block read. */
uint8_t partialBlockRead(void) const {return partialBlockRead_;}
uint8_t readBlock(uint32_t block, uint8_t* dst);
uint8_t readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst);
/**
* Read a cards CID register. The CID contains card identification
* information such as Manufacturer ID, Product name, Product serial
* number and Manufacturing date. */
uint8_t readCID(cid_t* cid) {
return readRegister(CMD10, cid);
}
/**
* Read a cards CSD register. The CSD contains Card-Specific Data that
* provides information regarding access to the card's contents. */
uint8_t readCSD(csd_t* csd) {
return readRegister(CMD9, csd);
}
void readEnd(void);
uint8_t setSckRate(uint8_t sckRateID);
/** Return the card type: SD V1, SD V2 or SDHC */
uint8_t type(void) const {return type_;}
uint8_t writeBlock(uint32_t blockNumber, const uint8_t* src);
uint8_t writeData(const uint8_t* src);
uint8_t writeStart(uint32_t blockNumber, uint32_t eraseCount);
uint8_t writeStop(void);
private:
uint32_t block_;
uint8_t chipSelectPin_;
uint8_t errorCode_;
uint8_t inBlock_;
uint16_t offset_;
uint8_t partialBlockRead_;
uint8_t status_;
uint8_t type_;
// private functions
uint8_t cardAcmd(uint8_t cmd, uint32_t arg) {
cardCommand(CMD55, 0);
return cardCommand(cmd, arg);
}
uint8_t cardCommand(uint8_t cmd, uint32_t arg);
void error(uint8_t code) {errorCode_ = code;}
uint8_t readRegister(uint8_t cmd, void* buf);
uint8_t sendWriteCommand(uint32_t blockNumber, uint32_t eraseCount);
void chipSelectHigh(void);
void chipSelectLow(void);
void type(uint8_t value) {type_ = value;}
uint8_t waitNotBusy(uint16_t timeoutMillis);
uint8_t writeData(uint8_t token, const uint8_t* src);
uint8_t waitStartBlock(void);
};
#endif // Sd2Card_h
/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef Sd2Card_h
#define Sd2Card_h
/**
* \file
* Sd2Card class
*/
#include "Sd2PinMap.h"
#include "SdInfo.h"
/** Set SCK to max rate of F_CPU/2. See Sd2Card::setSckRate(). */
uint8_t const SPI_FULL_SPEED = 0;
/** Set SCK rate to F_CPU/4. See Sd2Card::setSckRate(). */
uint8_t const SPI_HALF_SPEED = 1;
/** Set SCK rate to F_CPU/8. Sd2Card::setSckRate(). */
uint8_t const SPI_QUARTER_SPEED = 2;
/**
* Define MEGA_SOFT_SPI non-zero to use software SPI on Mega Arduinos.
* Pins used are SS 10, MOSI 11, MISO 12, and SCK 13.
*
* MEGA_SOFT_SPI allows an unmodified Adafruit GPS Shield to be used
* on Mega Arduinos. Software SPI works well with GPS Shield V1.1
* but many SD cards will fail with GPS Shield V1.0.
*/
#define MEGA_SOFT_SPI 0
//------------------------------------------------------------------------------
#if MEGA_SOFT_SPI && (defined(__AVR_ATmega1280__)||defined(__AVR_ATmega2560__))
#define SOFTWARE_SPI
#endif // MEGA_SOFT_SPI
//------------------------------------------------------------------------------
// SPI pin definitions
//
#ifndef SOFTWARE_SPI
// hardware pin defs
/**
* SD Chip Select pin
*
* Warning if this pin is redefined the hardware SS will pin will be enabled
* as an output by init(). An avr processor will not function as an SPI
* master unless SS is set to output mode.
*/
/** The default chip select pin for the SD card is SS. */
uint8_t const SD_CHIP_SELECT_PIN = SS_PIN;
// The following three pins must not be redefined for hardware SPI.
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = MOSI_PIN;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = MISO_PIN;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = SCK_PIN;
/** optimize loops for hardware SPI */
#define OPTIMIZE_HARDWARE_SPI
#else // SOFTWARE_SPI
// define software SPI pins so Mega can use unmodified GPS Shield
/** SPI chip select pin */
uint8_t const SD_CHIP_SELECT_PIN = 10;
/** SPI Master Out Slave In pin */
uint8_t const SPI_MOSI_PIN = 11;
/** SPI Master In Slave Out pin */
uint8_t const SPI_MISO_PIN = 12;
/** SPI Clock pin */
uint8_t const SPI_SCK_PIN = 13;
#endif // SOFTWARE_SPI
//------------------------------------------------------------------------------
/** Protect block zero from write if nonzero */
#define SD_PROTECT_BLOCK_ZERO 1
/** init timeout ms */
uint16_t const SD_INIT_TIMEOUT = 2000;
/** erase timeout ms */
uint16_t const SD_ERASE_TIMEOUT = 10000;
/** read timeout ms */
uint16_t const SD_READ_TIMEOUT = 300;
/** write time out ms */
uint16_t const SD_WRITE_TIMEOUT = 600;
//------------------------------------------------------------------------------
// SD card errors
/** timeout error for command CMD0 */
uint8_t const SD_CARD_ERROR_CMD0 = 0X1;
/** CMD8 was not accepted - not a valid SD card*/
uint8_t const SD_CARD_ERROR_CMD8 = 0X2;
/** card returned an error response for CMD17 (read block) */
uint8_t const SD_CARD_ERROR_CMD17 = 0X3;
/** card returned an error response for CMD24 (write block) */
uint8_t const SD_CARD_ERROR_CMD24 = 0X4;
/** WRITE_MULTIPLE_BLOCKS command failed */
uint8_t const SD_CARD_ERROR_CMD25 = 0X05;
/** card returned an error response for CMD58 (read OCR) */
uint8_t const SD_CARD_ERROR_CMD58 = 0X06;
/** SET_WR_BLK_ERASE_COUNT failed */
uint8_t const SD_CARD_ERROR_ACMD23 = 0X07;
/** card's ACMD41 initialization process timeout */
uint8_t const SD_CARD_ERROR_ACMD41 = 0X08;
/** card returned a bad CSR version field */
uint8_t const SD_CARD_ERROR_BAD_CSD = 0X09;
/** erase block group command failed */
uint8_t const SD_CARD_ERROR_ERASE = 0X0A;
/** card not capable of single block erase */
uint8_t const SD_CARD_ERROR_ERASE_SINGLE_BLOCK = 0X0B;
/** Erase sequence timed out */
uint8_t const SD_CARD_ERROR_ERASE_TIMEOUT = 0X0C;
/** card returned an error token instead of read data */
uint8_t const SD_CARD_ERROR_READ = 0X0D;
/** read CID or CSD failed */
uint8_t const SD_CARD_ERROR_READ_REG = 0X0E;
/** timeout while waiting for start of read data */
uint8_t const SD_CARD_ERROR_READ_TIMEOUT = 0X0F;
/** card did not accept STOP_TRAN_TOKEN */
uint8_t const SD_CARD_ERROR_STOP_TRAN = 0X10;
/** card returned an error token as a response to a write operation */
uint8_t const SD_CARD_ERROR_WRITE = 0X11;
/** attempt to write protected block zero */
uint8_t const SD_CARD_ERROR_WRITE_BLOCK_ZERO = 0X12;
/** card did not go ready for a multiple block write */
uint8_t const SD_CARD_ERROR_WRITE_MULTIPLE = 0X13;
/** card returned an error to a CMD13 status check after a write */
uint8_t const SD_CARD_ERROR_WRITE_PROGRAMMING = 0X14;
/** timeout occurred during write programming */
uint8_t const SD_CARD_ERROR_WRITE_TIMEOUT = 0X15;
/** incorrect rate selected */
uint8_t const SD_CARD_ERROR_SCK_RATE = 0X16;
//------------------------------------------------------------------------------
// card types
/** Standard capacity V1 SD card */
uint8_t const SD_CARD_TYPE_SD1 = 1;
/** Standard capacity V2 SD card */
uint8_t const SD_CARD_TYPE_SD2 = 2;
/** High Capacity SD card */
uint8_t const SD_CARD_TYPE_SDHC = 3;
//------------------------------------------------------------------------------
/**
* \class Sd2Card
* \brief Raw access to SD and SDHC flash memory cards.
*/
class Sd2Card {
public:
/** Construct an instance of Sd2Card. */
Sd2Card(void) : errorCode_(0), inBlock_(0), partialBlockRead_(0), type_(0) {}
uint32_t cardSize(void);
uint8_t erase(uint32_t firstBlock, uint32_t lastBlock);
uint8_t eraseSingleBlockEnable(void);
/**
* \return error code for last error. See Sd2Card.h for a list of error codes.
*/
uint8_t errorCode(void) const {return errorCode_;}
/** \return error data for last error. */
uint8_t errorData(void) const {return status_;}
/**
* Initialize an SD flash memory card with default clock rate and chip
* select pin. See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(void) {
return init(SPI_FULL_SPEED, SD_CHIP_SELECT_PIN);
}
/**
* Initialize an SD flash memory card with the selected SPI clock rate
* and the default SD chip select pin.
* See sd2Card::init(uint8_t sckRateID, uint8_t chipSelectPin).
*/
uint8_t init(uint8_t sckRateID) {
return init(sckRateID, SD_CHIP_SELECT_PIN);
}
uint8_t init(uint8_t sckRateID, uint8_t chipSelectPin);
void partialBlockRead(uint8_t value);
/** Returns the current value, true or false, for partial block read. */
uint8_t partialBlockRead(void) const {return partialBlockRead_;}
uint8_t readBlock(uint32_t block, uint8_t* dst);
uint8_t readData(uint32_t block,
uint16_t offset, uint16_t count, uint8_t* dst);
/**
* Read a cards CID register. The CID contains card identification
* information such as Manufacturer ID, Product name, Product serial
* number and Manufacturing date. */
uint8_t readCID(cid_t* cid) {
return readRegister(CMD10, cid);
}
/**
* Read a cards CSD register. The CSD contains Card-Specific Data that
* provides information regarding access to the card's contents. */
uint8_t readCSD(csd_t* csd) {
return readRegister(CMD9, csd);
}
void readEnd(void);
uint8_t setSckRate(uint8_t sckRateID);
/** Return the card type: SD V1, SD V2 or SDHC */
uint8_t type(void) const {return type_;}
uint8_t writeBlock(uint32_t blockNumber, const uint8_t* src);
uint8_t writeData(const uint8_t* src);
uint8_t writeStart(uint32_t blockNumber, uint32_t eraseCount);
uint8_t writeStop(void);
private:
uint32_t block_;
uint8_t chipSelectPin_;
uint8_t errorCode_;
uint8_t inBlock_;
uint16_t offset_;
uint8_t partialBlockRead_;
uint8_t status_;
uint8_t type_;
// private functions
uint8_t cardAcmd(uint8_t cmd, uint32_t arg) {
cardCommand(CMD55, 0);
return cardCommand(cmd, arg);
}
uint8_t cardCommand(uint8_t cmd, uint32_t arg);
void error(uint8_t code) {errorCode_ = code;}
uint8_t readRegister(uint8_t cmd, void* buf);
uint8_t sendWriteCommand(uint32_t blockNumber, uint32_t eraseCount);
void chipSelectHigh(void);
void chipSelectLow(void);
void type(uint8_t value) {type_ = value;}
uint8_t waitNotBusy(uint16_t timeoutMillis);
uint8_t writeData(uint8_t token, const uint8_t* src);
uint8_t waitStartBlock(void);
};
#endif // Sd2Card_h

View File

@ -1,353 +1,353 @@
/* Arduino SdFat Library
* Copyright (C) 2010 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
// Warning this file was generated by a program.
#ifndef Sd2PinMap_h
#define Sd2PinMap_h
#include <avr/io.h>
//------------------------------------------------------------------------------
/** struct for mapping digital pins */
struct pin_map_t {
volatile uint8_t* ddr;
volatile uint8_t* pin;
volatile uint8_t* port;
uint8_t bit;
};
//------------------------------------------------------------------------------
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// Mega
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 20;
uint8_t const SCL_PIN = 21;
// SPI port
uint8_t const SS_PIN = 53;
uint8_t const MOSI_PIN = 51;
uint8_t const MISO_PIN = 50;
uint8_t const SCK_PIN = 52;
static const pin_map_t digitalPinMap[] = {
{&DDRE, &PINE, &PORTE, 0}, // E0 0
{&DDRE, &PINE, &PORTE, 1}, // E1 1
{&DDRE, &PINE, &PORTE, 4}, // E4 2
{&DDRE, &PINE, &PORTE, 5}, // E5 3
{&DDRG, &PING, &PORTG, 5}, // G5 4
{&DDRE, &PINE, &PORTE, 3}, // E3 5
{&DDRH, &PINH, &PORTH, 3}, // H3 6
{&DDRH, &PINH, &PORTH, 4}, // H4 7
{&DDRH, &PINH, &PORTH, 5}, // H5 8
{&DDRH, &PINH, &PORTH, 6}, // H6 9
{&DDRB, &PINB, &PORTB, 4}, // B4 10
{&DDRB, &PINB, &PORTB, 5}, // B5 11
{&DDRB, &PINB, &PORTB, 6}, // B6 12
{&DDRB, &PINB, &PORTB, 7}, // B7 13
{&DDRJ, &PINJ, &PORTJ, 1}, // J1 14
{&DDRJ, &PINJ, &PORTJ, 0}, // J0 15
{&DDRH, &PINH, &PORTH, 1}, // H1 16
{&DDRH, &PINH, &PORTH, 0}, // H0 17
{&DDRD, &PIND, &PORTD, 3}, // D3 18
{&DDRD, &PIND, &PORTD, 2}, // D2 19
{&DDRD, &PIND, &PORTD, 1}, // D1 20
{&DDRD, &PIND, &PORTD, 0}, // D0 21
{&DDRA, &PINA, &PORTA, 0}, // A0 22
{&DDRA, &PINA, &PORTA, 1}, // A1 23
{&DDRA, &PINA, &PORTA, 2}, // A2 24
{&DDRA, &PINA, &PORTA, 3}, // A3 25
{&DDRA, &PINA, &PORTA, 4}, // A4 26
{&DDRA, &PINA, &PORTA, 5}, // A5 27
{&DDRA, &PINA, &PORTA, 6}, // A6 28
{&DDRA, &PINA, &PORTA, 7}, // A7 29
{&DDRC, &PINC, &PORTC, 7}, // C7 30
{&DDRC, &PINC, &PORTC, 6}, // C6 31
{&DDRC, &PINC, &PORTC, 5}, // C5 32
{&DDRC, &PINC, &PORTC, 4}, // C4 33
{&DDRC, &PINC, &PORTC, 3}, // C3 34
{&DDRC, &PINC, &PORTC, 2}, // C2 35
{&DDRC, &PINC, &PORTC, 1}, // C1 36
{&DDRC, &PINC, &PORTC, 0}, // C0 37
{&DDRD, &PIND, &PORTD, 7}, // D7 38
{&DDRG, &PING, &PORTG, 2}, // G2 39
{&DDRG, &PING, &PORTG, 1}, // G1 40
{&DDRG, &PING, &PORTG, 0}, // G0 41
{&DDRL, &PINL, &PORTL, 7}, // L7 42
{&DDRL, &PINL, &PORTL, 6}, // L6 43
{&DDRL, &PINL, &PORTL, 5}, // L5 44
{&DDRL, &PINL, &PORTL, 4}, // L4 45
{&DDRL, &PINL, &PORTL, 3}, // L3 46
{&DDRL, &PINL, &PORTL, 2}, // L2 47
{&DDRL, &PINL, &PORTL, 1}, // L1 48
{&DDRL, &PINL, &PORTL, 0}, // L0 49
{&DDRB, &PINB, &PORTB, 3}, // B3 50
{&DDRB, &PINB, &PORTB, 2}, // B2 51
{&DDRB, &PINB, &PORTB, 1}, // B1 52
{&DDRB, &PINB, &PORTB, 0}, // B0 53
{&DDRF, &PINF, &PORTF, 0}, // F0 54
{&DDRF, &PINF, &PORTF, 1}, // F1 55
{&DDRF, &PINF, &PORTF, 2}, // F2 56
{&DDRF, &PINF, &PORTF, 3}, // F3 57
{&DDRF, &PINF, &PORTF, 4}, // F4 58
{&DDRF, &PINF, &PORTF, 5}, // F5 59
{&DDRF, &PINF, &PORTF, 6}, // F6 60
{&DDRF, &PINF, &PORTF, 7}, // F7 61
{&DDRK, &PINK, &PORTK, 0}, // K0 62
{&DDRK, &PINK, &PORTK, 1}, // K1 63
{&DDRK, &PINK, &PORTK, 2}, // K2 64
{&DDRK, &PINK, &PORTK, 3}, // K3 65
{&DDRK, &PINK, &PORTK, 4}, // K4 66
{&DDRK, &PINK, &PORTK, 5}, // K5 67
{&DDRK, &PINK, &PORTK, 6}, // K6 68
{&DDRK, &PINK, &PORTK, 7} // K7 69
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
// Sanguino
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 17;
uint8_t const SCL_PIN = 18;
// SPI port
uint8_t const SS_PIN = 4;
uint8_t const MOSI_PIN = 5;
uint8_t const MISO_PIN = 6;
uint8_t const SCK_PIN = 7;
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
{&DDRB, &PINB, &PORTB, 1}, // B1 1
{&DDRB, &PINB, &PORTB, 2}, // B2 2
{&DDRB, &PINB, &PORTB, 3}, // B3 3
{&DDRB, &PINB, &PORTB, 4}, // B4 4
{&DDRB, &PINB, &PORTB, 5}, // B5 5
{&DDRB, &PINB, &PORTB, 6}, // B6 6
{&DDRB, &PINB, &PORTB, 7}, // B7 7
{&DDRD, &PIND, &PORTD, 0}, // D0 8
{&DDRD, &PIND, &PORTD, 1}, // D1 9
{&DDRD, &PIND, &PORTD, 2}, // D2 10
{&DDRD, &PIND, &PORTD, 3}, // D3 11
{&DDRD, &PIND, &PORTD, 4}, // D4 12
{&DDRD, &PIND, &PORTD, 5}, // D5 13
{&DDRD, &PIND, &PORTD, 6}, // D6 14
{&DDRD, &PIND, &PORTD, 7}, // D7 15
{&DDRC, &PINC, &PORTC, 0}, // C0 16
{&DDRC, &PINC, &PORTC, 1}, // C1 17
{&DDRC, &PINC, &PORTC, 2}, // C2 18
{&DDRC, &PINC, &PORTC, 3}, // C3 19
{&DDRC, &PINC, &PORTC, 4}, // C4 20
{&DDRC, &PINC, &PORTC, 5}, // C5 21
{&DDRC, &PINC, &PORTC, 6}, // C6 22
{&DDRC, &PINC, &PORTC, 7}, // C7 23
{&DDRA, &PINA, &PORTA, 7}, // A7 24
{&DDRA, &PINA, &PORTA, 6}, // A6 25
{&DDRA, &PINA, &PORTA, 5}, // A5 26
{&DDRA, &PINA, &PORTA, 4}, // A4 27
{&DDRA, &PINA, &PORTA, 3}, // A3 28
{&DDRA, &PINA, &PORTA, 2}, // A2 29
{&DDRA, &PINA, &PORTA, 1}, // A1 30
{&DDRA, &PINA, &PORTA, 0} // A0 31
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__)
// Teensy 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 6;
uint8_t const SCL_PIN = 5;
// SPI port
uint8_t const SS_PIN = 0;
uint8_t const MOSI_PIN = 2;
uint8_t const MISO_PIN = 3;
uint8_t const SCK_PIN = 1;
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
{&DDRB, &PINB, &PORTB, 1}, // B1 1
{&DDRB, &PINB, &PORTB, 2}, // B2 2
{&DDRB, &PINB, &PORTB, 3}, // B3 3
{&DDRB, &PINB, &PORTB, 7}, // B7 4
{&DDRD, &PIND, &PORTD, 0}, // D0 5
{&DDRD, &PIND, &PORTD, 1}, // D1 6
{&DDRD, &PIND, &PORTD, 2}, // D2 7
{&DDRD, &PIND, &PORTD, 3}, // D3 8
{&DDRC, &PINC, &PORTC, 6}, // C6 9
{&DDRC, &PINC, &PORTC, 7}, // C7 10
{&DDRD, &PIND, &PORTD, 6}, // D6 11
{&DDRD, &PIND, &PORTD, 7}, // D7 12
{&DDRB, &PINB, &PORTB, 4}, // B4 13
{&DDRB, &PINB, &PORTB, 5}, // B5 14
{&DDRB, &PINB, &PORTB, 6}, // B6 15
{&DDRF, &PINF, &PORTF, 7}, // F7 16
{&DDRF, &PINF, &PORTF, 6}, // F6 17
{&DDRF, &PINF, &PORTF, 5}, // F5 18
{&DDRF, &PINF, &PORTF, 4}, // F4 19
{&DDRF, &PINF, &PORTF, 1}, // F1 20
{&DDRF, &PINF, &PORTF, 0}, // F0 21
{&DDRD, &PIND, &PORTD, 4}, // D4 22
{&DDRD, &PIND, &PORTD, 5}, // D5 23
{&DDRE, &PINE, &PORTE, 6} // E6 24
};
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
// Teensy++ 1.0 & 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 1;
uint8_t const SCL_PIN = 0;
// SPI port
uint8_t const SS_PIN = 20;
uint8_t const MOSI_PIN = 22;
uint8_t const MISO_PIN = 23;
uint8_t const SCK_PIN = 21;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
{&DDRD, &PIND, &PORTD, 1}, // D1 1
{&DDRD, &PIND, &PORTD, 2}, // D2 2
{&DDRD, &PIND, &PORTD, 3}, // D3 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRD, &PIND, &PORTD, 5}, // D5 5
{&DDRD, &PIND, &PORTD, 6}, // D6 6
{&DDRD, &PIND, &PORTD, 7}, // D7 7
{&DDRE, &PINE, &PORTE, 0}, // E0 8
{&DDRE, &PINE, &PORTE, 1}, // E1 9
{&DDRC, &PINC, &PORTC, 0}, // C0 10
{&DDRC, &PINC, &PORTC, 1}, // C1 11
{&DDRC, &PINC, &PORTC, 2}, // C2 12
{&DDRC, &PINC, &PORTC, 3}, // C3 13
{&DDRC, &PINC, &PORTC, 4}, // C4 14
{&DDRC, &PINC, &PORTC, 5}, // C5 15
{&DDRC, &PINC, &PORTC, 6}, // C6 16
{&DDRC, &PINC, &PORTC, 7}, // C7 17
{&DDRE, &PINE, &PORTE, 6}, // E6 18
{&DDRE, &PINE, &PORTE, 7}, // E7 19
{&DDRB, &PINB, &PORTB, 0}, // B0 20
{&DDRB, &PINB, &PORTB, 1}, // B1 21
{&DDRB, &PINB, &PORTB, 2}, // B2 22
{&DDRB, &PINB, &PORTB, 3}, // B3 23
{&DDRB, &PINB, &PORTB, 4}, // B4 24
{&DDRB, &PINB, &PORTB, 5}, // B5 25
{&DDRB, &PINB, &PORTB, 6}, // B6 26
{&DDRB, &PINB, &PORTB, 7}, // B7 27
{&DDRA, &PINA, &PORTA, 0}, // A0 28
{&DDRA, &PINA, &PORTA, 1}, // A1 29
{&DDRA, &PINA, &PORTA, 2}, // A2 30
{&DDRA, &PINA, &PORTA, 3}, // A3 31
{&DDRA, &PINA, &PORTA, 4}, // A4 32
{&DDRA, &PINA, &PORTA, 5}, // A5 33
{&DDRA, &PINA, &PORTA, 6}, // A6 34
{&DDRA, &PINA, &PORTA, 7}, // A7 35
{&DDRE, &PINE, &PORTE, 4}, // E4 36
{&DDRE, &PINE, &PORTE, 5}, // E5 37
{&DDRF, &PINF, &PORTF, 0}, // F0 38
{&DDRF, &PINF, &PORTF, 1}, // F1 39
{&DDRF, &PINF, &PORTF, 2}, // F2 40
{&DDRF, &PINF, &PORTF, 3}, // F3 41
{&DDRF, &PINF, &PORTF, 4}, // F4 42
{&DDRF, &PINF, &PORTF, 5}, // F5 43
{&DDRF, &PINF, &PORTF, 6}, // F6 44
{&DDRF, &PINF, &PORTF, 7} // F7 45
};
//------------------------------------------------------------------------------
#else // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// 168 and 328 Arduinos
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
{&DDRD, &PIND, &PORTD, 1}, // D1 1
{&DDRD, &PIND, &PORTD, 2}, // D2 2
{&DDRD, &PIND, &PORTD, 3}, // D3 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRD, &PIND, &PORTD, 5}, // D5 5
{&DDRD, &PIND, &PORTD, 6}, // D6 6
{&DDRD, &PIND, &PORTD, 7}, // D7 7
{&DDRB, &PINB, &PORTB, 0}, // B0 8
{&DDRB, &PINB, &PORTB, 1}, // B1 9
{&DDRB, &PINB, &PORTB, 2}, // B2 10
{&DDRB, &PINB, &PORTB, 3}, // B3 11
{&DDRB, &PINB, &PORTB, 4}, // B4 12
{&DDRB, &PINB, &PORTB, 5}, // B5 13
{&DDRC, &PINC, &PORTC, 0}, // C0 14
{&DDRC, &PINC, &PORTC, 1}, // C1 15
{&DDRC, &PINC, &PORTC, 2}, // C2 16
{&DDRC, &PINC, &PORTC, 3}, // C3 17
{&DDRC, &PINC, &PORTC, 4}, // C4 18
{&DDRC, &PINC, &PORTC, 5} // C5 19
};
#endif // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//------------------------------------------------------------------------------
static const uint8_t digitalPinCount = sizeof(digitalPinMap)/sizeof(pin_map_t);
uint8_t badPinNumber(void)
__attribute__((error("Pin number is too large or not a constant")));
static inline __attribute__((always_inline))
uint8_t getPinMode(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].ddr >> digitalPinMap[pin].bit) & 1;
} else {
return badPinNumber();
}
}
static inline __attribute__((always_inline))
void setPinMode(uint8_t pin, uint8_t mode) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) {
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit;
} else {
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit);
}
} else {
badPinNumber();
}
}
static inline __attribute__((always_inline))
uint8_t fastDigitalRead(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].pin >> digitalPinMap[pin].bit) & 1;
} else {
return badPinNumber();
}
}
static inline __attribute__((always_inline))
void fastDigitalWrite(uint8_t pin, uint8_t value) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) {
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit;
} else {
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit);
}
} else {
badPinNumber();
}
}
#endif // Sd2PinMap_h
/* Arduino SdFat Library
* Copyright (C) 2010 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
// Warning this file was generated by a program.
#ifndef Sd2PinMap_h
#define Sd2PinMap_h
#include <avr/io.h>
//------------------------------------------------------------------------------
/** struct for mapping digital pins */
struct pin_map_t {
volatile uint8_t* ddr;
volatile uint8_t* pin;
volatile uint8_t* port;
uint8_t bit;
};
//------------------------------------------------------------------------------
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// Mega
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 20;
uint8_t const SCL_PIN = 21;
// SPI port
uint8_t const SS_PIN = 53;
uint8_t const MOSI_PIN = 51;
uint8_t const MISO_PIN = 50;
uint8_t const SCK_PIN = 52;
static const pin_map_t digitalPinMap[] = {
{&DDRE, &PINE, &PORTE, 0}, // E0 0
{&DDRE, &PINE, &PORTE, 1}, // E1 1
{&DDRE, &PINE, &PORTE, 4}, // E4 2
{&DDRE, &PINE, &PORTE, 5}, // E5 3
{&DDRG, &PING, &PORTG, 5}, // G5 4
{&DDRE, &PINE, &PORTE, 3}, // E3 5
{&DDRH, &PINH, &PORTH, 3}, // H3 6
{&DDRH, &PINH, &PORTH, 4}, // H4 7
{&DDRH, &PINH, &PORTH, 5}, // H5 8
{&DDRH, &PINH, &PORTH, 6}, // H6 9
{&DDRB, &PINB, &PORTB, 4}, // B4 10
{&DDRB, &PINB, &PORTB, 5}, // B5 11
{&DDRB, &PINB, &PORTB, 6}, // B6 12
{&DDRB, &PINB, &PORTB, 7}, // B7 13
{&DDRJ, &PINJ, &PORTJ, 1}, // J1 14
{&DDRJ, &PINJ, &PORTJ, 0}, // J0 15
{&DDRH, &PINH, &PORTH, 1}, // H1 16
{&DDRH, &PINH, &PORTH, 0}, // H0 17
{&DDRD, &PIND, &PORTD, 3}, // D3 18
{&DDRD, &PIND, &PORTD, 2}, // D2 19
{&DDRD, &PIND, &PORTD, 1}, // D1 20
{&DDRD, &PIND, &PORTD, 0}, // D0 21
{&DDRA, &PINA, &PORTA, 0}, // A0 22
{&DDRA, &PINA, &PORTA, 1}, // A1 23
{&DDRA, &PINA, &PORTA, 2}, // A2 24
{&DDRA, &PINA, &PORTA, 3}, // A3 25
{&DDRA, &PINA, &PORTA, 4}, // A4 26
{&DDRA, &PINA, &PORTA, 5}, // A5 27
{&DDRA, &PINA, &PORTA, 6}, // A6 28
{&DDRA, &PINA, &PORTA, 7}, // A7 29
{&DDRC, &PINC, &PORTC, 7}, // C7 30
{&DDRC, &PINC, &PORTC, 6}, // C6 31
{&DDRC, &PINC, &PORTC, 5}, // C5 32
{&DDRC, &PINC, &PORTC, 4}, // C4 33
{&DDRC, &PINC, &PORTC, 3}, // C3 34
{&DDRC, &PINC, &PORTC, 2}, // C2 35
{&DDRC, &PINC, &PORTC, 1}, // C1 36
{&DDRC, &PINC, &PORTC, 0}, // C0 37
{&DDRD, &PIND, &PORTD, 7}, // D7 38
{&DDRG, &PING, &PORTG, 2}, // G2 39
{&DDRG, &PING, &PORTG, 1}, // G1 40
{&DDRG, &PING, &PORTG, 0}, // G0 41
{&DDRL, &PINL, &PORTL, 7}, // L7 42
{&DDRL, &PINL, &PORTL, 6}, // L6 43
{&DDRL, &PINL, &PORTL, 5}, // L5 44
{&DDRL, &PINL, &PORTL, 4}, // L4 45
{&DDRL, &PINL, &PORTL, 3}, // L3 46
{&DDRL, &PINL, &PORTL, 2}, // L2 47
{&DDRL, &PINL, &PORTL, 1}, // L1 48
{&DDRL, &PINL, &PORTL, 0}, // L0 49
{&DDRB, &PINB, &PORTB, 3}, // B3 50
{&DDRB, &PINB, &PORTB, 2}, // B2 51
{&DDRB, &PINB, &PORTB, 1}, // B1 52
{&DDRB, &PINB, &PORTB, 0}, // B0 53
{&DDRF, &PINF, &PORTF, 0}, // F0 54
{&DDRF, &PINF, &PORTF, 1}, // F1 55
{&DDRF, &PINF, &PORTF, 2}, // F2 56
{&DDRF, &PINF, &PORTF, 3}, // F3 57
{&DDRF, &PINF, &PORTF, 4}, // F4 58
{&DDRF, &PINF, &PORTF, 5}, // F5 59
{&DDRF, &PINF, &PORTF, 6}, // F6 60
{&DDRF, &PINF, &PORTF, 7}, // F7 61
{&DDRK, &PINK, &PORTK, 0}, // K0 62
{&DDRK, &PINK, &PORTK, 1}, // K1 63
{&DDRK, &PINK, &PORTK, 2}, // K2 64
{&DDRK, &PINK, &PORTK, 3}, // K3 65
{&DDRK, &PINK, &PORTK, 4}, // K4 66
{&DDRK, &PINK, &PORTK, 5}, // K5 67
{&DDRK, &PINK, &PORTK, 6}, // K6 68
{&DDRK, &PINK, &PORTK, 7} // K7 69
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644__)
// Sanguino
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 17;
uint8_t const SCL_PIN = 18;
// SPI port
uint8_t const SS_PIN = 4;
uint8_t const MOSI_PIN = 5;
uint8_t const MISO_PIN = 6;
uint8_t const SCK_PIN = 7;
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
{&DDRB, &PINB, &PORTB, 1}, // B1 1
{&DDRB, &PINB, &PORTB, 2}, // B2 2
{&DDRB, &PINB, &PORTB, 3}, // B3 3
{&DDRB, &PINB, &PORTB, 4}, // B4 4
{&DDRB, &PINB, &PORTB, 5}, // B5 5
{&DDRB, &PINB, &PORTB, 6}, // B6 6
{&DDRB, &PINB, &PORTB, 7}, // B7 7
{&DDRD, &PIND, &PORTD, 0}, // D0 8
{&DDRD, &PIND, &PORTD, 1}, // D1 9
{&DDRD, &PIND, &PORTD, 2}, // D2 10
{&DDRD, &PIND, &PORTD, 3}, // D3 11
{&DDRD, &PIND, &PORTD, 4}, // D4 12
{&DDRD, &PIND, &PORTD, 5}, // D5 13
{&DDRD, &PIND, &PORTD, 6}, // D6 14
{&DDRD, &PIND, &PORTD, 7}, // D7 15
{&DDRC, &PINC, &PORTC, 0}, // C0 16
{&DDRC, &PINC, &PORTC, 1}, // C1 17
{&DDRC, &PINC, &PORTC, 2}, // C2 18
{&DDRC, &PINC, &PORTC, 3}, // C3 19
{&DDRC, &PINC, &PORTC, 4}, // C4 20
{&DDRC, &PINC, &PORTC, 5}, // C5 21
{&DDRC, &PINC, &PORTC, 6}, // C6 22
{&DDRC, &PINC, &PORTC, 7}, // C7 23
{&DDRA, &PINA, &PORTA, 7}, // A7 24
{&DDRA, &PINA, &PORTA, 6}, // A6 25
{&DDRA, &PINA, &PORTA, 5}, // A5 26
{&DDRA, &PINA, &PORTA, 4}, // A4 27
{&DDRA, &PINA, &PORTA, 3}, // A3 28
{&DDRA, &PINA, &PORTA, 2}, // A2 29
{&DDRA, &PINA, &PORTA, 1}, // A1 30
{&DDRA, &PINA, &PORTA, 0} // A0 31
};
//------------------------------------------------------------------------------
#elif defined(__AVR_ATmega32U4__)
// Teensy 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 6;
uint8_t const SCL_PIN = 5;
// SPI port
uint8_t const SS_PIN = 0;
uint8_t const MOSI_PIN = 2;
uint8_t const MISO_PIN = 3;
uint8_t const SCK_PIN = 1;
static const pin_map_t digitalPinMap[] = {
{&DDRB, &PINB, &PORTB, 0}, // B0 0
{&DDRB, &PINB, &PORTB, 1}, // B1 1
{&DDRB, &PINB, &PORTB, 2}, // B2 2
{&DDRB, &PINB, &PORTB, 3}, // B3 3
{&DDRB, &PINB, &PORTB, 7}, // B7 4
{&DDRD, &PIND, &PORTD, 0}, // D0 5
{&DDRD, &PIND, &PORTD, 1}, // D1 6
{&DDRD, &PIND, &PORTD, 2}, // D2 7
{&DDRD, &PIND, &PORTD, 3}, // D3 8
{&DDRC, &PINC, &PORTC, 6}, // C6 9
{&DDRC, &PINC, &PORTC, 7}, // C7 10
{&DDRD, &PIND, &PORTD, 6}, // D6 11
{&DDRD, &PIND, &PORTD, 7}, // D7 12
{&DDRB, &PINB, &PORTB, 4}, // B4 13
{&DDRB, &PINB, &PORTB, 5}, // B5 14
{&DDRB, &PINB, &PORTB, 6}, // B6 15
{&DDRF, &PINF, &PORTF, 7}, // F7 16
{&DDRF, &PINF, &PORTF, 6}, // F6 17
{&DDRF, &PINF, &PORTF, 5}, // F5 18
{&DDRF, &PINF, &PORTF, 4}, // F4 19
{&DDRF, &PINF, &PORTF, 1}, // F1 20
{&DDRF, &PINF, &PORTF, 0}, // F0 21
{&DDRD, &PIND, &PORTD, 4}, // D4 22
{&DDRD, &PIND, &PORTD, 5}, // D5 23
{&DDRE, &PINE, &PORTE, 6} // E6 24
};
//------------------------------------------------------------------------------
#elif defined(__AVR_AT90USB646__) || defined(__AVR_AT90USB1286__)
// Teensy++ 1.0 & 2.0
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 1;
uint8_t const SCL_PIN = 0;
// SPI port
uint8_t const SS_PIN = 20;
uint8_t const MOSI_PIN = 22;
uint8_t const MISO_PIN = 23;
uint8_t const SCK_PIN = 21;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
{&DDRD, &PIND, &PORTD, 1}, // D1 1
{&DDRD, &PIND, &PORTD, 2}, // D2 2
{&DDRD, &PIND, &PORTD, 3}, // D3 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRD, &PIND, &PORTD, 5}, // D5 5
{&DDRD, &PIND, &PORTD, 6}, // D6 6
{&DDRD, &PIND, &PORTD, 7}, // D7 7
{&DDRE, &PINE, &PORTE, 0}, // E0 8
{&DDRE, &PINE, &PORTE, 1}, // E1 9
{&DDRC, &PINC, &PORTC, 0}, // C0 10
{&DDRC, &PINC, &PORTC, 1}, // C1 11
{&DDRC, &PINC, &PORTC, 2}, // C2 12
{&DDRC, &PINC, &PORTC, 3}, // C3 13
{&DDRC, &PINC, &PORTC, 4}, // C4 14
{&DDRC, &PINC, &PORTC, 5}, // C5 15
{&DDRC, &PINC, &PORTC, 6}, // C6 16
{&DDRC, &PINC, &PORTC, 7}, // C7 17
{&DDRE, &PINE, &PORTE, 6}, // E6 18
{&DDRE, &PINE, &PORTE, 7}, // E7 19
{&DDRB, &PINB, &PORTB, 0}, // B0 20
{&DDRB, &PINB, &PORTB, 1}, // B1 21
{&DDRB, &PINB, &PORTB, 2}, // B2 22
{&DDRB, &PINB, &PORTB, 3}, // B3 23
{&DDRB, &PINB, &PORTB, 4}, // B4 24
{&DDRB, &PINB, &PORTB, 5}, // B5 25
{&DDRB, &PINB, &PORTB, 6}, // B6 26
{&DDRB, &PINB, &PORTB, 7}, // B7 27
{&DDRA, &PINA, &PORTA, 0}, // A0 28
{&DDRA, &PINA, &PORTA, 1}, // A1 29
{&DDRA, &PINA, &PORTA, 2}, // A2 30
{&DDRA, &PINA, &PORTA, 3}, // A3 31
{&DDRA, &PINA, &PORTA, 4}, // A4 32
{&DDRA, &PINA, &PORTA, 5}, // A5 33
{&DDRA, &PINA, &PORTA, 6}, // A6 34
{&DDRA, &PINA, &PORTA, 7}, // A7 35
{&DDRE, &PINE, &PORTE, 4}, // E4 36
{&DDRE, &PINE, &PORTE, 5}, // E5 37
{&DDRF, &PINF, &PORTF, 0}, // F0 38
{&DDRF, &PINF, &PORTF, 1}, // F1 39
{&DDRF, &PINF, &PORTF, 2}, // F2 40
{&DDRF, &PINF, &PORTF, 3}, // F3 41
{&DDRF, &PINF, &PORTF, 4}, // F4 42
{&DDRF, &PINF, &PORTF, 5}, // F5 43
{&DDRF, &PINF, &PORTF, 6}, // F6 44
{&DDRF, &PINF, &PORTF, 7} // F7 45
};
//------------------------------------------------------------------------------
#else // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
// 168 and 328 Arduinos
// Two Wire (aka I2C) ports
uint8_t const SDA_PIN = 18;
uint8_t const SCL_PIN = 19;
// SPI port
uint8_t const SS_PIN = 10;
uint8_t const MOSI_PIN = 11;
uint8_t const MISO_PIN = 12;
uint8_t const SCK_PIN = 13;
static const pin_map_t digitalPinMap[] = {
{&DDRD, &PIND, &PORTD, 0}, // D0 0
{&DDRD, &PIND, &PORTD, 1}, // D1 1
{&DDRD, &PIND, &PORTD, 2}, // D2 2
{&DDRD, &PIND, &PORTD, 3}, // D3 3
{&DDRD, &PIND, &PORTD, 4}, // D4 4
{&DDRD, &PIND, &PORTD, 5}, // D5 5
{&DDRD, &PIND, &PORTD, 6}, // D6 6
{&DDRD, &PIND, &PORTD, 7}, // D7 7
{&DDRB, &PINB, &PORTB, 0}, // B0 8
{&DDRB, &PINB, &PORTB, 1}, // B1 9
{&DDRB, &PINB, &PORTB, 2}, // B2 10
{&DDRB, &PINB, &PORTB, 3}, // B3 11
{&DDRB, &PINB, &PORTB, 4}, // B4 12
{&DDRB, &PINB, &PORTB, 5}, // B5 13
{&DDRC, &PINC, &PORTC, 0}, // C0 14
{&DDRC, &PINC, &PORTC, 1}, // C1 15
{&DDRC, &PINC, &PORTC, 2}, // C2 16
{&DDRC, &PINC, &PORTC, 3}, // C3 17
{&DDRC, &PINC, &PORTC, 4}, // C4 18
{&DDRC, &PINC, &PORTC, 5} // C5 19
};
#endif // defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)
//------------------------------------------------------------------------------
static const uint8_t digitalPinCount = sizeof(digitalPinMap)/sizeof(pin_map_t);
uint8_t badPinNumber(void)
__attribute__((error("Pin number is too large or not a constant")));
static inline __attribute__((always_inline))
uint8_t getPinMode(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].ddr >> digitalPinMap[pin].bit) & 1;
} else {
return badPinNumber();
}
}
static inline __attribute__((always_inline))
void setPinMode(uint8_t pin, uint8_t mode) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (mode) {
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit;
} else {
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit);
}
} else {
badPinNumber();
}
}
static inline __attribute__((always_inline))
uint8_t fastDigitalRead(uint8_t pin) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
return (*digitalPinMap[pin].pin >> digitalPinMap[pin].bit) & 1;
} else {
return badPinNumber();
}
}
static inline __attribute__((always_inline))
void fastDigitalWrite(uint8_t pin, uint8_t value) {
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
if (value) {
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit;
} else {
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit);
}
} else {
badPinNumber();
}
}
#endif // Sd2PinMap_h

File diff suppressed because it is too large Load Diff

View File

@ -1,70 +1,70 @@
/* Arduino SdFat Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdFatUtil_h
#define SdFatUtil_h
/**
* \file
* Useful utility functions.
*/
#include <WProgram.h>
#include <avr/pgmspace.h>
/** Store and print a string in flash memory.*/
#define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
/** Defined so doxygen works for function definitions. */
#define NOINLINE __attribute__((noinline))
//------------------------------------------------------------------------------
/** Return the number of bytes currently free in RAM. */
static int FreeRam(void) {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory to the serial port.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.print(c);
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory followed by a CR/LF.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrintln_P(PGM_P str) {
SerialPrint_P(str);
Serial.println();
}
#endif // #define SdFatUtil_h
/* Arduino SdFat Library
* Copyright (C) 2008 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdFatUtil_h
#define SdFatUtil_h
/**
* \file
* Useful utility functions.
*/
#include <WProgram.h>
#include <avr/pgmspace.h>
/** Store and print a string in flash memory.*/
#define PgmPrint(x) SerialPrint_P(PSTR(x))
/** Store and print a string in flash memory followed by a CR/LF.*/
#define PgmPrintln(x) SerialPrintln_P(PSTR(x))
/** Defined so doxygen works for function definitions. */
#define NOINLINE __attribute__((noinline))
//------------------------------------------------------------------------------
/** Return the number of bytes currently free in RAM. */
static int FreeRam(void) {
extern int __bss_end;
extern int* __brkval;
int free_memory;
if (reinterpret_cast<int>(__brkval) == 0) {
// if no heap use from end of bss section
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(&__bss_end);
} else {
// use from top of stack to heap
free_memory = reinterpret_cast<int>(&free_memory)
- reinterpret_cast<int>(__brkval);
}
return free_memory;
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory to the serial port.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrint_P(PGM_P str) {
for (uint8_t c; (c = pgm_read_byte(str)); str++) Serial.print(c);
}
//------------------------------------------------------------------------------
/**
* %Print a string in flash memory followed by a CR/LF.
*
* \param[in] str Pointer to string stored in flash memory.
*/
static NOINLINE void SerialPrintln_P(PGM_P str) {
SerialPrint_P(str);
Serial.println();
}
#endif // #define SdFatUtil_h

View File

@ -1,202 +1,202 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
\mainpage Arduino SdFat Library
<CENTER>Copyright &copy; 2009 by William Greiman
</CENTER>
\section Intro Introduction
The Arduino SdFat Library is a minimal implementation of FAT16 and FAT32
file systems on SD flash memory cards. Standard SD and high capacity
SDHC cards are supported.
The SdFat only supports short 8.3 names.
The main classes in SdFat are Sd2Card, SdVolume, and SdFile.
The Sd2Card class supports access to standard SD cards and SDHC cards. Most
applications will only need to call the Sd2Card::init() member function.
The SdVolume class supports FAT16 and FAT32 partitions. Most applications
will only need to call the SdVolume::init() member function.
The SdFile class provides file access functions such as open(), read(),
remove(), write(), close() and sync(). This class supports access to the root
directory and subdirectories.
A number of example are provided in the SdFat/examples folder. These were
developed to test SdFat and illustrate its use.
SdFat was developed for high speed data recording. SdFat was used to implement
an audio record/play class, WaveRP, for the Adafruit Wave Shield. This
application uses special Sd2Card calls to write to contiguous files in raw mode.
These functions reduce write latency so that audio can be recorded with the
small amount of RAM in the Arduino.
\section SDcard SD\SDHC Cards
Arduinos access SD cards using the cards SPI protocol. PCs, Macs, and
most consumer devices use the 4-bit parallel SD protocol. A card that
functions well on A PC or Mac may not work well on the Arduino.
Most cards have good SPI read performance but cards vary widely in SPI
write performance. Write performance is limited by how efficiently the
card manages internal erase/remapping operations. The Arduino cannot
optimize writes to reduce erase operations because of its limit RAM.
SanDisk cards generally have good write performance. They seem to have
more internal RAM buffering than other cards and therefore can limit
the number of flash erase operations that the Arduino forces due to its
limited RAM.
\section Hardware Hardware Configuration
SdFat was developed using an
<A HREF = "http://www.adafruit.com/"> Adafruit Industries</A>
<A HREF = "http://www.ladyada.net/make/waveshield/"> Wave Shield</A>.
The hardware interface to the SD card should not use a resistor based level
shifter. SdFat sets the SPI bus frequency to 8 MHz which results in signal
rise times that are too slow for the edge detectors in many newer SD card
controllers when resistor voltage dividers are used.
The 5 to 3.3 V level shifter for 5 V Arduinos should be IC based like the
74HC4050N based circuit shown in the file SdLevel.png. The Adafruit Wave Shield
uses a 74AHC125N. Gravitech sells SD and MicroSD Card Adapters based on the
74LCX245.
If you are using a resistor based level shifter and are having problems try
setting the SPI bus frequency to 4 MHz. This can be done by using
card.init(SPI_HALF_SPEED) to initialize the SD card.
\section comment Bugs and Comments
If you wish to report bugs or have comments, send email to fat16lib@sbcglobal.net.
\section SdFatClass SdFat Usage
SdFat uses a slightly restricted form of short names.
Only printable ASCII characters are supported. No characters with code point
values greater than 127 are allowed. Space is not allowed even though space
was allowed in the API of early versions of DOS.
Short names are limited to 8 characters followed by an optional period (.)
and extension of up to 3 characters. The characters may be any combination
of letters and digits. The following special characters are also allowed:
$ % ' - _ @ ~ ` ! ( ) { } ^ # &
Short names are always converted to upper case and their original case
value is lost.
\note
The Arduino Print class uses character
at a time writes so it was necessary to use a \link SdFile::sync() sync() \endlink
function to control when data is written to the SD card.
\par
An application which writes to a file using \link Print::print() print()\endlink,
\link Print::println() println() \endlink
or \link SdFile::write write() \endlink must call \link SdFile::sync() sync() \endlink
at the appropriate time to force data and directory information to be written
to the SD Card. Data and directory information are also written to the SD card
when \link SdFile::close() close() \endlink is called.
\par
Applications must use care calling \link SdFile::sync() sync() \endlink
since 2048 bytes of I/O is required to update file and
directory information. This includes writing the current data block, reading
the block that contains the directory entry for update, writing the directory
block back and reading back the current data block.
It is possible to open a file with two or more instances of SdFile. A file may
be corrupted if data is written to the file by more than one instance of SdFile.
\section HowTo How to format SD Cards as FAT Volumes
You should use a freshly formatted SD card for best performance. FAT
file systems become slower if many files have been created and deleted.
This is because the directory entry for a deleted file is marked as deleted,
but is not deleted. When a new file is created, these entries must be scanned
before creating the file, a flaw in the FAT design. Also files can become
fragmented which causes reads and writes to be slower.
Microsoft operating systems support removable media formatted with a
Master Boot Record, MBR, or formatted as a super floppy with a FAT Boot Sector
in block zero.
Microsoft operating systems expect MBR formatted removable media
to have only one partition. The first partition should be used.
Microsoft operating systems do not support partitioning SD flash cards.
If you erase an SD card with a program like KillDisk, Most versions of
Windows will format the card as a super floppy.
The best way to restore an SD card's format is to use SDFormatter
which can be downloaded from:
http://www.sdcard.org/consumers/formatter/
SDFormatter aligns flash erase boundaries with file
system structures which reduces write latency and file system overhead.
SDFormatter does not have an option for FAT type so it may format
small cards as FAT12.
After the MBR is restored by SDFormatter you may need to reformat small
cards that have been formatted FAT12 to force the volume type to be FAT16.
If you reformat the SD card with an OS utility, choose a cluster size that
will result in:
4084 < CountOfClusters && CountOfClusters < 65525
The volume will then be FAT16.
If you are formatting an SD card on OS X or Linux, be sure to use the first
partition. Format this partition with a cluster count in above range.
\section References References
Adafruit Industries:
http://www.adafruit.com/
http://www.ladyada.net/make/waveshield/
The Arduino site:
http://www.arduino.cc/
For more information about FAT file systems see:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
For information about using SD cards as SPI devices see:
http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
The ATmega328 datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
*/
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
/**
\mainpage Arduino SdFat Library
<CENTER>Copyright &copy; 2009 by William Greiman
</CENTER>
\section Intro Introduction
The Arduino SdFat Library is a minimal implementation of FAT16 and FAT32
file systems on SD flash memory cards. Standard SD and high capacity
SDHC cards are supported.
The SdFat only supports short 8.3 names.
The main classes in SdFat are Sd2Card, SdVolume, and SdFile.
The Sd2Card class supports access to standard SD cards and SDHC cards. Most
applications will only need to call the Sd2Card::init() member function.
The SdVolume class supports FAT16 and FAT32 partitions. Most applications
will only need to call the SdVolume::init() member function.
The SdFile class provides file access functions such as open(), read(),
remove(), write(), close() and sync(). This class supports access to the root
directory and subdirectories.
A number of example are provided in the SdFat/examples folder. These were
developed to test SdFat and illustrate its use.
SdFat was developed for high speed data recording. SdFat was used to implement
an audio record/play class, WaveRP, for the Adafruit Wave Shield. This
application uses special Sd2Card calls to write to contiguous files in raw mode.
These functions reduce write latency so that audio can be recorded with the
small amount of RAM in the Arduino.
\section SDcard SD\SDHC Cards
Arduinos access SD cards using the cards SPI protocol. PCs, Macs, and
most consumer devices use the 4-bit parallel SD protocol. A card that
functions well on A PC or Mac may not work well on the Arduino.
Most cards have good SPI read performance but cards vary widely in SPI
write performance. Write performance is limited by how efficiently the
card manages internal erase/remapping operations. The Arduino cannot
optimize writes to reduce erase operations because of its limit RAM.
SanDisk cards generally have good write performance. They seem to have
more internal RAM buffering than other cards and therefore can limit
the number of flash erase operations that the Arduino forces due to its
limited RAM.
\section Hardware Hardware Configuration
SdFat was developed using an
<A HREF = "http://www.adafruit.com/"> Adafruit Industries</A>
<A HREF = "http://www.ladyada.net/make/waveshield/"> Wave Shield</A>.
The hardware interface to the SD card should not use a resistor based level
shifter. SdFat sets the SPI bus frequency to 8 MHz which results in signal
rise times that are too slow for the edge detectors in many newer SD card
controllers when resistor voltage dividers are used.
The 5 to 3.3 V level shifter for 5 V Arduinos should be IC based like the
74HC4050N based circuit shown in the file SdLevel.png. The Adafruit Wave Shield
uses a 74AHC125N. Gravitech sells SD and MicroSD Card Adapters based on the
74LCX245.
If you are using a resistor based level shifter and are having problems try
setting the SPI bus frequency to 4 MHz. This can be done by using
card.init(SPI_HALF_SPEED) to initialize the SD card.
\section comment Bugs and Comments
If you wish to report bugs or have comments, send email to fat16lib@sbcglobal.net.
\section SdFatClass SdFat Usage
SdFat uses a slightly restricted form of short names.
Only printable ASCII characters are supported. No characters with code point
values greater than 127 are allowed. Space is not allowed even though space
was allowed in the API of early versions of DOS.
Short names are limited to 8 characters followed by an optional period (.)
and extension of up to 3 characters. The characters may be any combination
of letters and digits. The following special characters are also allowed:
$ % ' - _ @ ~ ` ! ( ) { } ^ # &
Short names are always converted to upper case and their original case
value is lost.
\note
The Arduino Print class uses character
at a time writes so it was necessary to use a \link SdFile::sync() sync() \endlink
function to control when data is written to the SD card.
\par
An application which writes to a file using \link Print::print() print()\endlink,
\link Print::println() println() \endlink
or \link SdFile::write write() \endlink must call \link SdFile::sync() sync() \endlink
at the appropriate time to force data and directory information to be written
to the SD Card. Data and directory information are also written to the SD card
when \link SdFile::close() close() \endlink is called.
\par
Applications must use care calling \link SdFile::sync() sync() \endlink
since 2048 bytes of I/O is required to update file and
directory information. This includes writing the current data block, reading
the block that contains the directory entry for update, writing the directory
block back and reading back the current data block.
It is possible to open a file with two or more instances of SdFile. A file may
be corrupted if data is written to the file by more than one instance of SdFile.
\section HowTo How to format SD Cards as FAT Volumes
You should use a freshly formatted SD card for best performance. FAT
file systems become slower if many files have been created and deleted.
This is because the directory entry for a deleted file is marked as deleted,
but is not deleted. When a new file is created, these entries must be scanned
before creating the file, a flaw in the FAT design. Also files can become
fragmented which causes reads and writes to be slower.
Microsoft operating systems support removable media formatted with a
Master Boot Record, MBR, or formatted as a super floppy with a FAT Boot Sector
in block zero.
Microsoft operating systems expect MBR formatted removable media
to have only one partition. The first partition should be used.
Microsoft operating systems do not support partitioning SD flash cards.
If you erase an SD card with a program like KillDisk, Most versions of
Windows will format the card as a super floppy.
The best way to restore an SD card's format is to use SDFormatter
which can be downloaded from:
http://www.sdcard.org/consumers/formatter/
SDFormatter aligns flash erase boundaries with file
system structures which reduces write latency and file system overhead.
SDFormatter does not have an option for FAT type so it may format
small cards as FAT12.
After the MBR is restored by SDFormatter you may need to reformat small
cards that have been formatted FAT12 to force the volume type to be FAT16.
If you reformat the SD card with an OS utility, choose a cluster size that
will result in:
4084 < CountOfClusters && CountOfClusters < 65525
The volume will then be FAT16.
If you are formatting an SD card on OS X or Linux, be sure to use the first
partition. Format this partition with a cluster count in above range.
\section References References
Adafruit Industries:
http://www.adafruit.com/
http://www.ladyada.net/make/waveshield/
The Arduino site:
http://www.arduino.cc/
For more information about FAT file systems see:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx
For information about using SD cards as SPI devices see:
http://www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
The ATmega328 datasheet:
http://www.atmel.com/dyn/resources/prod_documents/doc8161.pdf
*/

File diff suppressed because it is too large Load Diff

View File

@ -1,232 +1,232 @@
/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdInfo_h
#define SdInfo_h
#include <stdint.h>
// Based on the document:
//
// SD Specifications
// Part 1
// Physical Layer
// Simplified Specification
// Version 2.00
// September 25, 2006
//
// www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
//------------------------------------------------------------------------------
// SD card commands
/** GO_IDLE_STATE - init card in spi mode if CS low */
uint8_t const CMD0 = 0X00;
/** SEND_IF_COND - verify SD Memory Card interface operating condition.*/
uint8_t const CMD8 = 0X08;
/** SEND_CSD - read the Card Specific Data (CSD register) */
uint8_t const CMD9 = 0X09;
/** SEND_CID - read the card identification information (CID register) */
uint8_t const CMD10 = 0X0A;
/** SEND_STATUS - read the card status register */
uint8_t const CMD13 = 0X0D;
/** READ_BLOCK - read a single data block from the card */
uint8_t const CMD17 = 0X11;
/** WRITE_BLOCK - write a single data block to the card */
uint8_t const CMD24 = 0X18;
/** WRITE_MULTIPLE_BLOCK - write blocks of data until a STOP_TRANSMISSION */
uint8_t const CMD25 = 0X19;
/** ERASE_WR_BLK_START - sets the address of the first block to be erased */
uint8_t const CMD32 = 0X20;
/** ERASE_WR_BLK_END - sets the address of the last block of the continuous
range to be erased*/
uint8_t const CMD33 = 0X21;
/** ERASE - erase all previously selected blocks */
uint8_t const CMD38 = 0X26;
/** APP_CMD - escape for application specific command */
uint8_t const CMD55 = 0X37;
/** READ_OCR - read the OCR register of a card */
uint8_t const CMD58 = 0X3A;
/** SET_WR_BLK_ERASE_COUNT - Set the number of write blocks to be
pre-erased before writing */
uint8_t const ACMD23 = 0X17;
/** SD_SEND_OP_COMD - Sends host capacity support information and
activates the card's initialization process */
uint8_t const ACMD41 = 0X29;
//------------------------------------------------------------------------------
/** status for card in the ready state */
uint8_t const R1_READY_STATE = 0X00;
/** status for card in the idle state */
uint8_t const R1_IDLE_STATE = 0X01;
/** status bit for illegal command */
uint8_t const R1_ILLEGAL_COMMAND = 0X04;
/** start data token for read or write single block*/
uint8_t const DATA_START_BLOCK = 0XFE;
/** stop token for write multiple blocks*/
uint8_t const STOP_TRAN_TOKEN = 0XFD;
/** start data token for write multiple blocks*/
uint8_t const WRITE_MULTIPLE_TOKEN = 0XFC;
/** mask for data response tokens after a write block operation */
uint8_t const DATA_RES_MASK = 0X1F;
/** write data accepted token */
uint8_t const DATA_RES_ACCEPTED = 0X05;
//------------------------------------------------------------------------------
typedef struct CID {
// byte 0
uint8_t mid; // Manufacturer ID
// byte 1-2
char oid[2]; // OEM/Application ID
// byte 3-7
char pnm[5]; // Product name
// byte 8
unsigned prv_m : 4; // Product revision n.m
unsigned prv_n : 4;
// byte 9-12
uint32_t psn; // Product serial number
// byte 13
unsigned mdt_year_high : 4; // Manufacturing date
unsigned reserved : 4;
// byte 14
unsigned mdt_month : 4;
unsigned mdt_year_low :4;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}cid_t;
//------------------------------------------------------------------------------
// CSD for version 1.00 cards
typedef struct CSDV1 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned c_size_high : 2;
unsigned reserved2 : 2;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
uint8_t c_size_mid;
// byte 8
unsigned vdd_r_curr_max : 3;
unsigned vdd_r_curr_min : 3;
unsigned c_size_low :2;
// byte 9
unsigned c_size_mult_high : 2;
unsigned vdd_w_cur_max : 3;
unsigned vdd_w_curr_min : 3;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned c_size_mult_low : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved3 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved4 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved5: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}csd1_t;
//------------------------------------------------------------------------------
// CSD for version 2.00 cards
typedef struct CSDV2 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned reserved2 : 4;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
unsigned reserved3 : 2;
unsigned c_size_high : 6;
// byte 8
uint8_t c_size_mid;
// byte 9
uint8_t c_size_low;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned reserved4 : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved5 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved6 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved7: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}csd2_t;
//------------------------------------------------------------------------------
// union of old and new style CSD register
union csd_t {
csd1_t v1;
csd2_t v2;
};
#endif // SdInfo_h
/* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino Sd2Card Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino Sd2Card Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#ifndef SdInfo_h
#define SdInfo_h
#include <stdint.h>
// Based on the document:
//
// SD Specifications
// Part 1
// Physical Layer
// Simplified Specification
// Version 2.00
// September 25, 2006
//
// www.sdcard.org/developers/tech/sdcard/pls/Simplified_Physical_Layer_Spec.pdf
//------------------------------------------------------------------------------
// SD card commands
/** GO_IDLE_STATE - init card in spi mode if CS low */
uint8_t const CMD0 = 0X00;
/** SEND_IF_COND - verify SD Memory Card interface operating condition.*/
uint8_t const CMD8 = 0X08;
/** SEND_CSD - read the Card Specific Data (CSD register) */
uint8_t const CMD9 = 0X09;
/** SEND_CID - read the card identification information (CID register) */
uint8_t const CMD10 = 0X0A;
/** SEND_STATUS - read the card status register */
uint8_t const CMD13 = 0X0D;
/** READ_BLOCK - read a single data block from the card */
uint8_t const CMD17 = 0X11;
/** WRITE_BLOCK - write a single data block to the card */
uint8_t const CMD24 = 0X18;
/** WRITE_MULTIPLE_BLOCK - write blocks of data until a STOP_TRANSMISSION */
uint8_t const CMD25 = 0X19;
/** ERASE_WR_BLK_START - sets the address of the first block to be erased */
uint8_t const CMD32 = 0X20;
/** ERASE_WR_BLK_END - sets the address of the last block of the continuous
range to be erased*/
uint8_t const CMD33 = 0X21;
/** ERASE - erase all previously selected blocks */
uint8_t const CMD38 = 0X26;
/** APP_CMD - escape for application specific command */
uint8_t const CMD55 = 0X37;
/** READ_OCR - read the OCR register of a card */
uint8_t const CMD58 = 0X3A;
/** SET_WR_BLK_ERASE_COUNT - Set the number of write blocks to be
pre-erased before writing */
uint8_t const ACMD23 = 0X17;
/** SD_SEND_OP_COMD - Sends host capacity support information and
activates the card's initialization process */
uint8_t const ACMD41 = 0X29;
//------------------------------------------------------------------------------
/** status for card in the ready state */
uint8_t const R1_READY_STATE = 0X00;
/** status for card in the idle state */
uint8_t const R1_IDLE_STATE = 0X01;
/** status bit for illegal command */
uint8_t const R1_ILLEGAL_COMMAND = 0X04;
/** start data token for read or write single block*/
uint8_t const DATA_START_BLOCK = 0XFE;
/** stop token for write multiple blocks*/
uint8_t const STOP_TRAN_TOKEN = 0XFD;
/** start data token for write multiple blocks*/
uint8_t const WRITE_MULTIPLE_TOKEN = 0XFC;
/** mask for data response tokens after a write block operation */
uint8_t const DATA_RES_MASK = 0X1F;
/** write data accepted token */
uint8_t const DATA_RES_ACCEPTED = 0X05;
//------------------------------------------------------------------------------
typedef struct CID {
// byte 0
uint8_t mid; // Manufacturer ID
// byte 1-2
char oid[2]; // OEM/Application ID
// byte 3-7
char pnm[5]; // Product name
// byte 8
unsigned prv_m : 4; // Product revision n.m
unsigned prv_n : 4;
// byte 9-12
uint32_t psn; // Product serial number
// byte 13
unsigned mdt_year_high : 4; // Manufacturing date
unsigned reserved : 4;
// byte 14
unsigned mdt_month : 4;
unsigned mdt_year_low :4;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}cid_t;
//------------------------------------------------------------------------------
// CSD for version 1.00 cards
typedef struct CSDV1 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned c_size_high : 2;
unsigned reserved2 : 2;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
uint8_t c_size_mid;
// byte 8
unsigned vdd_r_curr_max : 3;
unsigned vdd_r_curr_min : 3;
unsigned c_size_low :2;
// byte 9
unsigned c_size_mult_high : 2;
unsigned vdd_w_cur_max : 3;
unsigned vdd_w_curr_min : 3;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned c_size_mult_low : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved3 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved4 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved5: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}csd1_t;
//------------------------------------------------------------------------------
// CSD for version 2.00 cards
typedef struct CSDV2 {
// byte 0
unsigned reserved1 : 6;
unsigned csd_ver : 2;
// byte 1
uint8_t taac;
// byte 2
uint8_t nsac;
// byte 3
uint8_t tran_speed;
// byte 4
uint8_t ccc_high;
// byte 5
unsigned read_bl_len : 4;
unsigned ccc_low : 4;
// byte 6
unsigned reserved2 : 4;
unsigned dsr_imp : 1;
unsigned read_blk_misalign :1;
unsigned write_blk_misalign : 1;
unsigned read_bl_partial : 1;
// byte 7
unsigned reserved3 : 2;
unsigned c_size_high : 6;
// byte 8
uint8_t c_size_mid;
// byte 9
uint8_t c_size_low;
// byte 10
unsigned sector_size_high : 6;
unsigned erase_blk_en : 1;
unsigned reserved4 : 1;
// byte 11
unsigned wp_grp_size : 7;
unsigned sector_size_low : 1;
// byte 12
unsigned write_bl_len_high : 2;
unsigned r2w_factor : 3;
unsigned reserved5 : 2;
unsigned wp_grp_enable : 1;
// byte 13
unsigned reserved6 : 5;
unsigned write_partial : 1;
unsigned write_bl_len_low : 2;
// byte 14
unsigned reserved7: 2;
unsigned file_format : 2;
unsigned tmp_write_protect : 1;
unsigned perm_write_protect : 1;
unsigned copy : 1;
unsigned file_format_grp : 1;
// byte 15
unsigned always1 : 1;
unsigned crc : 7;
}csd2_t;
//------------------------------------------------------------------------------
// union of old and new style CSD register
union csd_t {
csd1_t v1;
csd2_t v2;
};
#endif // SdInfo_h

View File

@ -1,295 +1,295 @@
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "SdFat.h"
//------------------------------------------------------------------------------
// raw block cache
// init cacheBlockNumber_to invalid SD block number
uint32_t SdVolume::cacheBlockNumber_ = 0XFFFFFFFF;
cache_t SdVolume::cacheBuffer_; // 512 byte cache for Sd2Card
Sd2Card* SdVolume::sdCard_; // pointer to SD card object
uint8_t SdVolume::cacheDirty_ = 0; // cacheFlush() will write block if true
uint32_t SdVolume::cacheMirrorBlock_ = 0; // mirror block for second FAT
//------------------------------------------------------------------------------
// find a contiguous group of clusters
uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
// start of group
uint32_t bgnCluster;
// flag to save place to start next search
uint8_t setStart;
// set search start cluster
if (*curCluster) {
// try to make file contiguous
bgnCluster = *curCluster + 1;
// don't save new start location
setStart = false;
} else {
// start at likely place for free cluster
bgnCluster = allocSearchStart_;
// save next search start if one cluster
setStart = 1 == count;
}
// end of group
uint32_t endCluster = bgnCluster;
// last cluster of FAT
uint32_t fatEnd = clusterCount_ + 1;
// search the FAT for free clusters
for (uint32_t n = 0;; n++, endCluster++) {
// can't find space checked all clusters
if (n >= clusterCount_) return false;
// past end - start from beginning of FAT
if (endCluster > fatEnd) {
bgnCluster = endCluster = 2;
}
uint32_t f;
if (!fatGet(endCluster, &f)) return false;
if (f != 0) {
// cluster in use try next cluster as bgnCluster
bgnCluster = endCluster + 1;
} else if ((endCluster - bgnCluster + 1) == count) {
// done - found space
break;
}
}
// mark end of chain
if (!fatPutEOC(endCluster)) return false;
// link clusters
while (endCluster > bgnCluster) {
if (!fatPut(endCluster - 1, endCluster)) return false;
endCluster--;
}
if (*curCluster != 0) {
// connect chains
if (!fatPut(*curCluster, bgnCluster)) return false;
}
// return first cluster number to caller
*curCluster = bgnCluster;
// remember possible next free cluster
if (setStart) allocSearchStart_ = bgnCluster + 1;
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheFlush(void) {
if (cacheDirty_) {
if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
return false;
}
// mirror FAT tables
if (cacheMirrorBlock_) {
if (!sdCard_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data)) {
return false;
}
cacheMirrorBlock_ = 0;
}
cacheDirty_ = 0;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheRawBlock(uint32_t blockNumber, uint8_t action) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheFlush()) return false;
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) return false;
cacheBlockNumber_ = blockNumber;
}
cacheDirty_ |= action;
return true;
}
//------------------------------------------------------------------------------
// cache a zero block for blockNumber
uint8_t SdVolume::cacheZeroBlock(uint32_t blockNumber) {
if (!cacheFlush()) return false;
// loop take less flash than memset(cacheBuffer_.data, 0, 512);
for (uint16_t i = 0; i < 512; i++) {
cacheBuffer_.data[i] = 0;
}
cacheBlockNumber_ = blockNumber;
cacheSetDirty();
return true;
}
//------------------------------------------------------------------------------
// return the size in bytes of a cluster chain
uint8_t SdVolume::chainSize(uint32_t cluster, uint32_t* size) const {
uint32_t s = 0;
do {
if (!fatGet(cluster, &cluster)) return false;
s += 512UL << clusterSizeShift_;
} while (!isEOC(cluster));
*size = s;
return true;
}
//------------------------------------------------------------------------------
// Fetch a FAT entry
uint8_t SdVolume::fatGet(uint32_t cluster, uint32_t* value) const {
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return false;
}
if (fatType_ == 16) {
*value = cacheBuffer_.fat16[cluster & 0XFF];
} else {
*value = cacheBuffer_.fat32[cluster & 0X7F] & FAT32MASK;
}
return true;
}
//------------------------------------------------------------------------------
// Store a FAT entry
uint8_t SdVolume::fatPut(uint32_t cluster, uint32_t value) {
// error if reserved cluster
if (cluster < 2) return false;
// error if not in FAT
if (cluster > (clusterCount_ + 1)) return false;
// calculate block address for entry
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return false;
}
// store entry
if (fatType_ == 16) {
cacheBuffer_.fat16[cluster & 0XFF] = value;
} else {
cacheBuffer_.fat32[cluster & 0X7F] = value;
}
cacheSetDirty();
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
return true;
}
//------------------------------------------------------------------------------
// free a cluster chain
uint8_t SdVolume::freeChain(uint32_t cluster) {
// clear free cluster location
allocSearchStart_ = 2;
do {
uint32_t next;
if (!fatGet(cluster, &next)) return false;
// free cluster
if (!fatPut(cluster, 0)) return false;
cluster = next;
} while (!isEOC(cluster));
return true;
}
//------------------------------------------------------------------------------
/**
* Initialize a FAT volume.
*
* \param[in] dev The SD card where the volume is located.
*
* \param[in] part The partition to be used. Legal values for \a part are
* 1-4 to use the corresponding partition on a device formatted with
* a MBR, Master Boot Record, or zero if the device is formatted as
* a super floppy with the FAT boot sector in block zero.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. Reasons for
* failure include not finding a valid partition, not finding a valid
* FAT file system in the specified partition or an I/O error.
*/
uint8_t SdVolume::init(Sd2Card* dev, uint8_t part) {
uint32_t volumeStartBlock = 0;
sdCard_ = dev;
// if part == 0 assume super floppy with FAT boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (part > 4)return false;
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) return false;
part_t* p = &cacheBuffer_.mbr.part[part-1];
if ((p->boot & 0X7F) !=0 ||
p->totalSectors < 100 ||
p->firstSector == 0) {
// not a valid partition
return false;
}
volumeStartBlock = p->firstSector;
}
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) return false;
bpb_t* bpb = &cacheBuffer_.fbs.bpb;
if (bpb->bytesPerSector != 512 ||
bpb->fatCount == 0 ||
bpb->reservedSectorCount == 0 ||
bpb->sectorsPerCluster == 0) {
// not valid FAT volume
return false;
}
fatCount_ = bpb->fatCount;
blocksPerCluster_ = bpb->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
// error if not power of 2
if (clusterSizeShift_++ > 7) return false;
}
blocksPerFat_ = bpb->sectorsPerFat16 ?
bpb->sectorsPerFat16 : bpb->sectorsPerFat32;
fatStartBlock_ = volumeStartBlock + bpb->reservedSectorCount;
// count for FAT16 zero for FAT32
rootDirEntryCount_ = bpb->rootDirEntryCount;
// directory start for FAT16 dataStart for FAT32
rootDirStart_ = fatStartBlock_ + bpb->fatCount * blocksPerFat_;
// data start for FAT16 and FAT32
dataStartBlock_ = rootDirStart_ + ((32 * bpb->rootDirEntryCount + 511)/512);
// total blocks for FAT16 or FAT32
uint32_t totalBlocks = bpb->totalSectors16 ?
bpb->totalSectors16 : bpb->totalSectors32;
// total data blocks
clusterCount_ = totalBlocks - (dataStartBlock_ - volumeStartBlock);
// divide by cluster size to get cluster count
clusterCount_ >>= clusterSizeShift_;
// FAT type is determined by cluster count
if (clusterCount_ < 4085) {
fatType_ = 12;
} else if (clusterCount_ < 65525) {
fatType_ = 16;
} else {
rootDirStart_ = bpb->fat32RootCluster;
fatType_ = 32;
}
return true;
}
/* Arduino SdFat Library
* Copyright (C) 2009 by William Greiman
*
* This file is part of the Arduino SdFat Library
*
* This Library is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This Library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with the Arduino SdFat Library. If not, see
* <http://www.gnu.org/licenses/>.
*/
#include "SdFat.h"
//------------------------------------------------------------------------------
// raw block cache
// init cacheBlockNumber_to invalid SD block number
uint32_t SdVolume::cacheBlockNumber_ = 0XFFFFFFFF;
cache_t SdVolume::cacheBuffer_; // 512 byte cache for Sd2Card
Sd2Card* SdVolume::sdCard_; // pointer to SD card object
uint8_t SdVolume::cacheDirty_ = 0; // cacheFlush() will write block if true
uint32_t SdVolume::cacheMirrorBlock_ = 0; // mirror block for second FAT
//------------------------------------------------------------------------------
// find a contiguous group of clusters
uint8_t SdVolume::allocContiguous(uint32_t count, uint32_t* curCluster) {
// start of group
uint32_t bgnCluster;
// flag to save place to start next search
uint8_t setStart;
// set search start cluster
if (*curCluster) {
// try to make file contiguous
bgnCluster = *curCluster + 1;
// don't save new start location
setStart = false;
} else {
// start at likely place for free cluster
bgnCluster = allocSearchStart_;
// save next search start if one cluster
setStart = 1 == count;
}
// end of group
uint32_t endCluster = bgnCluster;
// last cluster of FAT
uint32_t fatEnd = clusterCount_ + 1;
// search the FAT for free clusters
for (uint32_t n = 0;; n++, endCluster++) {
// can't find space checked all clusters
if (n >= clusterCount_) return false;
// past end - start from beginning of FAT
if (endCluster > fatEnd) {
bgnCluster = endCluster = 2;
}
uint32_t f;
if (!fatGet(endCluster, &f)) return false;
if (f != 0) {
// cluster in use try next cluster as bgnCluster
bgnCluster = endCluster + 1;
} else if ((endCluster - bgnCluster + 1) == count) {
// done - found space
break;
}
}
// mark end of chain
if (!fatPutEOC(endCluster)) return false;
// link clusters
while (endCluster > bgnCluster) {
if (!fatPut(endCluster - 1, endCluster)) return false;
endCluster--;
}
if (*curCluster != 0) {
// connect chains
if (!fatPut(*curCluster, bgnCluster)) return false;
}
// return first cluster number to caller
*curCluster = bgnCluster;
// remember possible next free cluster
if (setStart) allocSearchStart_ = bgnCluster + 1;
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheFlush(void) {
if (cacheDirty_) {
if (!sdCard_->writeBlock(cacheBlockNumber_, cacheBuffer_.data)) {
return false;
}
// mirror FAT tables
if (cacheMirrorBlock_) {
if (!sdCard_->writeBlock(cacheMirrorBlock_, cacheBuffer_.data)) {
return false;
}
cacheMirrorBlock_ = 0;
}
cacheDirty_ = 0;
}
return true;
}
//------------------------------------------------------------------------------
uint8_t SdVolume::cacheRawBlock(uint32_t blockNumber, uint8_t action) {
if (cacheBlockNumber_ != blockNumber) {
if (!cacheFlush()) return false;
if (!sdCard_->readBlock(blockNumber, cacheBuffer_.data)) return false;
cacheBlockNumber_ = blockNumber;
}
cacheDirty_ |= action;
return true;
}
//------------------------------------------------------------------------------
// cache a zero block for blockNumber
uint8_t SdVolume::cacheZeroBlock(uint32_t blockNumber) {
if (!cacheFlush()) return false;
// loop take less flash than memset(cacheBuffer_.data, 0, 512);
for (uint16_t i = 0; i < 512; i++) {
cacheBuffer_.data[i] = 0;
}
cacheBlockNumber_ = blockNumber;
cacheSetDirty();
return true;
}
//------------------------------------------------------------------------------
// return the size in bytes of a cluster chain
uint8_t SdVolume::chainSize(uint32_t cluster, uint32_t* size) const {
uint32_t s = 0;
do {
if (!fatGet(cluster, &cluster)) return false;
s += 512UL << clusterSizeShift_;
} while (!isEOC(cluster));
*size = s;
return true;
}
//------------------------------------------------------------------------------
// Fetch a FAT entry
uint8_t SdVolume::fatGet(uint32_t cluster, uint32_t* value) const {
if (cluster > (clusterCount_ + 1)) return false;
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return false;
}
if (fatType_ == 16) {
*value = cacheBuffer_.fat16[cluster & 0XFF];
} else {
*value = cacheBuffer_.fat32[cluster & 0X7F] & FAT32MASK;
}
return true;
}
//------------------------------------------------------------------------------
// Store a FAT entry
uint8_t SdVolume::fatPut(uint32_t cluster, uint32_t value) {
// error if reserved cluster
if (cluster < 2) return false;
// error if not in FAT
if (cluster > (clusterCount_ + 1)) return false;
// calculate block address for entry
uint32_t lba = fatStartBlock_;
lba += fatType_ == 16 ? cluster >> 8 : cluster >> 7;
if (lba != cacheBlockNumber_) {
if (!cacheRawBlock(lba, CACHE_FOR_READ)) return false;
}
// store entry
if (fatType_ == 16) {
cacheBuffer_.fat16[cluster & 0XFF] = value;
} else {
cacheBuffer_.fat32[cluster & 0X7F] = value;
}
cacheSetDirty();
// mirror second FAT
if (fatCount_ > 1) cacheMirrorBlock_ = lba + blocksPerFat_;
return true;
}
//------------------------------------------------------------------------------
// free a cluster chain
uint8_t SdVolume::freeChain(uint32_t cluster) {
// clear free cluster location
allocSearchStart_ = 2;
do {
uint32_t next;
if (!fatGet(cluster, &next)) return false;
// free cluster
if (!fatPut(cluster, 0)) return false;
cluster = next;
} while (!isEOC(cluster));
return true;
}
//------------------------------------------------------------------------------
/**
* Initialize a FAT volume.
*
* \param[in] dev The SD card where the volume is located.
*
* \param[in] part The partition to be used. Legal values for \a part are
* 1-4 to use the corresponding partition on a device formatted with
* a MBR, Master Boot Record, or zero if the device is formatted as
* a super floppy with the FAT boot sector in block zero.
*
* \return The value one, true, is returned for success and
* the value zero, false, is returned for failure. Reasons for
* failure include not finding a valid partition, not finding a valid
* FAT file system in the specified partition or an I/O error.
*/
uint8_t SdVolume::init(Sd2Card* dev, uint8_t part) {
uint32_t volumeStartBlock = 0;
sdCard_ = dev;
// if part == 0 assume super floppy with FAT boot sector in block zero
// if part > 0 assume mbr volume with partition table
if (part) {
if (part > 4)return false;
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) return false;
part_t* p = &cacheBuffer_.mbr.part[part-1];
if ((p->boot & 0X7F) !=0 ||
p->totalSectors < 100 ||
p->firstSector == 0) {
// not a valid partition
return false;
}
volumeStartBlock = p->firstSector;
}
if (!cacheRawBlock(volumeStartBlock, CACHE_FOR_READ)) return false;
bpb_t* bpb = &cacheBuffer_.fbs.bpb;
if (bpb->bytesPerSector != 512 ||
bpb->fatCount == 0 ||
bpb->reservedSectorCount == 0 ||
bpb->sectorsPerCluster == 0) {
// not valid FAT volume
return false;
}
fatCount_ = bpb->fatCount;
blocksPerCluster_ = bpb->sectorsPerCluster;
// determine shift that is same as multiply by blocksPerCluster_
clusterSizeShift_ = 0;
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
// error if not power of 2
if (clusterSizeShift_++ > 7) return false;
}
blocksPerFat_ = bpb->sectorsPerFat16 ?
bpb->sectorsPerFat16 : bpb->sectorsPerFat32;
fatStartBlock_ = volumeStartBlock + bpb->reservedSectorCount;
// count for FAT16 zero for FAT32
rootDirEntryCount_ = bpb->rootDirEntryCount;
// directory start for FAT16 dataStart for FAT32
rootDirStart_ = fatStartBlock_ + bpb->fatCount * blocksPerFat_;
// data start for FAT16 and FAT32
dataStartBlock_ = rootDirStart_ + ((32 * bpb->rootDirEntryCount + 511)/512);
// total blocks for FAT16 or FAT32
uint32_t totalBlocks = bpb->totalSectors16 ?
bpb->totalSectors16 : bpb->totalSectors32;
// total data blocks
clusterCount_ = totalBlocks - (dataStartBlock_ - volumeStartBlock);
// divide by cluster size to get cluster count
clusterCount_ >>= clusterSizeShift_;
// FAT type is determined by cluster count
if (clusterCount_ < 4085) {
fatType_ = 12;
} else if (clusterCount_ < 65525) {
fatType_ = 16;
} else {
rootDirStart_ = bpb->fat32RootCluster;
fatType_ = 32;
}
return true;
}

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -1,75 +1,75 @@
#ifndef SPEED_LOOKUPTABLE_H
#define SPEED_LOOKUPTABLE_H
#include <avr/pgmspace.h>
uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
{ 323, 13}, { 310, 11}, { 299, 11}, { 288, 11}, { 277, 9}, { 268, 9}, { 259, 8}, { 251, 8},
{ 243, 8}, { 235, 7}, { 228, 6}, { 222, 6}, { 216, 6}, { 210, 6}, { 204, 5}, { 199, 5},
{ 194, 5}, { 189, 4}, { 185, 4}, { 181, 4}, { 177, 4}, { 173, 4}, { 169, 4}, { 165, 3},
{ 162, 3}, { 159, 4}, { 155, 3}, { 152, 3}, { 149, 2}, { 147, 3}, { 144, 3}, { 141, 2},
{ 139, 3}, { 136, 2}, { 134, 2}, { 132, 3}, { 129, 2}, { 127, 2}, { 125, 2}, { 123, 2},
{ 121, 2}, { 119, 1}, { 118, 2}, { 116, 2}, { 114, 1}, { 113, 2}, { 111, 2}, { 109, 1},
{ 108, 2}, { 106, 1}, { 105, 2}, { 103, 1}, { 102, 1}, { 101, 1}, { 100, 2}, { 98, 1},
{ 97, 1}, { 96, 1}, { 95, 2}, { 93, 1}, { 92, 1}, { 91, 1}, { 90, 1}, { 89, 1},
{ 88, 1}, { 87, 1}, { 86, 1}, { 85, 1}, { 84, 1}, { 83, 0}, { 83, 1}, { 82, 1},
{ 81, 1}, { 80, 1}, { 79, 1}, { 78, 0}, { 78, 1}, { 77, 1}, { 76, 1}, { 75, 0},
{ 75, 1}, { 74, 1}, { 73, 1}, { 72, 0}, { 72, 1}, { 71, 1}, { 70, 0}, { 70, 1},
{ 69, 0}, { 69, 1}, { 68, 1}, { 67, 0}, { 67, 1}, { 66, 0}, { 66, 1}, { 65, 0},
{ 65, 1}, { 64, 1}, { 63, 0}, { 63, 1}, { 62, 0}, { 62, 1}, { 61, 0}, { 61, 1},
{ 60, 0}, { 60, 0}, { 60, 1}, { 59, 0}, { 59, 1}, { 58, 0}, { 58, 1}, { 57, 0},
{ 57, 1}, { 56, 0}, { 56, 0}, { 56, 1}, { 55, 0}, { 55, 1}, { 54, 0}, { 54, 0},
{ 54, 1}, { 53, 0}, { 53, 0}, { 53, 1}, { 52, 0}, { 52, 0}, { 52, 1}, { 51, 0},
{ 51, 0}, { 51, 1}, { 50, 0}, { 50, 0}, { 50, 1}, { 49, 0}, { 49, 0}, { 49, 1},
{ 48, 0}, { 48, 0}, { 48, 1}, { 47, 0}, { 47, 0}, { 47, 0}, { 47, 1}, { 46, 0},
{ 46, 0}, { 46, 1}, { 45, 0}, { 45, 0}, { 45, 0}, { 45, 1}, { 44, 0}, { 44, 0},
{ 44, 0}, { 44, 1}, { 43, 0}, { 43, 0}, { 43, 0}, { 43, 1}, { 42, 0}, { 42, 0},
{ 42, 0}, { 42, 1}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 1}, { 40, 0},
{ 40, 0}, { 40, 0}, { 40, 0}, { 40, 1}, { 39, 0}, { 39, 0}, { 39, 0}, { 39, 0},
{ 39, 1}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 1}, { 37, 0}, { 37, 0},
{ 37, 0}, { 37, 0}, { 37, 0}, { 37, 1}, { 36, 0}, { 36, 0}, { 36, 0}, { 36, 0},
{ 36, 1}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 1},
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
};
uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
{ 8928, 308}, { 8620, 287}, { 8333, 269}, { 8064, 252}, { 7812, 237}, { 7575, 223}, { 7352, 210}, { 7142, 198},
{ 6944, 188}, { 6756, 178}, { 6578, 168}, { 6410, 160}, { 6250, 153}, { 6097, 145}, { 5952, 139}, { 5813, 132},
{ 5681, 126}, { 5555, 121}, { 5434, 115}, { 5319, 111}, { 5208, 106}, { 5102, 102}, { 5000, 99}, { 4901, 94},
{ 4807, 91}, { 4716, 87}, { 4629, 84}, { 4545, 81}, { 4464, 79}, { 4385, 75}, { 4310, 73}, { 4237, 71},
{ 4166, 68}, { 4098, 66}, { 4032, 64}, { 3968, 62}, { 3906, 60}, { 3846, 59}, { 3787, 56}, { 3731, 55},
{ 3676, 53}, { 3623, 52}, { 3571, 50}, { 3521, 49}, { 3472, 48}, { 3424, 46}, { 3378, 45}, { 3333, 44},
{ 3289, 43}, { 3246, 41}, { 3205, 41}, { 3164, 39}, { 3125, 39}, { 3086, 38}, { 3048, 36}, { 3012, 36},
{ 2976, 35}, { 2941, 35}, { 2906, 33}, { 2873, 33}, { 2840, 32}, { 2808, 31}, { 2777, 30}, { 2747, 30},
{ 2717, 29}, { 2688, 29}, { 2659, 28}, { 2631, 27}, { 2604, 27}, { 2577, 26}, { 2551, 26}, { 2525, 25},
{ 2500, 25}, { 2475, 25}, { 2450, 23}, { 2427, 24}, { 2403, 23}, { 2380, 22}, { 2358, 22}, { 2336, 22},
{ 2314, 21}, { 2293, 21}, { 2272, 20}, { 2252, 20}, { 2232, 20}, { 2212, 20}, { 2192, 19}, { 2173, 18},
{ 2155, 19}, { 2136, 18}, { 2118, 18}, { 2100, 17}, { 2083, 17}, { 2066, 17}, { 2049, 17}, { 2032, 16},
{ 2016, 16}, { 2000, 16}, { 1984, 16}, { 1968, 15}, { 1953, 16}, { 1937, 14}, { 1923, 15}, { 1908, 15},
{ 1893, 14}, { 1879, 14}, { 1865, 14}, { 1851, 13}, { 1838, 14}, { 1824, 13}, { 1811, 13}, { 1798, 13},
{ 1785, 12}, { 1773, 13}, { 1760, 12}, { 1748, 12}, { 1736, 12}, { 1724, 12}, { 1712, 12}, { 1700, 11},
{ 1689, 12}, { 1677, 11}, { 1666, 11}, { 1655, 11}, { 1644, 11}, { 1633, 10}, { 1623, 11}, { 1612, 10},
{ 1602, 10}, { 1592, 10}, { 1582, 10}, { 1572, 10}, { 1562, 10}, { 1552, 9}, { 1543, 10}, { 1533, 9},
{ 1524, 9}, { 1515, 9}, { 1506, 9}, { 1497, 9}, { 1488, 9}, { 1479, 9}, { 1470, 9}, { 1461, 8},
{ 1453, 8}, { 1445, 9}, { 1436, 8}, { 1428, 8}, { 1420, 8}, { 1412, 8}, { 1404, 8}, { 1396, 8},
{ 1388, 7}, { 1381, 8}, { 1373, 7}, { 1366, 8}, { 1358, 7}, { 1351, 7}, { 1344, 8}, { 1336, 7},
{ 1329, 7}, { 1322, 7}, { 1315, 7}, { 1308, 6}, { 1302, 7}, { 1295, 7}, { 1288, 6}, { 1282, 7},
{ 1275, 6}, { 1269, 7}, { 1262, 6}, { 1256, 6}, { 1250, 7}, { 1243, 6}, { 1237, 6}, { 1231, 6},
{ 1225, 6}, { 1219, 6}, { 1213, 6}, { 1207, 6}, { 1201, 5}, { 1196, 6}, { 1190, 6}, { 1184, 5},
{ 1179, 6}, { 1173, 5}, { 1168, 6}, { 1162, 5}, { 1157, 5}, { 1152, 6}, { 1146, 5}, { 1141, 5},
{ 1136, 5}, { 1131, 5}, { 1126, 5}, { 1121, 5}, { 1116, 5}, { 1111, 5}, { 1106, 5}, { 1101, 5},
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
};
#endif
#ifndef SPEED_LOOKUPTABLE_H
#define SPEED_LOOKUPTABLE_H
#include <avr/pgmspace.h>
uint16_t speed_lookuptable_fast[256][2] PROGMEM = {\
{ 62500, 55556}, { 6944, 3268}, { 3676, 1176}, { 2500, 607}, { 1893, 369}, { 1524, 249}, { 1275, 179}, { 1096, 135},
{ 961, 105}, { 856, 85}, { 771, 69}, { 702, 58}, { 644, 49}, { 595, 42}, { 553, 37}, { 516, 32},
{ 484, 28}, { 456, 25}, { 431, 23}, { 408, 20}, { 388, 19}, { 369, 16}, { 353, 16}, { 337, 14},
{ 323, 13}, { 310, 11}, { 299, 11}, { 288, 11}, { 277, 9}, { 268, 9}, { 259, 8}, { 251, 8},
{ 243, 8}, { 235, 7}, { 228, 6}, { 222, 6}, { 216, 6}, { 210, 6}, { 204, 5}, { 199, 5},
{ 194, 5}, { 189, 4}, { 185, 4}, { 181, 4}, { 177, 4}, { 173, 4}, { 169, 4}, { 165, 3},
{ 162, 3}, { 159, 4}, { 155, 3}, { 152, 3}, { 149, 2}, { 147, 3}, { 144, 3}, { 141, 2},
{ 139, 3}, { 136, 2}, { 134, 2}, { 132, 3}, { 129, 2}, { 127, 2}, { 125, 2}, { 123, 2},
{ 121, 2}, { 119, 1}, { 118, 2}, { 116, 2}, { 114, 1}, { 113, 2}, { 111, 2}, { 109, 1},
{ 108, 2}, { 106, 1}, { 105, 2}, { 103, 1}, { 102, 1}, { 101, 1}, { 100, 2}, { 98, 1},
{ 97, 1}, { 96, 1}, { 95, 2}, { 93, 1}, { 92, 1}, { 91, 1}, { 90, 1}, { 89, 1},
{ 88, 1}, { 87, 1}, { 86, 1}, { 85, 1}, { 84, 1}, { 83, 0}, { 83, 1}, { 82, 1},
{ 81, 1}, { 80, 1}, { 79, 1}, { 78, 0}, { 78, 1}, { 77, 1}, { 76, 1}, { 75, 0},
{ 75, 1}, { 74, 1}, { 73, 1}, { 72, 0}, { 72, 1}, { 71, 1}, { 70, 0}, { 70, 1},
{ 69, 0}, { 69, 1}, { 68, 1}, { 67, 0}, { 67, 1}, { 66, 0}, { 66, 1}, { 65, 0},
{ 65, 1}, { 64, 1}, { 63, 0}, { 63, 1}, { 62, 0}, { 62, 1}, { 61, 0}, { 61, 1},
{ 60, 0}, { 60, 0}, { 60, 1}, { 59, 0}, { 59, 1}, { 58, 0}, { 58, 1}, { 57, 0},
{ 57, 1}, { 56, 0}, { 56, 0}, { 56, 1}, { 55, 0}, { 55, 1}, { 54, 0}, { 54, 0},
{ 54, 1}, { 53, 0}, { 53, 0}, { 53, 1}, { 52, 0}, { 52, 0}, { 52, 1}, { 51, 0},
{ 51, 0}, { 51, 1}, { 50, 0}, { 50, 0}, { 50, 1}, { 49, 0}, { 49, 0}, { 49, 1},
{ 48, 0}, { 48, 0}, { 48, 1}, { 47, 0}, { 47, 0}, { 47, 0}, { 47, 1}, { 46, 0},
{ 46, 0}, { 46, 1}, { 45, 0}, { 45, 0}, { 45, 0}, { 45, 1}, { 44, 0}, { 44, 0},
{ 44, 0}, { 44, 1}, { 43, 0}, { 43, 0}, { 43, 0}, { 43, 1}, { 42, 0}, { 42, 0},
{ 42, 0}, { 42, 1}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 0}, { 41, 1}, { 40, 0},
{ 40, 0}, { 40, 0}, { 40, 0}, { 40, 1}, { 39, 0}, { 39, 0}, { 39, 0}, { 39, 0},
{ 39, 1}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 0}, { 38, 1}, { 37, 0}, { 37, 0},
{ 37, 0}, { 37, 0}, { 37, 0}, { 37, 1}, { 36, 0}, { 36, 0}, { 36, 0}, { 36, 0},
{ 36, 1}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 0}, { 35, 1},
{ 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 0}, { 34, 1}, { 33, 0}, { 33, 0},
{ 33, 0}, { 33, 0}, { 33, 0}, { 33, 0}, { 33, 1}, { 32, 0}, { 32, 0}, { 32, 0},
{ 32, 0}, { 32, 0}, { 32, 0}, { 32, 0}, { 32, 1}, { 31, 0}, { 31, 0}, { 31, 0},
{ 31, 0}, { 31, 0}, { 31, 0}, { 31, 1}, { 30, 0}, { 30, 0}, { 30, 0}, { 30, 0}
};
uint16_t speed_lookuptable_slow[256][2] PROGMEM = {\
{ 62500, 12500}, { 50000, 8334}, { 41666, 5952}, { 35714, 4464}, { 31250, 3473}, { 27777, 2777}, { 25000, 2273}, { 22727, 1894},
{ 20833, 1603}, { 19230, 1373}, { 17857, 1191}, { 16666, 1041}, { 15625, 920}, { 14705, 817}, { 13888, 731}, { 13157, 657},
{ 12500, 596}, { 11904, 541}, { 11363, 494}, { 10869, 453}, { 10416, 416}, { 10000, 385}, { 9615, 356}, { 9259, 331},
{ 8928, 308}, { 8620, 287}, { 8333, 269}, { 8064, 252}, { 7812, 237}, { 7575, 223}, { 7352, 210}, { 7142, 198},
{ 6944, 188}, { 6756, 178}, { 6578, 168}, { 6410, 160}, { 6250, 153}, { 6097, 145}, { 5952, 139}, { 5813, 132},
{ 5681, 126}, { 5555, 121}, { 5434, 115}, { 5319, 111}, { 5208, 106}, { 5102, 102}, { 5000, 99}, { 4901, 94},
{ 4807, 91}, { 4716, 87}, { 4629, 84}, { 4545, 81}, { 4464, 79}, { 4385, 75}, { 4310, 73}, { 4237, 71},
{ 4166, 68}, { 4098, 66}, { 4032, 64}, { 3968, 62}, { 3906, 60}, { 3846, 59}, { 3787, 56}, { 3731, 55},
{ 3676, 53}, { 3623, 52}, { 3571, 50}, { 3521, 49}, { 3472, 48}, { 3424, 46}, { 3378, 45}, { 3333, 44},
{ 3289, 43}, { 3246, 41}, { 3205, 41}, { 3164, 39}, { 3125, 39}, { 3086, 38}, { 3048, 36}, { 3012, 36},
{ 2976, 35}, { 2941, 35}, { 2906, 33}, { 2873, 33}, { 2840, 32}, { 2808, 31}, { 2777, 30}, { 2747, 30},
{ 2717, 29}, { 2688, 29}, { 2659, 28}, { 2631, 27}, { 2604, 27}, { 2577, 26}, { 2551, 26}, { 2525, 25},
{ 2500, 25}, { 2475, 25}, { 2450, 23}, { 2427, 24}, { 2403, 23}, { 2380, 22}, { 2358, 22}, { 2336, 22},
{ 2314, 21}, { 2293, 21}, { 2272, 20}, { 2252, 20}, { 2232, 20}, { 2212, 20}, { 2192, 19}, { 2173, 18},
{ 2155, 19}, { 2136, 18}, { 2118, 18}, { 2100, 17}, { 2083, 17}, { 2066, 17}, { 2049, 17}, { 2032, 16},
{ 2016, 16}, { 2000, 16}, { 1984, 16}, { 1968, 15}, { 1953, 16}, { 1937, 14}, { 1923, 15}, { 1908, 15},
{ 1893, 14}, { 1879, 14}, { 1865, 14}, { 1851, 13}, { 1838, 14}, { 1824, 13}, { 1811, 13}, { 1798, 13},
{ 1785, 12}, { 1773, 13}, { 1760, 12}, { 1748, 12}, { 1736, 12}, { 1724, 12}, { 1712, 12}, { 1700, 11},
{ 1689, 12}, { 1677, 11}, { 1666, 11}, { 1655, 11}, { 1644, 11}, { 1633, 10}, { 1623, 11}, { 1612, 10},
{ 1602, 10}, { 1592, 10}, { 1582, 10}, { 1572, 10}, { 1562, 10}, { 1552, 9}, { 1543, 10}, { 1533, 9},
{ 1524, 9}, { 1515, 9}, { 1506, 9}, { 1497, 9}, { 1488, 9}, { 1479, 9}, { 1470, 9}, { 1461, 8},
{ 1453, 8}, { 1445, 9}, { 1436, 8}, { 1428, 8}, { 1420, 8}, { 1412, 8}, { 1404, 8}, { 1396, 8},
{ 1388, 7}, { 1381, 8}, { 1373, 7}, { 1366, 8}, { 1358, 7}, { 1351, 7}, { 1344, 8}, { 1336, 7},
{ 1329, 7}, { 1322, 7}, { 1315, 7}, { 1308, 6}, { 1302, 7}, { 1295, 7}, { 1288, 6}, { 1282, 7},
{ 1275, 6}, { 1269, 7}, { 1262, 6}, { 1256, 6}, { 1250, 7}, { 1243, 6}, { 1237, 6}, { 1231, 6},
{ 1225, 6}, { 1219, 6}, { 1213, 6}, { 1207, 6}, { 1201, 5}, { 1196, 6}, { 1190, 6}, { 1184, 5},
{ 1179, 6}, { 1173, 5}, { 1168, 6}, { 1162, 5}, { 1157, 5}, { 1152, 6}, { 1146, 5}, { 1141, 5},
{ 1136, 5}, { 1131, 5}, { 1126, 5}, { 1121, 5}, { 1116, 5}, { 1111, 5}, { 1106, 5}, { 1101, 5},
{ 1096, 5}, { 1091, 5}, { 1086, 4}, { 1082, 5}, { 1077, 5}, { 1072, 4}, { 1068, 5}, { 1063, 4},
{ 1059, 5}, { 1054, 4}, { 1050, 4}, { 1046, 5}, { 1041, 4}, { 1037, 4}, { 1033, 5}, { 1028, 4},
{ 1024, 4}, { 1020, 4}, { 1016, 4}, { 1012, 4}, { 1008, 4}, { 1004, 4}, { 1000, 4}, { 996, 4},
{ 992, 4}, { 988, 4}, { 984, 4}, { 980, 4}, { 976, 4}, { 972, 4}, { 968, 3}, { 965, 3}
};
#endif

File diff suppressed because it is too large Load Diff

View File

@ -1,84 +1,84 @@
/*
Streaming.h - Arduino library for supporting the << streaming operator
Copyright (c) 2010 Mikal Hart. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef ARDUINO_STREAMING
#define ARDUINO_STREAMING
//#include <WProgram.h>
#define STREAMING_LIBRARY_VERSION 4
// Generic template
template<class T>
inline Print &operator <<(Print &stream, T arg)
{ stream.print(arg); return stream; }
struct _BASED
{
long val;
int base;
_BASED(long v, int b): val(v), base(b)
{}
};
#define _HEX(a) _BASED(a, HEX)
#define _DEC(a) _BASED(a, DEC)
#define _OCT(a) _BASED(a, OCT)
#define _BIN(a) _BASED(a, BIN)
#define _BYTE(a) _BASED(a, BYTE)
// Specialization for class _BASED
// Thanks to Arduino forum user Ben Combee who suggested this
// clever technique to allow for expressions like
// Serial << _HEX(a);
inline Print &operator <<(Print &obj, const _BASED &arg)
{ obj.print(arg.val, arg.base); return obj; }
#if ARDUINO >= 18
// Specialization for class _FLOAT
// Thanks to Michael Margolis for suggesting a way
// to accommodate Arduino 0018's floating point precision
// feature like this:
// Serial << _FLOAT(gps_latitude, 6); // 6 digits of precision
struct _FLOAT
{
float val;
int digits;
_FLOAT(double v, int d): val(v), digits(d)
{}
};
inline Print &operator <<(Print &obj, const _FLOAT &arg)
{ obj.print(arg.val, arg.digits); return obj; }
#endif
// Specialization for enum _EndLineCode
// Thanks to Arduino forum user Paul V. who suggested this
// clever technique to allow for expressions like
// Serial << "Hello!" << endl;
enum _EndLineCode { endl };
inline Print &operator <<(Print &obj, _EndLineCode arg)
{ obj.println(); return obj; }
#endif
/*
Streaming.h - Arduino library for supporting the << streaming operator
Copyright (c) 2010 Mikal Hart. All rights reserved.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#ifndef ARDUINO_STREAMING
#define ARDUINO_STREAMING
//#include <WProgram.h>
#define STREAMING_LIBRARY_VERSION 4
// Generic template
template<class T>
inline Print &operator <<(Print &stream, T arg)
{ stream.print(arg); return stream; }
struct _BASED
{
long val;
int base;
_BASED(long v, int b): val(v), base(b)
{}
};
#define _HEX(a) _BASED(a, HEX)
#define _DEC(a) _BASED(a, DEC)
#define _OCT(a) _BASED(a, OCT)
#define _BIN(a) _BASED(a, BIN)
#define _BYTE(a) _BASED(a, BYTE)
// Specialization for class _BASED
// Thanks to Arduino forum user Ben Combee who suggested this
// clever technique to allow for expressions like
// Serial << _HEX(a);
inline Print &operator <<(Print &obj, const _BASED &arg)
{ obj.print(arg.val, arg.base); return obj; }
#if ARDUINO >= 18
// Specialization for class _FLOAT
// Thanks to Michael Margolis for suggesting a way
// to accommodate Arduino 0018's floating point precision
// feature like this:
// Serial << _FLOAT(gps_latitude, 6); // 6 digits of precision
struct _FLOAT
{
float val;
int digits;
_FLOAT(double v, int d): val(v), digits(d)
{}
};
inline Print &operator <<(Print &obj, const _FLOAT &arg)
{ obj.print(arg.val, arg.digits); return obj; }
#endif
// Specialization for enum _EndLineCode
// Thanks to Arduino forum user Paul V. who suggested this
// clever technique to allow for expressions like
// Serial << "Hello!" << endl;
enum _EndLineCode { endl };
inline Print &operator <<(Print &obj, _EndLineCode arg)
{ obj.println(); return obj; }
#endif

View File

@ -1,483 +1,483 @@
/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
*/
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "streaming.h"
#include "temperature.h"
int target_bed_raw = 0;
int current_bed_raw = 0;
int target_raw[3] = {0, 0, 0};
int current_raw[3] = {0, 0, 0};
unsigned char temp_meas_ready = false;
unsigned long previous_millis_heater, previous_millis_bed_heater;
#ifdef PIDTEMP
double temp_iState = 0;
double temp_dState = 0;
double pTerm;
double iTerm;
double dTerm;
//int output;
double pid_error;
double temp_iState_min;
double temp_iState_max;
double pid_setpoint = 0.0;
double pid_input;
double pid_output;
bool pid_reset;
float HeaterPower;
float Kp=DEFAULT_Kp;
float Ki=DEFAULT_Ki;
float Kd=DEFAULT_Kd;
float Kc=DEFAULT_Kc;
#endif //PIDTEMP
#ifdef MINTEMP
int minttemp = temp2analog(MINTEMP);
#endif //MINTEMP
#ifdef MAXTEMP
int maxttemp = temp2analog(MAXTEMP);
#endif //MAXTEMP
#ifdef BED_MINTEMP
int bed_minttemp = temp2analog(BED_MINTEMP);
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
int bed_maxttemp = temp2analog(BED_MAXTEMP);
#endif //BED_MAXTEMP
void manage_heater()
{
#ifdef USE_WATCHDOG
wd_reset();
#endif
float pid_input;
float pid_output;
/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
This firmware is optimized for gen6 electronics.
*/
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "streaming.h"
#include "temperature.h"
int target_bed_raw = 0;
int current_bed_raw = 0;
int target_raw[3] = {0, 0, 0};
int current_raw[3] = {0, 0, 0};
unsigned char temp_meas_ready = false;
unsigned long previous_millis_heater, previous_millis_bed_heater;
#ifdef PIDTEMP
double temp_iState = 0;
double temp_dState = 0;
double pTerm;
double iTerm;
double dTerm;
//int output;
double pid_error;
double temp_iState_min;
double temp_iState_max;
double pid_setpoint = 0.0;
double pid_input;
double pid_output;
bool pid_reset;
float HeaterPower;
float Kp=DEFAULT_Kp;
float Ki=DEFAULT_Ki;
float Kd=DEFAULT_Kd;
float Kc=DEFAULT_Kc;
#endif //PIDTEMP
#ifdef MINTEMP
int minttemp = temp2analog(MINTEMP);
#endif //MINTEMP
#ifdef MAXTEMP
int maxttemp = temp2analog(MAXTEMP);
#endif //MAXTEMP
#ifdef BED_MINTEMP
int bed_minttemp = temp2analog(BED_MINTEMP);
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
int bed_maxttemp = temp2analog(BED_MAXTEMP);
#endif //BED_MAXTEMP
void manage_heater()
{
#ifdef USE_WATCHDOG
wd_reset();
#endif
float pid_input;
float pid_output;
if(temp_meas_ready != true) //better readability
return;
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
#ifdef PIDTEMP
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
#ifdef PIDTEMP
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
#ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input;
if(pid_error > 10){
pid_output = PID_MAX;
pid_reset = true;
}
else if(pid_error < -10) {
pid_output = 0;
pid_reset = true;
}
else {
if(pid_reset == true) {
temp_iState = 0.0;
pid_reset = false;
}
pTerm = Kp * pid_error;
temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState;
#ifndef PID_OPENLOOP
pid_error = pid_setpoint - pid_input;
if(pid_error > 10){
pid_output = PID_MAX;
pid_reset = true;
}
else if(pid_error < -10) {
pid_output = 0;
pid_reset = true;
}
else {
if(pid_reset == true) {
temp_iState = 0.0;
pid_reset = false;
}
pTerm = Kp * pid_error;
temp_iState += pid_error;
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
iTerm = Ki * temp_iState;
//K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input;
#define K2 (1.0-K1)
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
temp_dState = pid_input;
#ifdef PID_ADD_EXTRUSION_RATE
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
#endif
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
Serial.print(" Input ");
Serial.print(pid_input);
Serial.print(" Output ");
Serial.print(pid_output);
Serial.print(" pTerm ");
Serial.print(pTerm);
Serial.print(" iTerm ");
Serial.print(iTerm);
Serial.print(" dTerm ");
Serial.print(dTerm);
Serial.println();
#endif //PID_DEBUG
analogWrite(HEATER_0_PIN, pid_output);
#endif //PIDTEMP
#ifndef PIDTEMP
if(current_raw[0] >= target_raw[0])
{
WRITE(HEATER_0_PIN,LOW);
}
else
{
WRITE(HEATER_0_PIN,HIGH);
}
#endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#if TEMP_1_PIN > -1
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
}
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
Serial.print(" Input ");
Serial.print(pid_input);
Serial.print(" Output ");
Serial.print(pid_output);
Serial.print(" pTerm ");
Serial.print(pTerm);
Serial.print(" iTerm ");
Serial.print(iTerm);
Serial.print(" dTerm ");
Serial.print(dTerm);
Serial.println();
#endif //PID_DEBUG
analogWrite(HEATER_0_PIN, pid_output);
#endif //PIDTEMP
#ifndef PIDTEMP
if(current_raw[0] >= target_raw[0])
{
WRITE(HEATER_0_PIN,LOW);
}
else
{
WRITE(HEATER_0_PIN,HIGH);
}
#endif
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#if TEMP_1_PIN > -1
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
{
WRITE(HEATER_1_PIN,LOW);
}
else
{
WRITE(HEATER_1_PIN,HIGH);
}
#endif
}
// Takes hot end temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analog(int celsius) {
#ifdef HEATER_USES_THERMISTOR_1
int raw = 0;
byte i;
for (i=1; i<NUMTEMPS_HEATER_1; i++)
{
if (temptable_1[i][1] < celsius)
{
raw = temptable_1[i-1][0] +
(celsius - temptable_1[i-1][1]) *
(temptable_1[i][0] - temptable_1[i-1][0]) /
(temptable_1[i][1] - temptable_1[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS_1) raw = temptable_1[i-1][0];
return (1023 * OVERSAMPLENR) - raw;
#elif defined HEATER_1_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Takes bed temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analogBed(int celsius) {
#ifdef BED_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<BNUMTEMPS; i++)
{
if (bedtemptable[i][1] < celsius)
{
raw = bedtemptable[i-1][0] +
(celsius - bedtemptable[i-1][1]) *
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
(bedtemptable[i][1] - bedtemptable[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
return (1023 * OVERSAMPLENR) - raw;
#elif defined BED_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float analog2temp(int raw) {
#ifdef HEATER_1_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<NUMTEMPS_HEATER_1; i++)
{
if (temptable_1[i][0] > raw)
{
celsius = temptable_1[i-1][1] +
(raw - temptable_1[i-1][0]) *
(temptable_1[i][1] - temptable_1[i-1][1]) /
(temptable_1[i][0] - temptable_1[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS_HEATER_1) celsius = temptable_1[i-1][1];
return celsius;
#elif defined HEATER_1_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<BNUMTEMPS; i++)
{
if (bedtemptable[i][0] > raw)
{
celsius = bedtemptable[i-1][1] +
(raw - bedtemptable[i-1][0]) *
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
(bedtemptable[i][0] - bedtemptable[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
return celsius;
#elif defined BED_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
void tp_init()
{
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#ifdef PIDTEMP
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
// Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= (1<<OCIE0B);
}
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned char temp_state = 0;
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
switch(temp_state) {
case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 = 1 << TEMP_0_PIN;
#else
DIDR2 = 1<<(TEMP_0_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 1;
break;
case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1)
raw_temp_0_value += ADC;
#endif
temp_state = 2;
break;
case 2: // Prepare TEMP_1
#if (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 7
DIDR0 = 1<<TEMP_1_PIN;
#else
DIDR2 = 1<<(TEMP_1_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 3;
break;
case 3: // Measure TEMP_1
#if (TEMP_1_PIN > -1)
raw_temp_1_value += ADC;
#endif
temp_state = 4;
break;
case 4: // Prepare TEMP_2
#if (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 7
DIDR0 = 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 5;
break;
case 5: // Measure TEMP_2
#if (TEMP_2_PIN > -1)
raw_temp_2_value += ADC;
#endif
temp_state = 0;
temp_count++;
break;
default:
Serial.println("!! Temp measurement error !!");
break;
}
if(temp_count >= 16) // 6 ms * 16 = 96ms.
{
#ifdef HEATER_1_USES_AD595
current_raw[0] = raw_temp_0_value;
#else
current_raw[0] = 16383 - raw_temp_0_value;
#endif
#ifdef HEATER_2_USES_AD595
current_raw[2] = raw_temp_2_value;
#else
current_raw[2] = 16383 - raw_temp_2_value;
#endif
#ifdef BED_USES_AD595
current_raw[1] = raw_temp_1_value;
#else
current_raw[1] = 16383 - raw_temp_1_value;
#endif
temp_meas_ready = true;
temp_count = 0;
raw_temp_0_value = 0;
raw_temp_1_value = 0;
raw_temp_2_value = 0;
#ifdef MAXTEMP
#if (HEATER_0_PIN > -1)
{
WRITE(HEATER_1_PIN,LOW);
}
else
{
WRITE(HEATER_1_PIN,HIGH);
}
#endif
}
// Takes hot end temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analog(int celsius) {
#ifdef HEATER_USES_THERMISTOR_1
int raw = 0;
byte i;
for (i=1; i<NUMTEMPS_HEATER_1; i++)
{
if (temptable_1[i][1] < celsius)
{
raw = temptable_1[i-1][0] +
(celsius - temptable_1[i-1][1]) *
(temptable_1[i][0] - temptable_1[i-1][0]) /
(temptable_1[i][1] - temptable_1[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS_1) raw = temptable_1[i-1][0];
return (1023 * OVERSAMPLENR) - raw;
#elif defined HEATER_1_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Takes bed temperature value as input and returns corresponding raw value.
// For a thermistor, it uses the RepRap thermistor temp table.
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
float temp2analogBed(int celsius) {
#ifdef BED_USES_THERMISTOR
int raw = 0;
byte i;
for (i=1; i<BNUMTEMPS; i++)
{
if (bedtemptable[i][1] < celsius)
{
raw = bedtemptable[i-1][0] +
(celsius - bedtemptable[i-1][1]) *
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
(bedtemptable[i][1] - bedtemptable[i-1][1]);
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
return (1023 * OVERSAMPLENR) - raw;
#elif defined BED_USES_AD595
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
float analog2temp(int raw) {
#ifdef HEATER_1_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<NUMTEMPS_HEATER_1; i++)
{
if (temptable_1[i][0] > raw)
{
celsius = temptable_1[i-1][1] +
(raw - temptable_1[i-1][0]) *
(temptable_1[i][1] - temptable_1[i-1][1]) /
(temptable_1[i][0] - temptable_1[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == NUMTEMPS_HEATER_1) celsius = temptable_1[i-1][1];
return celsius;
#elif defined HEATER_1_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
int celsius = 0;
byte i;
raw = (1023 * OVERSAMPLENR) - raw;
for (i=1; i<BNUMTEMPS; i++)
{
if (bedtemptable[i][0] > raw)
{
celsius = bedtemptable[i-1][1] +
(raw - bedtemptable[i-1][0]) *
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
(bedtemptable[i][0] - bedtemptable[i-1][0]);
break;
}
}
// Overflow: Set to last value in the table
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
return celsius;
#elif defined BED_USES_AD595
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
#endif
}
void tp_init()
{
#if (HEATER_0_PIN > -1)
SET_OUTPUT(HEATER_0_PIN);
#endif
#if (HEATER_1_PIN > -1)
SET_OUTPUT(HEATER_1_PIN);
#endif
#if (HEATER_2_PIN > -1)
SET_OUTPUT(HEATER_2_PIN);
#endif
#ifdef PIDTEMP
temp_iState_min = 0.0;
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
#endif //PIDTEMP
// Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= (1<<OCIE0B);
}
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
static unsigned long raw_temp_1_value = 0;
static unsigned long raw_temp_2_value = 0;
static unsigned char temp_state = 0;
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
switch(temp_state) {
case 0: // Prepare TEMP_0
#if (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 = 1 << TEMP_0_PIN;
#else
DIDR2 = 1<<(TEMP_0_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 1;
break;
case 1: // Measure TEMP_0
#if (TEMP_0_PIN > -1)
raw_temp_0_value += ADC;
#endif
temp_state = 2;
break;
case 2: // Prepare TEMP_1
#if (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 7
DIDR0 = 1<<TEMP_1_PIN;
#else
DIDR2 = 1<<(TEMP_1_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 3;
break;
case 3: // Measure TEMP_1
#if (TEMP_1_PIN > -1)
raw_temp_1_value += ADC;
#endif
temp_state = 4;
break;
case 4: // Prepare TEMP_2
#if (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 7
DIDR0 = 1 << TEMP_2_PIN;
#else
DIDR2 = 1<<(TEMP_2_PIN - 8);
ADCSRB = 1<<MUX5;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif
#ifdef ULTIPANEL
buttons_check();
#endif
temp_state = 5;
break;
case 5: // Measure TEMP_2
#if (TEMP_2_PIN > -1)
raw_temp_2_value += ADC;
#endif
temp_state = 0;
temp_count++;
break;
default:
Serial.println("!! Temp measurement error !!");
break;
}
if(temp_count >= 16) // 6 ms * 16 = 96ms.
{
#ifdef HEATER_1_USES_AD595
current_raw[0] = raw_temp_0_value;
#else
current_raw[0] = 16383 - raw_temp_0_value;
#endif
#ifdef HEATER_2_USES_AD595
current_raw[2] = raw_temp_2_value;
#else
current_raw[2] = 16383 - raw_temp_2_value;
#endif
#ifdef BED_USES_AD595
current_raw[1] = raw_temp_1_value;
#else
current_raw[1] = 16383 - raw_temp_1_value;
#endif
temp_meas_ready = true;
temp_count = 0;
raw_temp_0_value = 0;
raw_temp_1_value = 0;
raw_temp_2_value = 0;
#ifdef MAXTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND] >= maxttemp) {
target_raw[TEMPSENSOR_HOTEND] = 0;
analogWrite(HEATER_0_PIN, 0);
Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
}
#endif
#if (HEATER_2_PIN > -1)
analogWrite(HEATER_0_PIN, 0);
Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
}
#endif
#if (HEATER_2_PIN > -1)
if(current_raw[TEMPSENSOR_AUX] >= maxttemp) {
target_raw[TEMPSENSOR_AUX] = 0;
analogWrite(HEATER_2_PIN, 0);
Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
}
#endif
#endif //MAXTEMP
#ifdef MINTEMP
#if (HEATER_0_PIN > -1)
analogWrite(HEATER_2_PIN, 0);
Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
}
#endif
#endif //MAXTEMP
#ifdef MINTEMP
#if (HEATER_0_PIN > -1)
if(current_raw[TEMPSENSOR_HOTEND] <= minttemp) {
target_raw[TEMPSENSOR_HOTEND] = 0;
analogWrite(HEATER_0_PIN, 0);
Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
}
#endif
#if (HEATER_2_PIN > -1)
analogWrite(HEATER_0_PIN, 0);
Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
}
#endif
#if (HEATER_2_PIN > -1)
if(current_raw[TEMPSENSOR_AUX] <= minttemp) {
target_raw[TEMPSENSOR_AUX] = 0;
analogWrite(HEATER_2_PIN, 0);
Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
}
#endif
#endif //MAXTEMP
#ifdef BED_MINTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] <= bed_minttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
}
#endif
#endif
#ifdef BED_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] >= bed_maxttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
}
#endif
#endif
}
}
analogWrite(HEATER_2_PIN, 0);
Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
}
#endif
#endif //MAXTEMP
#ifdef BED_MINTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] <= bed_minttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
}
#endif
#endif
#ifdef BED_MAXTEMP
#if (HEATER_1_PIN > -1)
if(current_raw[1] >= bed_maxttemp) {
target_raw[1] = 0;
WRITE(HEATER_1_PIN, 0);
Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
}
#endif
#endif
}
}

View File

@ -1,410 +1,410 @@
#ifndef THERMISTORTABLES_H_
#define THERMISTORTABLES_H_
#define OVERSAMPLENR 16
#if (THERMISTORHEATER_1 == 1) || (THERMISTORHEATER_2 == 1) || (THERMISTORBED == 1) //100k bed thermistor
#define NUMTEMPS_1 61
const short temptable_1[NUMTEMPS_1][2] = {
{ 23*OVERSAMPLENR , 300 },
{ 25*OVERSAMPLENR , 295 },
{ 27*OVERSAMPLENR , 290 },
{ 28*OVERSAMPLENR , 285 },
{ 31*OVERSAMPLENR , 280 },
{ 33*OVERSAMPLENR , 275 },
{ 35*OVERSAMPLENR , 270 },
{ 38*OVERSAMPLENR , 265 },
{ 41*OVERSAMPLENR , 260 },
{ 44*OVERSAMPLENR , 255 },
{ 48*OVERSAMPLENR , 250 },
{ 52*OVERSAMPLENR , 245 },
{ 56*OVERSAMPLENR , 240 },
{ 61*OVERSAMPLENR , 235 },
{ 66*OVERSAMPLENR , 230 },
{ 71*OVERSAMPLENR , 225 },
{ 78*OVERSAMPLENR , 220 },
{ 84*OVERSAMPLENR , 215 },
{ 92*OVERSAMPLENR , 210 },
{ 100*OVERSAMPLENR , 205 },
{ 109*OVERSAMPLENR , 200 },
{ 120*OVERSAMPLENR , 195 },
{ 131*OVERSAMPLENR , 190 },
{ 143*OVERSAMPLENR , 185 },
{ 156*OVERSAMPLENR , 180 },
{ 171*OVERSAMPLENR , 175 },
{ 187*OVERSAMPLENR , 170 },
{ 205*OVERSAMPLENR , 165 },
{ 224*OVERSAMPLENR , 160 },
{ 245*OVERSAMPLENR , 155 },
{ 268*OVERSAMPLENR , 150 },
{ 293*OVERSAMPLENR , 145 },
{ 320*OVERSAMPLENR , 140 },
{ 348*OVERSAMPLENR , 135 },
{ 379*OVERSAMPLENR , 130 },
{ 411*OVERSAMPLENR , 125 },
{ 445*OVERSAMPLENR , 120 },
{ 480*OVERSAMPLENR , 115 },
{ 516*OVERSAMPLENR , 110 },
{ 553*OVERSAMPLENR , 105 },
{ 591*OVERSAMPLENR , 100 },
{ 628*OVERSAMPLENR , 95 },
{ 665*OVERSAMPLENR , 90 },
{ 702*OVERSAMPLENR , 85 },
{ 737*OVERSAMPLENR , 80 },
{ 770*OVERSAMPLENR , 75 },
{ 801*OVERSAMPLENR , 70 },
{ 830*OVERSAMPLENR , 65 },
{ 857*OVERSAMPLENR , 60 },
{ 881*OVERSAMPLENR , 55 },
{ 903*OVERSAMPLENR , 50 },
{ 922*OVERSAMPLENR , 45 },
{ 939*OVERSAMPLENR , 40 },
{ 954*OVERSAMPLENR , 35 },
{ 966*OVERSAMPLENR , 30 },
{ 977*OVERSAMPLENR , 25 },
{ 985*OVERSAMPLENR , 20 },
{ 993*OVERSAMPLENR , 15 },
{ 999*OVERSAMPLENR , 10 },
{ 1004*OVERSAMPLENR , 5 },
{ 1008*OVERSAMPLENR , 0 } //safety
};
#endif
#if (THERMISTORHEATER_1 == 2) || (THERMISTORHEATER_2 == 2) || (THERMISTORBED == 2) //200k bed thermistor
#define NUMTEMPS_2 21
const short temptable_2[NUMTEMPS_2][2] = {
{1*OVERSAMPLENR, 848},
{54*OVERSAMPLENR, 275},
{107*OVERSAMPLENR, 228},
{160*OVERSAMPLENR, 202},
{213*OVERSAMPLENR, 185},
{266*OVERSAMPLENR, 171},
{319*OVERSAMPLENR, 160},
{372*OVERSAMPLENR, 150},
{425*OVERSAMPLENR, 141},
{478*OVERSAMPLENR, 133},
{531*OVERSAMPLENR, 125},
{584*OVERSAMPLENR, 118},
{637*OVERSAMPLENR, 110},
{690*OVERSAMPLENR, 103},
{743*OVERSAMPLENR, 95},
{796*OVERSAMPLENR, 86},
{849*OVERSAMPLENR, 77},
{902*OVERSAMPLENR, 65},
{955*OVERSAMPLENR, 49},
{1008*OVERSAMPLENR, 17},
{1020*OVERSAMPLENR, 0} //safety
};
#endif
#if (THERMISTORHEATER_1 == 3) || (THERMISTORHEATER_2 == 3) || (THERMISTORBED == 3) //mendel-parts
#define NUMTEMPS_3 28
const short temptable_3[NUMTEMPS_3][2] = {
{1*OVERSAMPLENR,864},
{21*OVERSAMPLENR,300},
{25*OVERSAMPLENR,290},
{29*OVERSAMPLENR,280},
{33*OVERSAMPLENR,270},
{39*OVERSAMPLENR,260},
{46*OVERSAMPLENR,250},
{54*OVERSAMPLENR,240},
{64*OVERSAMPLENR,230},
{75*OVERSAMPLENR,220},
{90*OVERSAMPLENR,210},
{107*OVERSAMPLENR,200},
{128*OVERSAMPLENR,190},
{154*OVERSAMPLENR,180},
{184*OVERSAMPLENR,170},
{221*OVERSAMPLENR,160},
{265*OVERSAMPLENR,150},
{316*OVERSAMPLENR,140},
{375*OVERSAMPLENR,130},
{441*OVERSAMPLENR,120},
{513*OVERSAMPLENR,110},
{588*OVERSAMPLENR,100},
{734*OVERSAMPLENR,80},
{856*OVERSAMPLENR,60},
{938*OVERSAMPLENR,40},
{986*OVERSAMPLENR,20},
{1008*OVERSAMPLENR,0},
{1018*OVERSAMPLENR,-20}
};
#endif
#if (THERMISTORHEATER_1 == 4) || (THERMISTORHEATER_2 == 4) || (THERMISTORBED == 4) //10k thermistor
#define NUMTEMPS_4 20
short temptable_4[NUMTEMPS_4][2] = {
{1*OVERSAMPLENR, 430},
{54*OVERSAMPLENR, 137},
{107*OVERSAMPLENR, 107},
{160*OVERSAMPLENR, 91},
{213*OVERSAMPLENR, 80},
{266*OVERSAMPLENR, 71},
{319*OVERSAMPLENR, 64},
{372*OVERSAMPLENR, 57},
{425*OVERSAMPLENR, 51},
{478*OVERSAMPLENR, 46},
{531*OVERSAMPLENR, 41},
{584*OVERSAMPLENR, 35},
{637*OVERSAMPLENR, 30},
{690*OVERSAMPLENR, 25},
{743*OVERSAMPLENR, 20},
{796*OVERSAMPLENR, 14},
{849*OVERSAMPLENR, 7},
{902*OVERSAMPLENR, 0},
{955*OVERSAMPLENR, -11},
{1008*OVERSAMPLENR, -35}
};
#endif
#if (THERMISTORHEATER_1 == 5) || (THERMISTORHEATER_2 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)
#define NUMTEMPS_5 61
const short temptable_5[NUMTEMPS_5][2] = {
{1*OVERSAMPLENR, 713},
{18*OVERSAMPLENR, 316},
{35*OVERSAMPLENR, 266},
{52*OVERSAMPLENR, 239},
{69*OVERSAMPLENR, 221},
{86*OVERSAMPLENR, 208},
{103*OVERSAMPLENR, 197},
{120*OVERSAMPLENR, 188},
{137*OVERSAMPLENR, 181},
{154*OVERSAMPLENR, 174},
{171*OVERSAMPLENR, 169},
{188*OVERSAMPLENR, 163},
{205*OVERSAMPLENR, 159},
{222*OVERSAMPLENR, 154},
{239*OVERSAMPLENR, 150},
{256*OVERSAMPLENR, 147},
{273*OVERSAMPLENR, 143},
{290*OVERSAMPLENR, 140},
{307*OVERSAMPLENR, 136},
{324*OVERSAMPLENR, 133},
{341*OVERSAMPLENR, 130},
{358*OVERSAMPLENR, 128},
{375*OVERSAMPLENR, 125},
{392*OVERSAMPLENR, 122},
{409*OVERSAMPLENR, 120},
{426*OVERSAMPLENR, 117},
{443*OVERSAMPLENR, 115},
{460*OVERSAMPLENR, 112},
{477*OVERSAMPLENR, 110},
{494*OVERSAMPLENR, 108},
{511*OVERSAMPLENR, 106},
{528*OVERSAMPLENR, 103},
{545*OVERSAMPLENR, 101},
{562*OVERSAMPLENR, 99},
{579*OVERSAMPLENR, 97},
{596*OVERSAMPLENR, 95},
{613*OVERSAMPLENR, 92},
{630*OVERSAMPLENR, 90},
{647*OVERSAMPLENR, 88},
{664*OVERSAMPLENR, 86},
{681*OVERSAMPLENR, 84},
{698*OVERSAMPLENR, 81},
{715*OVERSAMPLENR, 79},
{732*OVERSAMPLENR, 77},
{749*OVERSAMPLENR, 75},
{766*OVERSAMPLENR, 72},
{783*OVERSAMPLENR, 70},
{800*OVERSAMPLENR, 67},
{817*OVERSAMPLENR, 64},
{834*OVERSAMPLENR, 61},
{851*OVERSAMPLENR, 58},
{868*OVERSAMPLENR, 55},
{885*OVERSAMPLENR, 52},
{902*OVERSAMPLENR, 48},
{919*OVERSAMPLENR, 44},
{936*OVERSAMPLENR, 40},
{953*OVERSAMPLENR, 34},
{970*OVERSAMPLENR, 28},
{987*OVERSAMPLENR, 20},
{1004*OVERSAMPLENR, 8},
{1021*OVERSAMPLENR, 0}
};
#endif
#if (THERMISTORHEATER_1 == 6) || (THERMISTORHEATER_2 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor
#define NUMTEMPS_6 36
const short temptable_6[NUMTEMPS_6][2] = {
{28*OVERSAMPLENR, 250},
{31*OVERSAMPLENR, 245},
{35*OVERSAMPLENR, 240},
{39*OVERSAMPLENR, 235},
{42*OVERSAMPLENR, 230},
{44*OVERSAMPLENR, 225},
{49*OVERSAMPLENR, 220},
{53*OVERSAMPLENR, 215},
{62*OVERSAMPLENR, 210},
{73*OVERSAMPLENR, 205},
{72*OVERSAMPLENR, 200},
{94*OVERSAMPLENR, 190},
{102*OVERSAMPLENR, 185},
{116*OVERSAMPLENR, 170},
{143*OVERSAMPLENR, 160},
{183*OVERSAMPLENR, 150},
{223*OVERSAMPLENR, 140},
{270*OVERSAMPLENR, 130},
{318*OVERSAMPLENR, 120},
{383*OVERSAMPLENR, 110},
{413*OVERSAMPLENR, 105},
{439*OVERSAMPLENR, 100},
{484*OVERSAMPLENR, 95},
{513*OVERSAMPLENR, 90},
{607*OVERSAMPLENR, 80},
{664*OVERSAMPLENR, 70},
{781*OVERSAMPLENR, 60},
{810*OVERSAMPLENR, 55},
{849*OVERSAMPLENR, 50},
{914*OVERSAMPLENR, 45},
{914*OVERSAMPLENR, 40},
{935*OVERSAMPLENR, 35},
{954*OVERSAMPLENR, 30},
{970*OVERSAMPLENR, 25},
{978*OVERSAMPLENR, 22},
{1008*OVERSAMPLENR, 3}
};
#endif
#if (THERMISTORHEATER_1 == 7) || (THERMISTORHEATER_2 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01
#define NUMTEMPS_7 54
const short temptable_7[NUMTEMPS_7][2] = {
{46*OVERSAMPLENR, 270},
{50*OVERSAMPLENR, 265},
{54*OVERSAMPLENR, 260},
{58*OVERSAMPLENR, 255},
{62*OVERSAMPLENR, 250},
{67*OVERSAMPLENR, 245},
{72*OVERSAMPLENR, 240},
{79*OVERSAMPLENR, 235},
{85*OVERSAMPLENR, 230},
{91*OVERSAMPLENR, 225},
{99*OVERSAMPLENR, 220},
{107*OVERSAMPLENR, 215},
{116*OVERSAMPLENR, 210},
{126*OVERSAMPLENR, 205},
{136*OVERSAMPLENR, 200},
{149*OVERSAMPLENR, 195},
{160*OVERSAMPLENR, 190},
{175*OVERSAMPLENR, 185},
{191*OVERSAMPLENR, 180},
{209*OVERSAMPLENR, 175},
{224*OVERSAMPLENR, 170},
{246*OVERSAMPLENR, 165},
{267*OVERSAMPLENR, 160},
{293*OVERSAMPLENR, 155},
{316*OVERSAMPLENR, 150},
{340*OVERSAMPLENR, 145},
{364*OVERSAMPLENR, 140},
{396*OVERSAMPLENR, 135},
{425*OVERSAMPLENR, 130},
{460*OVERSAMPLENR, 125},
{489*OVERSAMPLENR, 120},
{526*OVERSAMPLENR, 115},
{558*OVERSAMPLENR, 110},
{591*OVERSAMPLENR, 105},
{628*OVERSAMPLENR, 100},
{660*OVERSAMPLENR, 95},
{696*OVERSAMPLENR, 90},
{733*OVERSAMPLENR, 85},
{761*OVERSAMPLENR, 80},
{794*OVERSAMPLENR, 75},
{819*OVERSAMPLENR, 70},
{847*OVERSAMPLENR, 65},
{870*OVERSAMPLENR, 60},
{892*OVERSAMPLENR, 55},
{911*OVERSAMPLENR, 50},
{929*OVERSAMPLENR, 45},
{944*OVERSAMPLENR, 40},
{959*OVERSAMPLENR, 35},
{971*OVERSAMPLENR, 30},
{981*OVERSAMPLENR, 25},
{989*OVERSAMPLENR, 20},
{994*OVERSAMPLENR, 15},
{1001*OVERSAMPLENR, 10},
{1005*OVERSAMPLENR, 5}
};
#endif
#if THERMISTORHEATER_1 == 1
#define NUMTEMPS_HEATER_1 NUMTEMPS_1
#define temptable_1 temptable_1
#elif THERMISTORHEATER_1 == 2
#define NUMTEMPS_HEATER_1 NUMTEMPS_2
#define temptable_1 temptable_2
#elif THERMISTORHEATER_1 == 3
#define NUMTEMPS_HEATER_1 NUMTEMPS_3
#define temptable_1 temptable_3
#elif THERMISTORHEATER_1 == 4
#define NUMTEMPS_HEATER_1 NUMTEMPS_4
#define temptable_1 temptable_4
#elif THERMISTORHEATER_1 == 5
#define NUMTEMPS_HEATER_1 NUMTEMPS_5
#define temptable_1 temptable_5
#elif THERMISTORHEATER_1 == 6
#define NUMTEMPS_HEATER_1 NUMTEMPS_6
#define temptable_1 temptable_6
#elif THERMISTORHEATER_1 == 7
#define NUMTEMPS_HEATER_1 NUMTEMPS_7
#define temptable_1 temptable_7
#elif defined HEATER_1_USES_THERMISTOR
#error No heater 1 thermistor table specified
#endif
#if THERMISTORHEATER_2 == 1
#define NUMTEMPS_HEATER_2 NUMTEMPS_1
#define temptable_2 temptable_1
#elif THERMISTORHEATER_2 == 2
#define NUMTEMPS_HEATER_2 NUMTEMPS_2
#define temptable_2 temptable_2
#elif THERMISTORHEATER_2 == 3
#define NUMTEMPS_HEATER_2 NUMTEMPS_3
#define temptable_2 temptable_3
#elif THERMISTORHEATER_2 == 4
#define NUMTEMPS_HEATER_2 NUMTEMPS_4
#define temptable_2 temptable_4
#elif THERMISTORHEATER_2 == 5
#define NUMTEMPS_HEATER_2 NUMTEMPS_5
#define temptable_2 temptable_5
#elif THERMISTORHEATER_2 == 6
#define NUMTEMPS_HEATER_2 NUMTEMPS_6
#define temptable_2 temptable_6
#elif THERMISTORHEATER_2 == 7
#define NUMTEMPS_HEATER22 NUMTEMPS_7
#define temptable_2 temptable_7
#elif defined HEATER_2_USES_THERMISTOR
#error No heater 2 thermistor table specified
#endif
#if THERMISTORBED == 1
#define BNUMTEMPS NUMTEMPS_1
#define bedtemptable temptable_1
#elif THERMISTORBED == 2
#define BNUMTEMPS NUMTEMPS_2
#define bedtemptable temptable_2
#elif THERMISTORBED == 3
#define BNUMTEMPS NUMTEMPS_3
#define bedtemptable temptable_3
#elif THERMISTORBED == 4
#define BNUMTEMPS NUMTEMPS_4
#define bedtemptable temptable_4
#elif THERMISTORBED == 5
#define BNUMTEMPS NUMTEMPS_5
#define bedtemptable temptable_5
#elif THERMISTORBED == 6
#define BNUMTEMPS NUMTEMPS_6
#define bedtemptable temptable_6
#elif THERMISTORBED == 7
#define BNUMTEMPS NUMTEMPS_7
#define bedtemptable temptable_7
#elif defined BED_USES_THERMISTOR
#error No bed thermistor table specified
#endif
#endif //THERMISTORTABLES_H_
#ifndef THERMISTORTABLES_H_
#define THERMISTORTABLES_H_
#define OVERSAMPLENR 16
#if (THERMISTORHEATER_1 == 1) || (THERMISTORHEATER_2 == 1) || (THERMISTORBED == 1) //100k bed thermistor
#define NUMTEMPS_1 61
const short temptable_1[NUMTEMPS_1][2] = {
{ 23*OVERSAMPLENR , 300 },
{ 25*OVERSAMPLENR , 295 },
{ 27*OVERSAMPLENR , 290 },
{ 28*OVERSAMPLENR , 285 },
{ 31*OVERSAMPLENR , 280 },
{ 33*OVERSAMPLENR , 275 },
{ 35*OVERSAMPLENR , 270 },
{ 38*OVERSAMPLENR , 265 },
{ 41*OVERSAMPLENR , 260 },
{ 44*OVERSAMPLENR , 255 },
{ 48*OVERSAMPLENR , 250 },
{ 52*OVERSAMPLENR , 245 },
{ 56*OVERSAMPLENR , 240 },
{ 61*OVERSAMPLENR , 235 },
{ 66*OVERSAMPLENR , 230 },
{ 71*OVERSAMPLENR , 225 },
{ 78*OVERSAMPLENR , 220 },
{ 84*OVERSAMPLENR , 215 },
{ 92*OVERSAMPLENR , 210 },
{ 100*OVERSAMPLENR , 205 },
{ 109*OVERSAMPLENR , 200 },
{ 120*OVERSAMPLENR , 195 },
{ 131*OVERSAMPLENR , 190 },
{ 143*OVERSAMPLENR , 185 },
{ 156*OVERSAMPLENR , 180 },
{ 171*OVERSAMPLENR , 175 },
{ 187*OVERSAMPLENR , 170 },
{ 205*OVERSAMPLENR , 165 },
{ 224*OVERSAMPLENR , 160 },
{ 245*OVERSAMPLENR , 155 },
{ 268*OVERSAMPLENR , 150 },
{ 293*OVERSAMPLENR , 145 },
{ 320*OVERSAMPLENR , 140 },
{ 348*OVERSAMPLENR , 135 },
{ 379*OVERSAMPLENR , 130 },
{ 411*OVERSAMPLENR , 125 },
{ 445*OVERSAMPLENR , 120 },
{ 480*OVERSAMPLENR , 115 },
{ 516*OVERSAMPLENR , 110 },
{ 553*OVERSAMPLENR , 105 },
{ 591*OVERSAMPLENR , 100 },
{ 628*OVERSAMPLENR , 95 },
{ 665*OVERSAMPLENR , 90 },
{ 702*OVERSAMPLENR , 85 },
{ 737*OVERSAMPLENR , 80 },
{ 770*OVERSAMPLENR , 75 },
{ 801*OVERSAMPLENR , 70 },
{ 830*OVERSAMPLENR , 65 },
{ 857*OVERSAMPLENR , 60 },
{ 881*OVERSAMPLENR , 55 },
{ 903*OVERSAMPLENR , 50 },
{ 922*OVERSAMPLENR , 45 },
{ 939*OVERSAMPLENR , 40 },
{ 954*OVERSAMPLENR , 35 },
{ 966*OVERSAMPLENR , 30 },
{ 977*OVERSAMPLENR , 25 },
{ 985*OVERSAMPLENR , 20 },
{ 993*OVERSAMPLENR , 15 },
{ 999*OVERSAMPLENR , 10 },
{ 1004*OVERSAMPLENR , 5 },
{ 1008*OVERSAMPLENR , 0 } //safety
};
#endif
#if (THERMISTORHEATER_1 == 2) || (THERMISTORHEATER_2 == 2) || (THERMISTORBED == 2) //200k bed thermistor
#define NUMTEMPS_2 21
const short temptable_2[NUMTEMPS_2][2] = {
{1*OVERSAMPLENR, 848},
{54*OVERSAMPLENR, 275},
{107*OVERSAMPLENR, 228},
{160*OVERSAMPLENR, 202},
{213*OVERSAMPLENR, 185},
{266*OVERSAMPLENR, 171},
{319*OVERSAMPLENR, 160},
{372*OVERSAMPLENR, 150},
{425*OVERSAMPLENR, 141},
{478*OVERSAMPLENR, 133},
{531*OVERSAMPLENR, 125},
{584*OVERSAMPLENR, 118},
{637*OVERSAMPLENR, 110},
{690*OVERSAMPLENR, 103},
{743*OVERSAMPLENR, 95},
{796*OVERSAMPLENR, 86},
{849*OVERSAMPLENR, 77},
{902*OVERSAMPLENR, 65},
{955*OVERSAMPLENR, 49},
{1008*OVERSAMPLENR, 17},
{1020*OVERSAMPLENR, 0} //safety
};
#endif
#if (THERMISTORHEATER_1 == 3) || (THERMISTORHEATER_2 == 3) || (THERMISTORBED == 3) //mendel-parts
#define NUMTEMPS_3 28
const short temptable_3[NUMTEMPS_3][2] = {
{1*OVERSAMPLENR,864},
{21*OVERSAMPLENR,300},
{25*OVERSAMPLENR,290},
{29*OVERSAMPLENR,280},
{33*OVERSAMPLENR,270},
{39*OVERSAMPLENR,260},
{46*OVERSAMPLENR,250},
{54*OVERSAMPLENR,240},
{64*OVERSAMPLENR,230},
{75*OVERSAMPLENR,220},
{90*OVERSAMPLENR,210},
{107*OVERSAMPLENR,200},
{128*OVERSAMPLENR,190},
{154*OVERSAMPLENR,180},
{184*OVERSAMPLENR,170},
{221*OVERSAMPLENR,160},
{265*OVERSAMPLENR,150},
{316*OVERSAMPLENR,140},
{375*OVERSAMPLENR,130},
{441*OVERSAMPLENR,120},
{513*OVERSAMPLENR,110},
{588*OVERSAMPLENR,100},
{734*OVERSAMPLENR,80},
{856*OVERSAMPLENR,60},
{938*OVERSAMPLENR,40},
{986*OVERSAMPLENR,20},
{1008*OVERSAMPLENR,0},
{1018*OVERSAMPLENR,-20}
};
#endif
#if (THERMISTORHEATER_1 == 4) || (THERMISTORHEATER_2 == 4) || (THERMISTORBED == 4) //10k thermistor
#define NUMTEMPS_4 20
short temptable_4[NUMTEMPS_4][2] = {
{1*OVERSAMPLENR, 430},
{54*OVERSAMPLENR, 137},
{107*OVERSAMPLENR, 107},
{160*OVERSAMPLENR, 91},
{213*OVERSAMPLENR, 80},
{266*OVERSAMPLENR, 71},
{319*OVERSAMPLENR, 64},
{372*OVERSAMPLENR, 57},
{425*OVERSAMPLENR, 51},
{478*OVERSAMPLENR, 46},
{531*OVERSAMPLENR, 41},
{584*OVERSAMPLENR, 35},
{637*OVERSAMPLENR, 30},
{690*OVERSAMPLENR, 25},
{743*OVERSAMPLENR, 20},
{796*OVERSAMPLENR, 14},
{849*OVERSAMPLENR, 7},
{902*OVERSAMPLENR, 0},
{955*OVERSAMPLENR, -11},
{1008*OVERSAMPLENR, -35}
};
#endif
#if (THERMISTORHEATER_1 == 5) || (THERMISTORHEATER_2 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)
#define NUMTEMPS_5 61
const short temptable_5[NUMTEMPS_5][2] = {
{1*OVERSAMPLENR, 713},
{18*OVERSAMPLENR, 316},
{35*OVERSAMPLENR, 266},
{52*OVERSAMPLENR, 239},
{69*OVERSAMPLENR, 221},
{86*OVERSAMPLENR, 208},
{103*OVERSAMPLENR, 197},
{120*OVERSAMPLENR, 188},
{137*OVERSAMPLENR, 181},
{154*OVERSAMPLENR, 174},
{171*OVERSAMPLENR, 169},
{188*OVERSAMPLENR, 163},
{205*OVERSAMPLENR, 159},
{222*OVERSAMPLENR, 154},
{239*OVERSAMPLENR, 150},
{256*OVERSAMPLENR, 147},
{273*OVERSAMPLENR, 143},
{290*OVERSAMPLENR, 140},
{307*OVERSAMPLENR, 136},
{324*OVERSAMPLENR, 133},
{341*OVERSAMPLENR, 130},
{358*OVERSAMPLENR, 128},
{375*OVERSAMPLENR, 125},
{392*OVERSAMPLENR, 122},
{409*OVERSAMPLENR, 120},
{426*OVERSAMPLENR, 117},
{443*OVERSAMPLENR, 115},
{460*OVERSAMPLENR, 112},
{477*OVERSAMPLENR, 110},
{494*OVERSAMPLENR, 108},
{511*OVERSAMPLENR, 106},
{528*OVERSAMPLENR, 103},
{545*OVERSAMPLENR, 101},
{562*OVERSAMPLENR, 99},
{579*OVERSAMPLENR, 97},
{596*OVERSAMPLENR, 95},
{613*OVERSAMPLENR, 92},
{630*OVERSAMPLENR, 90},
{647*OVERSAMPLENR, 88},
{664*OVERSAMPLENR, 86},
{681*OVERSAMPLENR, 84},
{698*OVERSAMPLENR, 81},
{715*OVERSAMPLENR, 79},
{732*OVERSAMPLENR, 77},
{749*OVERSAMPLENR, 75},
{766*OVERSAMPLENR, 72},
{783*OVERSAMPLENR, 70},
{800*OVERSAMPLENR, 67},
{817*OVERSAMPLENR, 64},
{834*OVERSAMPLENR, 61},
{851*OVERSAMPLENR, 58},
{868*OVERSAMPLENR, 55},
{885*OVERSAMPLENR, 52},
{902*OVERSAMPLENR, 48},
{919*OVERSAMPLENR, 44},
{936*OVERSAMPLENR, 40},
{953*OVERSAMPLENR, 34},
{970*OVERSAMPLENR, 28},
{987*OVERSAMPLENR, 20},
{1004*OVERSAMPLENR, 8},
{1021*OVERSAMPLENR, 0}
};
#endif
#if (THERMISTORHEATER_1 == 6) || (THERMISTORHEATER_2 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor
#define NUMTEMPS_6 36
const short temptable_6[NUMTEMPS_6][2] = {
{28*OVERSAMPLENR, 250},
{31*OVERSAMPLENR, 245},
{35*OVERSAMPLENR, 240},
{39*OVERSAMPLENR, 235},
{42*OVERSAMPLENR, 230},
{44*OVERSAMPLENR, 225},
{49*OVERSAMPLENR, 220},
{53*OVERSAMPLENR, 215},
{62*OVERSAMPLENR, 210},
{73*OVERSAMPLENR, 205},
{72*OVERSAMPLENR, 200},
{94*OVERSAMPLENR, 190},
{102*OVERSAMPLENR, 185},
{116*OVERSAMPLENR, 170},
{143*OVERSAMPLENR, 160},
{183*OVERSAMPLENR, 150},
{223*OVERSAMPLENR, 140},
{270*OVERSAMPLENR, 130},
{318*OVERSAMPLENR, 120},
{383*OVERSAMPLENR, 110},
{413*OVERSAMPLENR, 105},
{439*OVERSAMPLENR, 100},
{484*OVERSAMPLENR, 95},
{513*OVERSAMPLENR, 90},
{607*OVERSAMPLENR, 80},
{664*OVERSAMPLENR, 70},
{781*OVERSAMPLENR, 60},
{810*OVERSAMPLENR, 55},
{849*OVERSAMPLENR, 50},
{914*OVERSAMPLENR, 45},
{914*OVERSAMPLENR, 40},
{935*OVERSAMPLENR, 35},
{954*OVERSAMPLENR, 30},
{970*OVERSAMPLENR, 25},
{978*OVERSAMPLENR, 22},
{1008*OVERSAMPLENR, 3}
};
#endif
#if (THERMISTORHEATER_1 == 7) || (THERMISTORHEATER_2 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01
#define NUMTEMPS_7 54
const short temptable_7[NUMTEMPS_7][2] = {
{46*OVERSAMPLENR, 270},
{50*OVERSAMPLENR, 265},
{54*OVERSAMPLENR, 260},
{58*OVERSAMPLENR, 255},
{62*OVERSAMPLENR, 250},
{67*OVERSAMPLENR, 245},
{72*OVERSAMPLENR, 240},
{79*OVERSAMPLENR, 235},
{85*OVERSAMPLENR, 230},
{91*OVERSAMPLENR, 225},
{99*OVERSAMPLENR, 220},
{107*OVERSAMPLENR, 215},
{116*OVERSAMPLENR, 210},
{126*OVERSAMPLENR, 205},
{136*OVERSAMPLENR, 200},
{149*OVERSAMPLENR, 195},
{160*OVERSAMPLENR, 190},
{175*OVERSAMPLENR, 185},
{191*OVERSAMPLENR, 180},
{209*OVERSAMPLENR, 175},
{224*OVERSAMPLENR, 170},
{246*OVERSAMPLENR, 165},
{267*OVERSAMPLENR, 160},
{293*OVERSAMPLENR, 155},
{316*OVERSAMPLENR, 150},
{340*OVERSAMPLENR, 145},
{364*OVERSAMPLENR, 140},
{396*OVERSAMPLENR, 135},
{425*OVERSAMPLENR, 130},
{460*OVERSAMPLENR, 125},
{489*OVERSAMPLENR, 120},
{526*OVERSAMPLENR, 115},
{558*OVERSAMPLENR, 110},
{591*OVERSAMPLENR, 105},
{628*OVERSAMPLENR, 100},
{660*OVERSAMPLENR, 95},
{696*OVERSAMPLENR, 90},
{733*OVERSAMPLENR, 85},
{761*OVERSAMPLENR, 80},
{794*OVERSAMPLENR, 75},
{819*OVERSAMPLENR, 70},
{847*OVERSAMPLENR, 65},
{870*OVERSAMPLENR, 60},
{892*OVERSAMPLENR, 55},
{911*OVERSAMPLENR, 50},
{929*OVERSAMPLENR, 45},
{944*OVERSAMPLENR, 40},
{959*OVERSAMPLENR, 35},
{971*OVERSAMPLENR, 30},
{981*OVERSAMPLENR, 25},
{989*OVERSAMPLENR, 20},
{994*OVERSAMPLENR, 15},
{1001*OVERSAMPLENR, 10},
{1005*OVERSAMPLENR, 5}
};
#endif
#if THERMISTORHEATER_1 == 1
#define NUMTEMPS_HEATER_1 NUMTEMPS_1
#define temptable_1 temptable_1
#elif THERMISTORHEATER_1 == 2
#define NUMTEMPS_HEATER_1 NUMTEMPS_2
#define temptable_1 temptable_2
#elif THERMISTORHEATER_1 == 3
#define NUMTEMPS_HEATER_1 NUMTEMPS_3
#define temptable_1 temptable_3
#elif THERMISTORHEATER_1 == 4
#define NUMTEMPS_HEATER_1 NUMTEMPS_4
#define temptable_1 temptable_4
#elif THERMISTORHEATER_1 == 5
#define NUMTEMPS_HEATER_1 NUMTEMPS_5
#define temptable_1 temptable_5
#elif THERMISTORHEATER_1 == 6
#define NUMTEMPS_HEATER_1 NUMTEMPS_6
#define temptable_1 temptable_6
#elif THERMISTORHEATER_1 == 7
#define NUMTEMPS_HEATER_1 NUMTEMPS_7
#define temptable_1 temptable_7
#elif defined HEATER_1_USES_THERMISTOR
#error No heater 1 thermistor table specified
#endif
#if THERMISTORHEATER_2 == 1
#define NUMTEMPS_HEATER_2 NUMTEMPS_1
#define temptable_2 temptable_1
#elif THERMISTORHEATER_2 == 2
#define NUMTEMPS_HEATER_2 NUMTEMPS_2
#define temptable_2 temptable_2
#elif THERMISTORHEATER_2 == 3
#define NUMTEMPS_HEATER_2 NUMTEMPS_3
#define temptable_2 temptable_3
#elif THERMISTORHEATER_2 == 4
#define NUMTEMPS_HEATER_2 NUMTEMPS_4
#define temptable_2 temptable_4
#elif THERMISTORHEATER_2 == 5
#define NUMTEMPS_HEATER_2 NUMTEMPS_5
#define temptable_2 temptable_5
#elif THERMISTORHEATER_2 == 6
#define NUMTEMPS_HEATER_2 NUMTEMPS_6
#define temptable_2 temptable_6
#elif THERMISTORHEATER_2 == 7
#define NUMTEMPS_HEATER22 NUMTEMPS_7
#define temptable_2 temptable_7
#elif defined HEATER_2_USES_THERMISTOR
#error No heater 2 thermistor table specified
#endif
#if THERMISTORBED == 1
#define BNUMTEMPS NUMTEMPS_1
#define bedtemptable temptable_1
#elif THERMISTORBED == 2
#define BNUMTEMPS NUMTEMPS_2
#define bedtemptable temptable_2
#elif THERMISTORBED == 3
#define BNUMTEMPS NUMTEMPS_3
#define bedtemptable temptable_3
#elif THERMISTORBED == 4
#define BNUMTEMPS NUMTEMPS_4
#define bedtemptable temptable_4
#elif THERMISTORBED == 5
#define BNUMTEMPS NUMTEMPS_5
#define bedtemptable temptable_5
#elif THERMISTORBED == 6
#define BNUMTEMPS NUMTEMPS_6
#define bedtemptable temptable_6
#elif THERMISTORBED == 7
#define BNUMTEMPS NUMTEMPS_7
#define bedtemptable temptable_7
#elif defined BED_USES_THERMISTOR
#error No bed thermistor table specified
#endif
#endif //THERMISTORTABLES_H_

View File

@ -1,156 +1,156 @@
#ifndef __ULTRALCDH
#define __ULTRALCDH
#include "Configuration.h"
#ifdef ULTRA_LCD
void lcd_status();
void lcd_init();
void lcd_status(const char* message);
void beep();
void buttons_check();
#define LCDSTATUSRIGHT
#define LCD_UPDATE_INTERVAL 100
#define STATUSTIMEOUT 15000
#include "Configuration.h"
#include <LiquidCrystal.h>
extern LiquidCrystal lcd;
//lcd display size
#ifdef NEWPANEL
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
#define LCD_PINS_RS 20
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 16
#define LCD_PINS_D5 21
#define LCD_PINS_D6 5
#define LCD_PINS_D7 6
//buttons are directly attached
#define BTN_EN1 40
#define BTN_EN2 42
#define BTN_ENC 19 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT 38
#define EN_C (1<<BLEN_C)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define CLICKED (buttons&EN_C)
#define BLOCK {blocking=millis()+blocktime;}
#define CARDINSERTED (READ(SDCARDDETECT)==0)
#else
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
//buttons are attached to a shift register
#define SHIFT_CLK 38
#define SHIFT_LD 42
#define SHIFT_OUT 40
#define SHIFT_EN 17
#define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 5
#define LCD_PINS_D4 6
#define LCD_PINS_D5 21
#define LCD_PINS_D6 20
#define LCD_PINS_D7 19
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1
#define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//atomatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
#endif
// blocking time for recognizing a new keypress of one key, ms
#define blocktime 500
#define lcdslow 5
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
class MainMenu{
public:
MainMenu();
void update();
void getfilename(const uint8_t nr);
uint8_t activeline;
MainStatus status;
uint8_t displayStartingRow;
void showStatus();
void showMainMenu();
void showPrepare();
void showControl();
void showSD();
bool force_lcd_update;
int lastencoderpos;
int8_t lineoffset;
int8_t lastlineoffset;
char filename[11];
bool linechanging;
};
char *fillto(int8_t n,char *c);
char *ftostr51(const float &x);
char *ftostr31(const float &x);
char *ftostr3(const float &x);
#define LCD_MESSAGE(x) lcd_status(x);
#define LCD_STATUS lcd_status()
#else //no lcd
#define LCD_STATUS
#define LCD_MESSAGE(x)
#endif
#ifndef ULTIPANEL
#define CLICKED false
#define BLOCK ;
#endif
#endif //ULTRALCD
#ifndef __ULTRALCDH
#define __ULTRALCDH
#include "Configuration.h"
#ifdef ULTRA_LCD
void lcd_status();
void lcd_init();
void lcd_status(const char* message);
void beep();
void buttons_check();
#define LCDSTATUSRIGHT
#define LCD_UPDATE_INTERVAL 100
#define STATUSTIMEOUT 15000
#include "Configuration.h"
#include <LiquidCrystal.h>
extern LiquidCrystal lcd;
//lcd display size
#ifdef NEWPANEL
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
#define LCD_PINS_RS 20
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 16
#define LCD_PINS_D5 21
#define LCD_PINS_D6 5
#define LCD_PINS_D7 6
//buttons are directly attached
#define BTN_EN1 40
#define BTN_EN2 42
#define BTN_ENC 19 //the click
#define BLEN_C 2
#define BLEN_B 1
#define BLEN_A 0
#define SDCARDDETECT 38
#define EN_C (1<<BLEN_C)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define CLICKED (buttons&EN_C)
#define BLOCK {blocking=millis()+blocktime;}
#define CARDINSERTED (READ(SDCARDDETECT)==0)
#else
//arduino pin witch triggers an piezzo beeper
#define BEEPER 18
//buttons are attached to a shift register
#define SHIFT_CLK 38
#define SHIFT_LD 42
#define SHIFT_OUT 40
#define SHIFT_EN 17
#define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 5
#define LCD_PINS_D4 6
#define LCD_PINS_D5 21
#define LCD_PINS_D6 20
#define LCD_PINS_D7 19
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7
#define BL_UP 6
#define BL_MI 5
#define BL_DW 4
#define BL_RI 3
#define BL_ST 2
#define BLEN_B 1
#define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//atomatic, do not change
#define B_LE (1<<BL_LE)
#define B_UP (1<<BL_UP)
#define B_MI (1<<BL_MI)
#define B_DW (1<<BL_DW)
#define B_RI (1<<BL_RI)
#define B_ST (1<<BL_ST)
#define EN_B (1<<BLEN_B)
#define EN_A (1<<BLEN_A)
#define CLICKED ((buttons&B_MI)||(buttons&B_ST))
#define BLOCK {blocking[BL_MI]=millis()+blocktime;blocking[BL_ST]=millis()+blocktime;}
#endif
// blocking time for recognizing a new keypress of one key, ms
#define blocktime 500
#define lcdslow 5
enum MainStatus{Main_Status, Main_Menu, Main_Prepare, Main_Control, Main_SD};
class MainMenu{
public:
MainMenu();
void update();
void getfilename(const uint8_t nr);
uint8_t activeline;
MainStatus status;
uint8_t displayStartingRow;
void showStatus();
void showMainMenu();
void showPrepare();
void showControl();
void showSD();
bool force_lcd_update;
int lastencoderpos;
int8_t lineoffset;
int8_t lastlineoffset;
char filename[11];
bool linechanging;
};
char *fillto(int8_t n,char *c);
char *ftostr51(const float &x);
char *ftostr31(const float &x);
char *ftostr3(const float &x);
#define LCD_MESSAGE(x) lcd_status(x);
#define LCD_STATUS lcd_status()
#else //no lcd
#define LCD_STATUS
#define LCD_MESSAGE(x)
#endif
#ifndef ULTIPANEL
#define CLICKED false
#define BLOCK ;
#endif
#endif //ULTRALCD

128
README
View File

@ -1,64 +1,64 @@
This RepRap firmware is a mashup between Sprinter, grbl and many original parts.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
Derived from Sprinter and Grbl by Erik van der Zalm.
Sprinters lead developers are Kliment and caru.
Grbls lead developer is Simen Svale Skogsrud.
It has been adapted to the Ultimaker Printer by:
Bernhard Kubicek, Matthijs Keuper, Bradley Feldman, and others...
Features:
- Interrupt based movement with real linear acceleration
- High steprate
- Look ahead (Keep the speed high when possible. High cornering speed)
- Interrupt based temperature protection
- preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- Full endstop support
- Simple LCD support (16x2)
- SD Card support
- Provisions for Bernhard Kubicek's new hardware control console and 20x4 lcd
This firmware is optimized for Ultimaker's gen6 electronics (including the Ultimaker 1.5.x daughterboard and Arduino Mega 2560).
The default baudrate is 115200.
========================================================================================
Configuring and compilation
Install the latest arduino software IDE/toolset (currently 0022)
http://www.arduino.cc/en/Main/Software
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
(or alternatively install Kliment's printrun/pronterface https://github.com/kliment/Printrun_)
Copy the Ultimaker Marlin firmware
https:/github.com/bkubicek/Marlin
(Use the download button)
Start the arduino IDE.
Select Tools -> Board -> Arduino Mega 2560
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.
This RepRap firmware is a mashup between Sprinter, grbl and many original parts.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
Derived from Sprinter and Grbl by Erik van der Zalm.
Sprinters lead developers are Kliment and caru.
Grbls lead developer is Simen Svale Skogsrud.
It has been adapted to the Ultimaker Printer by:
Bernhard Kubicek, Matthijs Keuper, Bradley Feldman, and others...
Features:
- Interrupt based movement with real linear acceleration
- High steprate
- Look ahead (Keep the speed high when possible. High cornering speed)
- Interrupt based temperature protection
- preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- Full endstop support
- Simple LCD support (16x2)
- SD Card support
- Provisions for Bernhard Kubicek's new hardware control console and 20x4 lcd
This firmware is optimized for Ultimaker's gen6 electronics (including the Ultimaker 1.5.x daughterboard and Arduino Mega 2560).
The default baudrate is 115200.
========================================================================================
Configuring and compilation
Install the latest arduino software IDE/toolset (currently 0022)
http://www.arduino.cc/en/Main/Software
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
(or alternatively install Kliment's printrun/pronterface https://github.com/kliment/Printrun_)
Copy the Ultimaker Marlin firmware
https:/github.com/bkubicek/Marlin
(Use the download button)
Start the arduino IDE.
Select Tools -> Board -> Arduino Mega 2560
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.

138
README.md
View File

@ -1,69 +1,69 @@
WARNING: THIS IN A PROCESS OF HEAVY OVERWORKING.
DO NOT USE THIS ON YOUR MACHINE UNTIL FURTHER NOTICE!!!
===========================================
This RepRap firmware is a mashup between <a href="https://github.com/kliment/Sprinter">Sprinter</a>, <a href="https://github.com/simen/grbl/tree">grbl</a> and many original parts.
Derived from Sprinter and Grbl by Erik van der Zalm.
Sprinters lead developers are Kliment and caru.
Grbls lead developer is Simen Svale Skogsrud.
Some features have been added by and configuration has been added by:
Bernhard Kubicek, Matthijs Keuper, Bradley Feldman, and others...
Features:
- Interrupt based movement with real linear acceleration
- High steprate
- Look ahead (Keep the speed high when possible. High cornering speed)
- Interrupt based temperature protection
- preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- Full endstop support
- Simple LCD support (16x2)
- SD Card support
- Provisions for Bernhard Kubicek's new hardware control console and 20x4 lcd
This firmware is optimized for Ultimaker's gen6 electronics (including the Ultimaker 1.5.x daughterboard and Arduino Mega 2560).
The default baudrate is 115200.
========================================================================================
Configuring and compilation
Install the latest arduino software IDE/toolset (currently 0022)
http://www.arduino.cc/en/Main/Software
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
(or alternatively install Kliment's printrun/pronterface https://github.com/kliment/Printrun_)
Copy the Ultimaker Marlin firmware
https:/github.com/bkubicek/Marlin
(Use the download button)
Start the arduino IDE.
Select Tools -> Board -> Arduino Mega 2560
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.
WARNING: THIS IN A PROCESS OF HEAVY OVERWORKING.
DO NOT USE THIS ON YOUR MACHINE UNTIL FURTHER NOTICE!!!
===========================================
This RepRap firmware is a mashup between <a href="https://github.com/kliment/Sprinter">Sprinter</a>, <a href="https://github.com/simen/grbl/tree">grbl</a> and many original parts.
Derived from Sprinter and Grbl by Erik van der Zalm.
Sprinters lead developers are Kliment and caru.
Grbls lead developer is Simen Svale Skogsrud.
Some features have been added by and configuration has been added by:
Bernhard Kubicek, Matthijs Keuper, Bradley Feldman, and others...
Features:
- Interrupt based movement with real linear acceleration
- High steprate
- Look ahead (Keep the speed high when possible. High cornering speed)
- Interrupt based temperature protection
- preliminary support for Matthew Roberts advance algorithm
For more info see: http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
- Full endstop support
- Simple LCD support (16x2)
- SD Card support
- Provisions for Bernhard Kubicek's new hardware control console and 20x4 lcd
This firmware is optimized for Ultimaker's gen6 electronics (including the Ultimaker 1.5.x daughterboard and Arduino Mega 2560).
The default baudrate is 115200.
========================================================================================
Configuring and compilation
Install the latest arduino software IDE/toolset (currently 0022)
http://www.arduino.cc/en/Main/Software
Install Ultimaker's RepG 25 build
http://software.ultimaker.com
(or alternatively install Kliment's printrun/pronterface https://github.com/kliment/Printrun_)
Copy the Ultimaker Marlin firmware
https:/github.com/bkubicek/Marlin
(Use the download button)
Start the arduino IDE.
Select Tools -> Board -> Arduino Mega 2560
Select the correct serial port in Tools ->Serial Port
Open Marlin.pde
Click the Verify/Compile button
Click the Upload button
If all goes well the firmware is uploading
Start Ultimaker's Custom RepG 25
Make sure Show Experimental Profiles is enabled in Preferences
Select Sprinter as the Driver
Press the Connect button.
KNOWN ISSUES: RepG will display: Unknown: marlin x.y.z
That's ok. Enjoy Silky Smooth Printing.

View File

@ -1,58 +1,58 @@
files to compare manually:
planner.cpp
stepper.cpp
temperature.cpp
---
things that changed:
* planner.cpp
estimate_acc_distance now works with floats.
in calculate_trapezoid:for_block
long acceleration_rate=(long)((float)acceleration*8.388608) is gone
so is block_>acceleration_rate
void planner_reverse_pass:
some stuff I don't understand right now changed
in planner_forward_pass:
done: BLOCK_BUFFER_SIZE is now necessarily power of 2 (aka 8 16, 32). Inportant to document this somewhere.
no more inline in void plan_discard_current_block()
no more inline in plan_get_current_block()
in plan_buffer_line(...)
the long target[4]; and calculations of thoose should go after the while(block_buffer_tail==..). if the axis_steps_per_unit are changed from the gcode (M92) the calculation for the currently planned buffer move will be corrupt, because Target is calculated with one value, and the stuff afterwards with another. At least this solved the problem I had with the M92 E* changes in the code. Very sure about this, I took me 20min to find this as the solution for the bug I was hunting.
around if(feed_rate<minimumfeedrate) this only should be done if it is not a pure extrusion. I think there is a bug right now.
~line 447 blockcount=
not sure if this also works if the difference is negative, as it would happen if the ringbuffer runs over the end and start at 0.
~line 507 tmp_aceleration. not sure whats going on, but a lot changed.
* stepper.cpp
~214: if (busy) should be a echoln, maybe
~331: great, The Z_M_PIN checks are in :)
*temperature.cpp
done: enum for heater, bed,
manage_heater() is seriously different.
done: if tem_meas_ready ==true->!true+return?
done #define K1 0.95 maybe in the configuration.h?
semi-done: PID-C checking needed. Untested but added.
----
still needed to finish the merge, before testin!
manage_heater
ISR
movement planner
TODO:
remove traveling at maxpseed
remove Simplelcd
remove DEBUG_STEPS?
block_t
pid_dt ->0.1 whats the changes to the PID, checking needed
----
second merge saturday morning:
files to compare manually:
planner.cpp
stepper.cpp
temperature.cpp
---
things that changed:
* planner.cpp
estimate_acc_distance now works with floats.
in calculate_trapezoid:for_block
long acceleration_rate=(long)((float)acceleration*8.388608) is gone
so is block_>acceleration_rate
void planner_reverse_pass:
some stuff I don't understand right now changed
in planner_forward_pass:
done: BLOCK_BUFFER_SIZE is now necessarily power of 2 (aka 8 16, 32). Inportant to document this somewhere.
no more inline in void plan_discard_current_block()
no more inline in plan_get_current_block()
in plan_buffer_line(...)
the long target[4]; and calculations of thoose should go after the while(block_buffer_tail==..). if the axis_steps_per_unit are changed from the gcode (M92) the calculation for the currently planned buffer move will be corrupt, because Target is calculated with one value, and the stuff afterwards with another. At least this solved the problem I had with the M92 E* changes in the code. Very sure about this, I took me 20min to find this as the solution for the bug I was hunting.
around if(feed_rate<minimumfeedrate) this only should be done if it is not a pure extrusion. I think there is a bug right now.
~line 447 blockcount=
not sure if this also works if the difference is negative, as it would happen if the ringbuffer runs over the end and start at 0.
~line 507 tmp_aceleration. not sure whats going on, but a lot changed.
* stepper.cpp
~214: if (busy) should be a echoln, maybe
~331: great, The Z_M_PIN checks are in :)
*temperature.cpp
done: enum for heater, bed,
manage_heater() is seriously different.
done: if tem_meas_ready ==true->!true+return?
done #define K1 0.95 maybe in the configuration.h?
semi-done: PID-C checking needed. Untested but added.
----
still needed to finish the merge, before testin!
manage_heater
ISR
movement planner
TODO:
remove traveling at maxpseed
remove Simplelcd
remove DEBUG_STEPS?
block_t
pid_dt ->0.1 whats the changes to the PID, checking needed
----
second merge saturday morning:
done: PID_dt->0.1