From 443e7edef43cc1eb4b83a46d13fda3e78d0f4892 Mon Sep 17 00:00:00 2001
From: domonoky <domonoky@2printbeta.de>
Date: Fri, 27 Feb 2015 12:43:23 +0100
Subject: [PATCH] - Add support for L6470 Drivers. - Both TMC, L6470 and
 pin-driven drivers work. - All can be mixed and matched as needed.

---
 .../Arduino_1.x.x/libraries/L6470/L6470.cpp   | 723 ++++++++++++++++++
 .../Arduino_1.x.x/libraries/L6470/L6470.h     | 286 +++++++
 .../libraries/L6470/keywords.txt              |  53 ++
 Marlin/Configuration_adv.h                    | 106 ++-
 Marlin/Marlin.ino                             |   5 +
 Marlin/stepper.cpp                            |   5 +
 Marlin/stepper_indirection.cpp                | 120 ++-
 Marlin/stepper_indirection.h                  | 258 ++++++-
 8 files changed, 1508 insertions(+), 48 deletions(-)
 create mode 100644 ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp
 create mode 100644 ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h
 create mode 100644 ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt

diff --git a/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp
new file mode 100644
index 0000000000..8278c19aee
--- /dev/null
+++ b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.cpp
@@ -0,0 +1,723 @@
+////////////////////////////////////////////////////////////
+//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
+//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
+//Released as MIT license
+////////////////////////////////////////////////////////////
+
+#include <Arduino.h>
+#include "L6470.h"
+#include <SPI.h>
+
+#define ENABLE_RESET_PIN	0
+#define K_VALUE			100
+
+L6470::L6470(int SSPin){
+  _SSPin = SSPin;
+  // Serial.begin(9600);
+}
+
+void L6470::init(int k_value){
+  // This is the generic initialization function to set up the Arduino to
+  // communicate with the dSPIN chip.
+  
+  // set up the input/output pins for the application.
+  pinMode(SLAVE_SELECT_PIN, OUTPUT); // The SPI peripheral REQUIRES the hardware SS pin-
+  // pin 10- to be an output. This is in here just
+  // in case some future user makes something other
+  // than pin 10 the SS pin.
+  
+  pinMode(_SSPin, OUTPUT);
+  digitalWrite(_SSPin, HIGH);
+  pinMode(MOSI, OUTPUT);
+  pinMode(MISO, INPUT);
+  pinMode(SCK, OUTPUT);
+  pinMode(BUSYN, INPUT);
+#if (ENABLE_RESET_PIN == 1)
+  pinMode(RESET, OUTPUT);
+  // reset the dSPIN chip. This could also be accomplished by
+  // calling the "L6470::ResetDev()" function after SPI is initialized.
+  digitalWrite(RESET, HIGH);
+  delay(10);
+  digitalWrite(RESET, LOW);
+  delay(10);
+  digitalWrite(RESET, HIGH);
+  delay(10);
+#endif
+  
+  
+  // initialize SPI for the dSPIN chip's needs:
+  // most significant bit first,
+  // SPI clock not to exceed 5MHz,
+  // SPI_MODE3 (clock idle high, latch data on rising edge of clock)
+  SPI.begin();
+  SPI.setBitOrder(MSBFIRST);
+  SPI.setClockDivider(SPI_CLOCK_DIV16); // or 2, 8, 16, 32, 64
+  SPI.setDataMode(SPI_MODE3);
+  
+  // First things first: let's check communications. The CONFIG register should
+  // power up to 0x2E88, so we can use that to check the communications.
+  if (GetParam(CONFIG) == 0x2E88){
+    //Serial.println('good to go');
+  }
+  else{
+    //Serial.println('Comm issue');
+  }
+
+#if  (ENABLE_RESET_PIN == 0) 
+  resetDev();
+#endif
+  // First, let's set the step mode register:
+  // - SYNC_EN controls whether the BUSY/SYNC pin reflects the step
+  // frequency or the BUSY status of the chip. We want it to be the BUSY
+  // status.
+  // - STEP_SEL_x is the microstepping rate- we'll go full step.
+  // - SYNC_SEL_x is the ratio of (micro)steps to toggles on the
+  // BUSY/SYNC pin (when that pin is used for SYNC). Make it 1:1, despite
+  // not using that pin.
+  //SetParam(STEP_MODE, !SYNC_EN | STEP_SEL_1 | SYNC_SEL_1);
+  
+  
+  SetParam(KVAL_RUN, k_value);
+  SetParam(KVAL_ACC, k_value);
+  SetParam(KVAL_DEC, k_value);
+  SetParam(KVAL_HOLD, k_value);
+  
+  // Set up the CONFIG register as follows:
+  // PWM frequency divisor = 1
+  // PWM frequency multiplier = 2 (62.5kHz PWM frequency)
+  // Slew rate is 290V/us
+  // Do NOT shut down bridges on overcurrent
+  // Disable motor voltage compensation
+  // Hard stop on switch low
+  // 16MHz internal oscillator, nothing on output
+  SetParam(CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_SR_290V_us| CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ);
+  // Configure the RUN KVAL. This defines the duty cycle of the PWM of the bridges
+  // during running. 0xFF means that they are essentially NOT PWMed during run; this
+  // MAY result in more power being dissipated than you actually need for the task.
+  // Setting this value too low may result in failure to turn.
+  // There are ACC, DEC, and HOLD KVAL registers as well; you may need to play with
+  // those values to get acceptable performance for a given application.
+  //SetParam(KVAL_RUN, 0xFF);
+  // Calling GetStatus() clears the UVLO bit in the status register, which is set by
+  // default on power-up. The driver may not run without that bit cleared by this
+  // read operation.
+  getStatus();
+  
+  hardStop(); //engage motors
+}
+
+boolean L6470::isBusy(){
+  int status = getStatus();
+  return !((status >> 1) & 0b1);
+}
+
+void L6470::setMicroSteps(int microSteps){
+  byte stepVal = 0;
+  
+  for(stepVal = 0; stepVal < 8; stepVal++){
+    if(microSteps == 1) break;
+    microSteps = microSteps >> 1;
+  }
+
+  SetParam(STEP_MODE, !SYNC_EN | stepVal | SYNC_SEL_1);
+}
+
+void L6470::setThresholdSpeed(float thresholdSpeed){
+  // Configure the FS_SPD register- this is the speed at which the driver ceases
+  // microstepping and goes to full stepping. FSCalc() converts a value in steps/s
+  // to a value suitable for this register; to disable full-step switching, you
+  // can pass 0x3FF to this register.
+  
+  if(thresholdSpeed == 0.0){
+    SetParam(FS_SPD, 0x3FF);
+  }
+  else{
+    SetParam(FS_SPD, FSCalc(thresholdSpeed));	
+  }
+}
+
+
+void L6470::setCurrent(int current){}
+
+
+
+void L6470::setMaxSpeed(int speed){
+  // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
+  // second allowed. You'll want to mess around with your desired application to see
+  // how far you can push it before the motor starts to slip. The ACTUAL parameter
+  // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
+  // steps/s into an appropriate value for this function. Note that for any move or
+  // goto type function where no speed is specified, this value will be used.
+  SetParam(MAX_SPEED, MaxSpdCalc(speed));
+}
+
+
+void L6470::setMinSpeed(int speed){
+  // Configure the MAX_SPEED register- this is the maximum number of (micro)steps per
+  // second allowed. You'll want to mess around with your desired application to see
+  // how far you can push it before the motor starts to slip. The ACTUAL parameter
+  // passed to this function is in steps/tick; MaxSpdCalc() will convert a number of
+  // steps/s into an appropriate value for this function. Note that for any move or
+  // goto type function where no speed is specified, this value will be used.
+  SetParam(MIN_SPEED, MinSpdCalc(speed));
+}
+
+
+
+
+void L6470::setAcc(float acceleration){
+  // Configure the acceleration rate, in steps/tick/tick. There is also a DEC register;
+  // both of them have a function (AccCalc() and DecCalc() respectively) that convert
+  // from steps/s/s into the appropriate value for the register. Writing ACC to 0xfff
+  // sets the acceleration and deceleration to 'infinite' (or as near as the driver can
+  // manage). If ACC is set to 0xfff, DEC is ignored. To get infinite deceleration
+  // without infinite acceleration, only hard stop will work.
+  unsigned long accelerationBYTES = AccCalc(acceleration);
+  SetParam(ACC, accelerationBYTES);
+}
+
+
+void L6470::setDec(float deceleration){
+  unsigned long decelerationBYTES = DecCalc(deceleration);
+  SetParam(DEC, decelerationBYTES);
+}
+
+
+long L6470::getPos(){
+  unsigned long position = GetParam(ABS_POS);
+  return convert(position);
+}
+
+float L6470::getSpeed(){
+  /*
+  SPEED
+  The SPEED register contains the current motor speed, expressed in step/tick (format unsigned fixed point 0.28).
+  In order to convert the SPEED value in step/s the following formula can be used:
+  Equation 4
+  where SPEED is the integer number stored into the register and tick is 250 ns.
+  The available range is from 0 to 15625 step/s with a resolution of 0.015 step/s.
+  Note: The range effectively available to the user is limited by the MAX_SPEED parameter.
+  */
+  
+  return (float) GetParam(SPEED);
+  //return (float) speed * pow(8, -22);
+  //return FSCalc(speed); NEEDS FIX
+}
+
+
+void L6470::setOverCurrent(unsigned int ma_current){
+  // Configure the overcurrent detection threshold.
+  byte OCValue = floor(ma_current / 375);
+  if(OCValue > 0x0F)OCValue = 0x0F;
+  SetParam(OCD_TH, OCValue);
+}
+
+void L6470::setStallCurrent(float ma_current){
+  byte STHValue = (byte)floor(ma_current / 31.25);
+  if(STHValue > 0x80)STHValue = 0x80;
+  if(STHValue < 0)STHValue = 0;
+  SetParam(STALL_TH, STHValue);
+}
+
+void L6470::SetLowSpeedOpt(boolean enable){
+  // Enable or disable the low-speed optimization option. If enabling,
+  // the other 12 bits of the register will be automatically zero.
+  // When disabling, the value will have to be explicitly written by
+  // the user with a SetParam() call. See the datasheet for further
+  // information about low-speed optimization.
+  Xfer(SET_PARAM | MIN_SPEED);
+  if (enable) Param(0x1000, 13);
+  else Param(0, 13);
+}
+
+
+void L6470::run(byte dir, float spd){
+  // RUN sets the motor spinning in a direction (defined by the constants
+  // FWD and REV). Maximum speed and minimum speed are defined
+  // by the MAX_SPEED and MIN_SPEED registers; exceeding the FS_SPD value
+  // will switch the device into full-step mode.
+  // The SpdCalc() function is provided to convert steps/s values into
+  // appropriate integer values for this function.
+  unsigned long speedVal = SpdCalc(spd);
+  
+  Xfer(RUN | dir);
+  if (speedVal > 0xFFFFF) speedVal = 0xFFFFF;
+  Xfer((byte)(speedVal >> 16));
+  Xfer((byte)(speedVal >> 8));
+  Xfer((byte)(speedVal));
+}
+
+
+void L6470::Step_Clock(byte dir){
+  // STEP_CLOCK puts the device in external step clocking mode. When active,
+  // pin 25, STCK, becomes the step clock for the device, and steps it in
+  // the direction (set by the FWD and REV constants) imposed by the call
+  // of this function. Motion commands (RUN, MOVE, etc) will cause the device
+  // to exit step clocking mode.
+  Xfer(STEP_CLOCK | dir);
+}
+
+void L6470::move(long n_step){
+  // MOVE will send the motor n_step steps (size based on step mode) in the
+  // direction imposed by dir (FWD or REV constants may be used). The motor
+  // will accelerate according the acceleration and deceleration curves, and
+  // will run at MAX_SPEED. Stepping mode will adhere to FS_SPD value, as well.
+  
+  byte dir;
+  
+  if(n_step >= 0){
+    dir = FWD;
+  }
+  else{
+    dir = REV;
+  }
+
+  long n_stepABS = abs(n_step);
+  
+  Xfer(MOVE | dir); //set direction
+  if (n_stepABS > 0x3FFFFF) n_step = 0x3FFFFF;
+  Xfer((byte)(n_stepABS >> 16));
+  Xfer((byte)(n_stepABS >> 8));
+  Xfer((byte)(n_stepABS));
+}
+
+void L6470::goTo(long pos){
+  // GOTO operates much like MOVE, except it produces absolute motion instead
+  // of relative motion. The motor will be moved to the indicated position
+  // in the shortest possible fashion.
+  
+  Xfer(GOTO);
+  if (pos > 0x3FFFFF) pos = 0x3FFFFF;
+  Xfer((byte)(pos >> 16));
+  Xfer((byte)(pos >> 8));
+  Xfer((byte)(pos));
+}
+
+
+void L6470::goTo_DIR(byte dir, long pos){
+  // Same as GOTO, but with user constrained rotational direction.
+  
+  Xfer(GOTO_DIR);
+  if (pos > 0x3FFFFF) pos = 0x3FFFFF;
+  Xfer((byte)(pos >> 16));
+  Xfer((byte)(pos >> 8));
+  Xfer((byte)(pos));
+}
+
+void L6470::goUntil(byte act, byte dir, unsigned long spd){
+  // GoUntil will set the motor running with direction dir (REV or
+  // FWD) until a falling edge is detected on the SW pin. Depending
+  // on bit SW_MODE in CONFIG, either a hard stop or a soft stop is
+  // performed at the falling edge, and depending on the value of
+  // act (either RESET or COPY) the value in the ABS_POS register is
+  // either RESET to 0 or COPY-ed into the MARK register.
+  Xfer(GO_UNTIL | act | dir);
+  if (spd > 0x3FFFFF) spd = 0x3FFFFF;
+  Xfer((byte)(spd >> 16));
+  Xfer((byte)(spd >> 8));
+  Xfer((byte)(spd));
+}
+
+void L6470::releaseSW(byte act, byte dir){
+  // Similar in nature to GoUntil, ReleaseSW produces motion at the
+  // higher of two speeds: the value in MIN_SPEED or 5 steps/s.
+  // The motor continues to run at this speed until a rising edge
+  // is detected on the switch input, then a hard stop is performed
+  // and the ABS_POS register is either COPY-ed into MARK or RESET to
+  // 0, depending on whether RESET or COPY was passed to the function
+  // for act.
+  Xfer(RELEASE_SW | act | dir);
+}
+
+void L6470::goHome(){
+  // GoHome is equivalent to GoTo(0), but requires less time to send.
+  // Note that no direction is provided; motion occurs through shortest
+  // path. If a direction is required, use GoTo_DIR().
+  Xfer(GO_HOME);
+}
+
+void L6470::goMark(){
+  // GoMark is equivalent to GoTo(MARK), but requires less time to send.
+  // Note that no direction is provided; motion occurs through shortest
+  // path. If a direction is required, use GoTo_DIR().
+  Xfer(GO_MARK);
+}
+
+
+void L6470::setMark(long value){
+
+  Xfer(MARK);
+  if (value > 0x3FFFFF) value = 0x3FFFFF;
+  if (value < -0x3FFFFF) value = -0x3FFFFF;
+  
+  
+  Xfer((byte)(value >> 16));
+  Xfer((byte)(value >> 8));
+  Xfer((byte)(value));
+}
+
+
+void L6470::setMark(){
+  long value = getPos();
+  
+  Xfer(MARK);
+  if (value > 0x3FFFFF) value = 0x3FFFFF;
+  if (value < -0x3FFFFF) value = -0x3FFFFF;
+  
+  
+  Xfer((byte)(value >> 16));
+  Xfer((byte)(value >> 8));
+  Xfer((byte)(value));
+}
+
+void L6470::setAsHome(){
+  // Sets the ABS_POS register to 0, effectively declaring the current
+  // position to be "HOME".
+  Xfer(RESET_POS);
+}
+
+void L6470::resetDev(){
+  // Reset device to power up conditions. Equivalent to toggling the STBY
+  // pin or cycling power.
+  Xfer(RESET_DEVICE);
+}
+
+void L6470::softStop(){
+  // Bring the motor to a halt using the deceleration curve.
+  Xfer(SOFT_STOP);
+}
+
+void L6470::hardStop(){
+  // Stop the motor right away. No deceleration.
+  Xfer(HARD_STOP);
+}
+
+void L6470::softFree(){
+  // Decelerate the motor and disengage
+  Xfer(SOFT_HIZ);
+}
+
+void L6470::free(){
+  // disengage the motor immediately with no deceleration.
+  Xfer(HARD_HIZ);
+}
+
+int L6470::getStatus(){
+  // Fetch and return the 16-bit value in the STATUS register. Resets
+  // any warning flags and exits any error states. Using GetParam()
+  // to read STATUS does not clear these values.
+  int temp = 0;
+  Xfer(GET_STATUS);
+  temp = Xfer(0)<<8;
+  temp |= Xfer(0);
+  return temp;
+}
+
+unsigned long L6470::AccCalc(float stepsPerSecPerSec){
+  // The value in the ACC register is [(steps/s/s)*(tick^2)]/(2^-40) where tick is
+  // 250ns (datasheet value)- 0x08A on boot.
+  // Multiply desired steps/s/s by .137438 to get an appropriate value for this register.
+  // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
+  float temp = stepsPerSecPerSec * 0.137438;
+  if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
+  else return (unsigned long) long(temp);
+}
+
+
+unsigned long L6470::DecCalc(float stepsPerSecPerSec){
+  // The calculation for DEC is the same as for ACC. Value is 0x08A on boot.
+  // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
+  float temp = stepsPerSecPerSec * 0.137438;
+  if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
+  else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::MaxSpdCalc(float stepsPerSec){
+  // The value in the MAX_SPD register is [(steps/s)*(tick)]/(2^-18) where tick is
+  // 250ns (datasheet value)- 0x041 on boot.
+  // Multiply desired steps/s by .065536 to get an appropriate value for this register
+  // This is a 10-bit value, so we need to make sure it remains at or below 0x3FF
+  float temp = stepsPerSec * .065536;
+  if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF;
+  else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::MinSpdCalc(float stepsPerSec){
+  // The value in the MIN_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
+  // 250ns (datasheet value)- 0x000 on boot.
+  // Multiply desired steps/s by 4.1943 to get an appropriate value for this register
+  // This is a 12-bit value, so we need to make sure the value is at or below 0xFFF.
+  float temp = stepsPerSec * 4.1943;
+  if( (unsigned long) long(temp) > 0x00000FFF) return 0x00000FFF;
+  else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::FSCalc(float stepsPerSec){
+  // The value in the FS_SPD register is ([(steps/s)*(tick)]/(2^-18))-0.5 where tick is
+  // 250ns (datasheet value)- 0x027 on boot.
+  // Multiply desired steps/s by .065536 and subtract .5 to get an appropriate value for this register
+  // This is a 10-bit value, so we need to make sure the value is at or below 0x3FF.
+  float temp = (stepsPerSec * .065536)-.5;
+  if( (unsigned long) long(temp) > 0x000003FF) return 0x000003FF;
+  else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::IntSpdCalc(float stepsPerSec){
+  // The value in the INT_SPD register is [(steps/s)*(tick)]/(2^-24) where tick is
+  // 250ns (datasheet value)- 0x408 on boot.
+  // Multiply desired steps/s by 4.1943 to get an appropriate value for this register
+  // This is a 14-bit value, so we need to make sure the value is at or below 0x3FFF.
+  float temp = stepsPerSec * 4.1943;
+  if( (unsigned long) long(temp) > 0x00003FFF) return 0x00003FFF;
+  else return (unsigned long) long(temp);
+}
+
+unsigned long L6470::SpdCalc(float stepsPerSec){
+  // When issuing RUN command, the 20-bit speed is [(steps/s)*(tick)]/(2^-28) where tick is
+  // 250ns (datasheet value).
+  // Multiply desired steps/s by 67.106 to get an appropriate value for this register
+  // This is a 20-bit value, so we need to make sure the value is at or below 0xFFFFF.
+  
+  float temp = stepsPerSec * 67.106;
+  if( (unsigned long) long(temp) > 0x000FFFFF) return 0x000FFFFF;
+  else return (unsigned long)temp;
+}
+
+unsigned long L6470::Param(unsigned long value, byte bit_len){
+  // Generalization of the subsections of the register read/write functionality.
+  // We want the end user to just write the value without worrying about length,
+  // so we pass a bit length parameter from the calling function.
+  unsigned long ret_val=0; // We'll return this to generalize this function
+  // for both read and write of registers.
+  byte byte_len = bit_len/8; // How many BYTES do we have?
+  if (bit_len%8 > 0) byte_len++; // Make sure not to lose any partial byte values.
+  // Let's make sure our value has no spurious bits set, and if the value was too
+  // high, max it out.
+  unsigned long mask = 0xffffffff >> (32-bit_len);
+  if (value > mask) value = mask;
+  // The following three if statements handle the various possible byte length
+  // transfers- it'll be no less than 1 but no more than 3 bytes of data.
+  // L6470::Xfer() sends a byte out through SPI and returns a byte received
+  // over SPI- when calling it, we typecast a shifted version of the masked
+  // value, then we shift the received value back by the same amount and
+  // store it until return time.
+  if (byte_len == 3) {
+    ret_val |= long(Xfer((byte)(value>>16))) << 16;
+    //Serial.println(ret_val, HEX);
+  }
+  if (byte_len >= 2) {
+    ret_val |= long(Xfer((byte)(value>>8))) << 8;
+    //Serial.println(ret_val, HEX);
+  }
+  if (byte_len >= 1) {
+    ret_val |= Xfer((byte)value);
+    //Serial.println(ret_val, HEX);
+  }
+  // Return the received values. Mask off any unnecessary bits, just for
+  // the sake of thoroughness- we don't EXPECT to see anything outside
+  // the bit length range but better to be safe than sorry.
+  return (ret_val & mask);
+}
+
+byte L6470::Xfer(byte data){
+  // This simple function shifts a byte out over SPI and receives a byte over
+  // SPI. Unusually for SPI devices, the dSPIN requires a toggling of the
+  // CS (slaveSelect) pin after each byte sent. That makes this function
+  // a bit more reasonable, because we can include more functionality in it.
+  byte data_out;
+  digitalWrite(_SSPin,LOW);
+  // SPI.transfer() both shifts a byte out on the MOSI pin AND receives a
+  // byte in on the MISO pin.
+  data_out = SPI.transfer(data);
+  digitalWrite(_SSPin,HIGH);
+  return data_out;
+}
+
+
+
+void L6470::SetParam(byte param, unsigned long value){
+  Xfer(SET_PARAM | param);
+  ParamHandler(param, value);
+}
+
+unsigned long L6470::GetParam(byte param){
+  // Realize the "get parameter" function, to read from the various registers in
+  // the dSPIN chip.
+  Xfer(GET_PARAM | param);
+  return ParamHandler(param, 0);
+}
+
+long L6470::convert(unsigned long val){
+  //convert 22bit 2s comp to signed long
+  int MSB = val >> 21;
+  
+  val = val << 11;
+  val = val >> 11;
+  
+  if(MSB == 1) val = val | 0b11111111111000000000000000000000;
+  return val;
+}
+
+unsigned long L6470::ParamHandler(byte param, unsigned long value){
+  // Much of the functionality between "get parameter" and "set parameter" is
+  // very similar, so we deal with that by putting all of it in one function
+  // here to save memory space and simplify the program.
+  unsigned long ret_val = 0; // This is a temp for the value to return.
+  // This switch structure handles the appropriate action for each register.
+  // This is necessary since not all registers are of the same length, either
+  // bit-wise or byte-wise, so we want to make sure we mask out any spurious
+  // bits and do the right number of transfers. That is handled by the dSPIN_Param()
+  // function, in most cases, but for 1-byte or smaller transfers, we call
+  // Xfer() directly.
+  switch (param)
+  {
+    // ABS_POS is the current absolute offset from home. It is a 22 bit number expressed
+    // in two's complement. At power up, this value is 0. It cannot be written when
+    // the motor is running, but at any other time, it can be updated to change the
+    // interpreted position of the motor.
+    case ABS_POS:
+      ret_val = Param(value, 22);
+      break;
+    // EL_POS is the current electrical position in the step generation cycle. It can
+    // be set when the motor is not in motion. Value is 0 on power up.
+    case EL_POS:
+      ret_val = Param(value, 9);
+      break;
+    // MARK is a second position other than 0 that the motor can be told to go to. As
+    // with ABS_POS, it is 22-bit two's complement. Value is 0 on power up.
+    case MARK:
+      ret_val = Param(value, 22);
+      break;
+    // SPEED contains information about the current speed. It is read-only. It does
+    // NOT provide direction information.
+    case SPEED:
+      ret_val = Param(0, 20);
+      break;
+    // ACC and DEC set the acceleration and deceleration rates. Set ACC to 0xFFF
+    // to get infinite acceleration/decelaeration- there is no way to get infinite
+    // deceleration w/o infinite acceleration (except the HARD STOP command).
+    // Cannot be written while motor is running. Both default to 0x08A on power up.
+    // AccCalc() and DecCalc() functions exist to convert steps/s/s values into
+    // 12-bit values for these two registers.
+    case ACC:
+      ret_val = Param(value, 12);
+      break;
+    case DEC:
+      ret_val = Param(value, 12);
+      break;
+    // MAX_SPEED is just what it says- any command which attempts to set the speed
+    // of the motor above this value will simply cause the motor to turn at this
+    // speed. Value is 0x041 on power up.
+    // MaxSpdCalc() function exists to convert steps/s value into a 10-bit value
+    // for this register.
+    case MAX_SPEED:
+      ret_val = Param(value, 10);
+      break;
+    // MIN_SPEED controls two things- the activation of the low-speed optimization
+    // feature and the lowest speed the motor will be allowed to operate at. LSPD_OPT
+    // is the 13th bit, and when it is set, the minimum allowed speed is automatically
+    // set to zero. This value is 0 on startup.
+    // MinSpdCalc() function exists to convert steps/s value into a 12-bit value for this
+    // register. SetLowSpeedOpt() function exists to enable/disable the optimization feature.
+    case MIN_SPEED:
+      ret_val = Param(value, 12);
+      break;
+    // FS_SPD register contains a threshold value above which microstepping is disabled
+    // and the dSPIN operates in full-step mode. Defaults to 0x027 on power up.
+    // FSCalc() function exists to convert steps/s value into 10-bit integer for this
+    // register.
+    case FS_SPD:
+      ret_val = Param(value, 10);
+      break;
+    // KVAL is the maximum voltage of the PWM outputs. These 8-bit values are ratiometric
+    // representations: 255 for full output voltage, 128 for half, etc. Default is 0x29.
+    // The implications of different KVAL settings is too complex to dig into here, but
+    // it will usually work to max the value for RUN, ACC, and DEC. Maxing the value for
+    // HOLD may result in excessive power dissipation when the motor is not running.
+    case KVAL_HOLD:
+      ret_val = Xfer((byte)value);
+      break;
+    case KVAL_RUN:
+      ret_val = Xfer((byte)value);
+      break;
+    case KVAL_ACC:
+      ret_val = Xfer((byte)value);
+      break;
+    case KVAL_DEC:
+      ret_val = Xfer((byte)value);
+      break;
+    // INT_SPD, ST_SLP, FN_SLP_ACC and FN_SLP_DEC are all related to the back EMF
+    // compensation functionality. Please see the datasheet for details of this
+    // function- it is too complex to discuss here. Default values seem to work
+    // well enough.
+    case INT_SPD:
+      ret_val = Param(value, 14);
+      break;
+    case ST_SLP:
+      ret_val = Xfer((byte)value);
+      break;
+    case FN_SLP_ACC:
+      ret_val = Xfer((byte)value);
+      break;
+    case FN_SLP_DEC:
+      ret_val = Xfer((byte)value);
+      break;
+    // K_THERM is motor winding thermal drift compensation. Please see the datasheet
+    // for full details on operation- the default value should be okay for most users.
+    case K_THERM:
+      ret_val = Xfer((byte)value & 0x0F);
+      break;
+    // ADC_OUT is a read-only register containing the result of the ADC measurements.
+    // This is less useful than it sounds; see the datasheet for more information.
+    case ADC_OUT:
+      ret_val = Xfer(0);
+      break;
+    // Set the overcurrent threshold. Ranges from 375mA to 6A in steps of 375mA.
+    // A set of defined constants is provided for the user's convenience. Default
+    // value is 3.375A- 0x08. This is a 4-bit value.
+    case OCD_TH:
+      ret_val = Xfer((byte)value & 0x0F);
+      break;
+    // Stall current threshold. Defaults to 0x40, or 2.03A. Value is from 31.25mA to
+    // 4A in 31.25mA steps. This is a 7-bit value.
+    case STALL_TH:
+      ret_val = Xfer((byte)value & 0x7F);
+      break;
+    // STEP_MODE controls the microstepping settings, as well as the generation of an
+    // output signal from the dSPIN. Bits 2:0 control the number of microsteps per
+    // step the part will generate. Bit 7 controls whether the BUSY/SYNC pin outputs
+    // a BUSY signal or a step synchronization signal. Bits 6:4 control the frequency
+    // of the output signal relative to the full-step frequency; see datasheet for
+    // that relationship as it is too complex to reproduce here.
+    // Most likely, only the microsteps per step value will be needed; there is a set
+    // of constants provided for ease of use of these values.
+    case STEP_MODE:
+      ret_val = Xfer((byte)value);
+      break;
+    // ALARM_EN controls which alarms will cause the FLAG pin to fall. A set of constants
+    // is provided to make this easy to interpret. By default, ALL alarms will trigger the
+    // FLAG pin.
+    case ALARM_EN:
+      ret_val = Xfer((byte)value);
+      break;
+    // CONFIG contains some assorted configuration bits and fields. A fairly comprehensive
+    // set of reasonably self-explanatory constants is provided, but users should refer
+    // to the datasheet before modifying the contents of this register to be certain they
+    // understand the implications of their modifications. Value on boot is 0x2E88; this
+    // can be a useful way to verify proper start up and operation of the dSPIN chip.
+    case CONFIG:
+      ret_val = Param(value, 16);
+      break;
+      // STATUS contains read-only information about the current condition of the chip. A
+      // comprehensive set of constants for masking and testing this register is provided, but
+      // users should refer to the datasheet to ensure that they fully understand each one of
+      // the bits in the register.
+    case STATUS: // STATUS is a read-only register
+      ret_val = Param(0, 16);
+      break;
+    default:
+      ret_val = Xfer((byte)(value));
+    break;
+  }
+  return ret_val;
+}
diff --git a/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h
new file mode 100644
index 0000000000..8b57686463
--- /dev/null
+++ b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/L6470.h
@@ -0,0 +1,286 @@
+////////////////////////////////////////////////////////////
+//ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
+//LIBRARY Created by Adam Meyer of bildr Aug 18th 2012
+//Released as MIT license
+////////////////////////////////////////////////////////////
+#ifndef L6470_h
+#define L6470_h
+
+#include <Arduino.h>
+#include <SPI.h>
+
+#define SLAVE_SELECT_PIN 38 // Wire this to the CSN pin
+// #define RESET 6 // Wire this to the STBY line
+#define BUSYN 7 // Wire this to the BSYN line
+
+// constant definitions for overcurrent thresholds. Write these values to
+// register dSPIN_OCD_TH to set the level at which an overcurrent even occurs.
+#define OCD_TH_375mA 0x00
+#define OCD_TH_750mA 0x01
+#define OCD_TH_1125mA 0x02
+#define OCD_TH_1500mA 0x03
+#define OCD_TH_1875mA 0x04
+#define OCD_TH_2250mA 0x05
+#define OCD_TH_2625mA 0x06
+#define OCD_TH_3000mA 0x07
+#define OCD_TH_3375mA 0x08
+#define OCD_TH_3750mA 0x09
+#define OCD_TH_4125mA 0x0A
+#define OCD_TH_4500mA 0x0B
+#define OCD_TH_4875mA 0x0C
+#define OCD_TH_5250mA 0x0D
+#define OCD_TH_5625mA 0x0E
+#define OCD_TH_6000mA 0x0F
+
+// STEP_MODE option values.
+// First comes the "microsteps per step" options...
+#define STEP_MODE_STEP_SEL 0x07 // Mask for these bits only.
+#define STEP_SEL_1 0x00
+#define STEP_SEL_1_2 0x01
+#define STEP_SEL_1_4 0x02
+#define STEP_SEL_1_8 0x03
+#define STEP_SEL_1_16 0x04
+#define STEP_SEL_1_32 0x05
+#define STEP_SEL_1_64 0x06
+#define STEP_SEL_1_128 0x07
+
+// ...next, define the SYNC_EN bit. When set, the BUSYN pin will instead
+// output a clock related to the full-step frequency as defined by the
+// SYNC_SEL bits below.
+#define STEP_MODE_SYNC_EN 0x80 // Mask for this bit
+#define SYNC_EN 0x80
+
+// ...last, define the SYNC_SEL modes. The clock output is defined by
+// the full-step frequency and the value in these bits- see the datasheet
+// for a matrix describing that relationship (page 46).
+#define STEP_MODE_SYNC_SEL 0x70
+#define SYNC_SEL_1_2 0x00
+#define SYNC_SEL_1 0x10
+#define SYNC_SEL_2 0x20
+#define SYNC_SEL_4 0x30
+#define SYNC_SEL_8 0x40
+#define SYNC_SEL_16 0x50
+#define SYNC_SEL_32 0x60
+#define SYNC_SEL_64 0x70
+
+// Bit names for the ALARM_EN register.
+// Each of these bits defines one potential alarm condition.
+// When one of these conditions occurs and the respective bit in ALARM_EN is set,
+// the FLAG pin will go low. The register must be queried to determine which event
+// caused the alarm.
+#define ALARM_EN_OVERCURRENT 0x01
+#define ALARM_EN_THERMAL_SHUTDOWN 0x02
+#define ALARM_EN_THERMAL_WARNING 0x04
+#define ALARM_EN_UNDER_VOLTAGE 0x08
+#define ALARM_EN_STALL_DET_A 0x10
+#define ALARM_EN_STALL_DET_B 0x20
+#define ALARM_EN_SW_TURN_ON 0x40
+#define ALARM_EN_WRONG_NPERF_CMD 0x80
+
+// CONFIG register renames.
+
+// Oscillator options.
+// The dSPIN needs to know what the clock frequency is because it uses that for some
+// calculations during operation.
+#define CONFIG_OSC_SEL 0x000F // Mask for this bit field.
+#define CONFIG_INT_16MHZ 0x0000 // Internal 16MHz, no output
+#define CONFIG_INT_16MHZ_OSCOUT_2MHZ 0x0008 // Default; internal 16MHz, 2MHz output
+#define CONFIG_INT_16MHZ_OSCOUT_4MHZ 0x0009 // Internal 16MHz, 4MHz output
+#define CONFIG_INT_16MHZ_OSCOUT_8MHZ 0x000A // Internal 16MHz, 8MHz output
+#define CONFIG_INT_16MHZ_OSCOUT_16MHZ 0x000B // Internal 16MHz, 16MHz output
+#define CONFIG_EXT_8MHZ_XTAL_DRIVE 0x0004 // External 8MHz crystal
+#define CONFIG_EXT_16MHZ_XTAL_DRIVE 0x0005 // External 16MHz crystal
+#define CONFIG_EXT_24MHZ_XTAL_DRIVE 0x0006 // External 24MHz crystal
+#define CONFIG_EXT_32MHZ_XTAL_DRIVE 0x0007 // External 32MHz crystal
+#define CONFIG_EXT_8MHZ_OSCOUT_INVERT 0x000C // External 8MHz crystal, output inverted
+#define CONFIG_EXT_16MHZ_OSCOUT_INVERT 0x000D // External 16MHz crystal, output inverted
+#define CONFIG_EXT_24MHZ_OSCOUT_INVERT 0x000E // External 24MHz crystal, output inverted
+#define CONFIG_EXT_32MHZ_OSCOUT_INVERT 0x000F // External 32MHz crystal, output inverted
+
+// Configure the functionality of the external switch input
+#define CONFIG_SW_MODE 0x0010 // Mask for this bit.
+#define CONFIG_SW_HARD_STOP 0x0000 // Default; hard stop motor on switch.
+#define CONFIG_SW_USER 0x0010 // Tie to the GoUntil and ReleaseSW
+                                                    // commands to provide jog function.
+                                                    // See page 25 of datasheet.
+
+// Configure the motor voltage compensation mode (see page 34 of datasheet)
+#define CONFIG_EN_VSCOMP 0x0020 // Mask for this bit.
+#define CONFIG_VS_COMP_DISABLE 0x0000 // Disable motor voltage compensation.
+#define CONFIG_VS_COMP_ENABLE 0x0020 // Enable motor voltage compensation.
+
+// Configure overcurrent detection event handling
+#define CONFIG_OC_SD 0x0080 // Mask for this bit.
+#define CONFIG_OC_SD_DISABLE 0x0000 // Bridges do NOT shutdown on OC detect
+#define CONFIG_OC_SD_ENABLE 0x0080 // Bridges shutdown on OC detect
+
+// Configure the slew rate of the power bridge output
+#define CONFIG_POW_SR 0x0300 // Mask for this bit field.
+#define CONFIG_SR_180V_us 0x0000 // 180V/us
+#define CONFIG_SR_290V_us 0x0200 // 290V/us
+#define CONFIG_SR_530V_us 0x0300 // 530V/us
+
+// Integer divisors for PWM sinewave generation
+// See page 32 of the datasheet for more information on this.
+#define CONFIG_F_PWM_DEC 0x1C00 // mask for this bit field
+#define CONFIG_PWM_MUL_0_625 (0x00)<<10
+#define CONFIG_PWM_MUL_0_75 (0x01)<<10
+#define CONFIG_PWM_MUL_0_875 (0x02)<<10
+#define CONFIG_PWM_MUL_1 (0x03)<<10
+#define CONFIG_PWM_MUL_1_25 (0x04)<<10
+#define CONFIG_PWM_MUL_1_5 (0x05)<<10
+#define CONFIG_PWM_MUL_1_75 (0x06)<<10
+#define CONFIG_PWM_MUL_2 (0x07)<<10
+
+// Multiplier for the PWM sinewave frequency
+#define CONFIG_F_PWM_INT 0xE000 // mask for this bit field.
+#define CONFIG_PWM_DIV_1 (0x00)<<13
+#define CONFIG_PWM_DIV_2 (0x01)<<13
+#define CONFIG_PWM_DIV_3 (0x02)<<13
+#define CONFIG_PWM_DIV_4 (0x03)<<13
+#define CONFIG_PWM_DIV_5 (0x04)<<13
+#define CONFIG_PWM_DIV_6 (0x05)<<13
+#define CONFIG_PWM_DIV_7 (0x06)<<13
+
+// Status register bit renames- read-only bits conferring information about the
+// device to the user.
+#define STATUS_HIZ 0x0001 // high when bridges are in HiZ mode
+#define STATUS_BUSY 0x0002 // mirrors BUSY pin
+#define STATUS_SW_F 0x0004 // low when switch open, high when closed
+#define STATUS_SW_EVN 0x0008 // active high, set on switch falling edge,
+                                                    // cleared by reading STATUS
+#define STATUS_DIR 0x0010 // Indicates current motor direction.
+                                                    // High is FWD, Low is REV.
+#define STATUS_NOTPERF_CMD 0x0080 // Last command not performed.
+#define STATUS_WRONG_CMD 0x0100 // Last command not valid.
+#define STATUS_UVLO 0x0200 // Undervoltage lockout is active
+#define STATUS_TH_WRN 0x0400 // Thermal warning
+#define STATUS_TH_SD 0x0800 // Thermal shutdown
+#define STATUS_OCD 0x1000 // Overcurrent detected
+#define STATUS_STEP_LOSS_A 0x2000 // Stall detected on A bridge
+#define STATUS_STEP_LOSS_B 0x4000 // Stall detected on B bridge
+#define STATUS_SCK_MOD 0x8000 // Step clock mode is active
+
+// Status register motor status field
+#define STATUS_MOT_STATUS 0x0060 // field mask
+#define STATUS_MOT_STATUS_STOPPED (0x0000)<<13 // Motor stopped
+#define STATUS_MOT_STATUS_ACCELERATION (0x0001)<<13 // Motor accelerating
+#define STATUS_MOT_STATUS_DECELERATION (0x0002)<<13 // Motor decelerating
+#define STATUS_MOT_STATUS_CONST_SPD (0x0003)<<13 // Motor at constant speed
+
+// Register address redefines.
+// See the Param_Handler() function for more info about these.
+#define ABS_POS 0x01
+#define EL_POS 0x02
+#define MARK 0x03
+#define SPEED 0x04
+#define ACC 0x05
+#define DEC 0x06
+#define MAX_SPEED 0x07
+#define MIN_SPEED 0x08
+#define FS_SPD 0x15
+#define KVAL_HOLD 0x09
+#define KVAL_RUN 0x0A
+#define KVAL_ACC 0x0B
+#define KVAL_DEC 0x0C
+#define INT_SPD 0x0D
+#define ST_SLP 0x0E
+#define FN_SLP_ACC 0x0F
+#define FN_SLP_DEC 0x10
+#define K_THERM 0x11
+#define ADC_OUT 0x12
+#define OCD_TH 0x13
+#define STALL_TH 0x14
+#define STEP_MODE 0x16
+#define ALARM_EN 0x17
+#define CONFIG 0x18
+#define STATUS 0x19
+
+//dSPIN commands
+#define NOP 0x00
+#define SET_PARAM 0x00
+#define GET_PARAM 0x20
+#define RUN 0x50
+#define STEP_CLOCK 0x58
+#define MOVE 0x40
+#define GOTO 0x60
+#define GOTO_DIR 0x68
+#define GO_UNTIL 0x82
+#define RELEASE_SW 0x92
+#define GO_HOME 0x70
+#define GO_MARK 0x78
+#define RESET_POS 0xD8
+#define RESET_DEVICE 0xC0
+#define SOFT_STOP 0xB0
+#define HARD_STOP 0xB8
+#define SOFT_HIZ 0xA0
+#define HARD_HIZ 0xA8
+#define GET_STATUS 0xD0
+
+/* dSPIN direction options */
+#define FWD 0x01
+#define REV 0x00
+
+/* dSPIN action options */
+#define ACTION_RESET 0x00
+#define ACTION_COPY 0x01
+
+
+class L6470{
+
+  public:
+
+    L6470(int SSPin);
+    void init(int k_value);
+    void setMicroSteps(int microSteps);
+    void setCurrent(int current);
+    void setMaxSpeed(int speed);
+    void setMinSpeed(int speed);
+    void setAcc(float acceleration);
+    void setDec(float deceleration);
+    void setOverCurrent(unsigned int ma_current);
+    void setThresholdSpeed(float threshold);
+    void setStallCurrent(float ma_current);
+    
+    unsigned long ParamHandler(byte param, unsigned long value);
+    void SetLowSpeedOpt(boolean enable);
+    void run(byte dir, float spd);
+    void Step_Clock(byte dir);
+    void goHome();
+    void setAsHome();
+    void goMark();
+    void move(long n_step);
+    void goTo(long pos);
+    void goTo_DIR(byte dir, long pos);
+    void goUntil(byte act, byte dir, unsigned long spd);
+    boolean isBusy();
+    void releaseSW(byte act, byte dir);
+    float getSpeed();
+    long getPos();
+    void setMark();
+    void setMark(long value);
+    void resetPos();
+    void resetDev();
+    void softStop();
+    void hardStop();
+    void softFree();
+    void free();
+    int getStatus();
+	void SetParam(byte param, unsigned long value);
+
+  private:
+    long convert(unsigned long val);
+    unsigned long GetParam(byte param);
+    unsigned long AccCalc(float stepsPerSecPerSec);
+    unsigned long DecCalc(float stepsPerSecPerSec);
+    unsigned long MaxSpdCalc(float stepsPerSec);
+    unsigned long MinSpdCalc(float stepsPerSec);
+    unsigned long FSCalc(float stepsPerSec);
+    unsigned long IntSpdCalc(float stepsPerSec);
+    unsigned long SpdCalc(float stepsPerSec);
+    unsigned long Param(unsigned long value, byte bit_len);
+    byte Xfer(byte data);
+    int _SSPin;
+};
+
+#endif
diff --git a/ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt
new file mode 100644
index 0000000000..7caa3d019d
--- /dev/null
+++ b/ArduinoAddons/Arduino_1.x.x/libraries/L6470/keywords.txt
@@ -0,0 +1,53 @@
+#######################################################
+# keywords.txt - keywords file for the L6470 library
+#
+# ORIGINAL CODE 12/12/2011- Mike Hord, SparkFun Electronics
+# Library by Adam Meyer of bildr Aug 18th 2012
+#
+# Released as MIT license
+#######################################################
+
+#######################################
+# Datatypes (KEYWORD1)
+#######################################
+
+L6470 KEYWORD1
+
+#######################################
+# Methods and Functions (KEYWORD2)
+#######################################
+
+L6470 				KEYWORD2
+init 				KEYWORD2
+setMicroSteps 		KEYWORD2
+setCurrent 			KEYWORD2
+setMaxSpeed 		KEYWORD2
+setMinSpeed 		KEYWORD2
+setAcc 				KEYWORD2
+setDec 				KEYWORD2
+setOverCurrent 		KEYWORD2
+setThresholdSpeed 	KEYWORD2
+setStallCurrent 	KEYWORD2
+ParamHandler 		KEYWORD2
+SetLowSpeedOpt 		KEYWORD2
+run 				KEYWORD2
+Step_Clock 			KEYWORD2
+goHome 				KEYWORD2
+goMark 				KEYWORD2
+move 				KEYWORD2
+goTo 				KEYWORD2
+goTo_DIR 			KEYWORD2
+goUntil 			KEYWORD2
+isBusy 				KEYWORD2
+releaseSW 			KEYWORD2
+resetPos			KEYWORD2
+resetDev 			KEYWORD2
+softStop			KEYWORD2
+hardStop 			KEYWORD2
+softHiZ 			KEYWORD2
+hardHiZ 			KEYWORD2
+getStatus 			KEYWORD2
+
+#######################################
+# Constants (LITERAL1)
+#######################################
\ No newline at end of file
diff --git a/Marlin/Configuration_adv.h b/Marlin/Configuration_adv.h
index 66c50ea29a..e0a9ec2605 100644
--- a/Marlin/Configuration_adv.h
+++ b/Marlin/Configuration_adv.h
@@ -467,61 +467,135 @@ const unsigned int dropsegments=5; //everything with less than this number of st
  * you need to import the TMC26XStepper library into the arduino IDE for this
  ******************************************************************************/
 
-#define HAVE_TMCDRIVER
+//#define HAVE_TMCDRIVER
 #ifdef HAVE_TMCDRIVER
 
-	#define X_IS_TMC
-	#define X_MAX_CURRENT 2000  //in mA
+//	#define X_IS_TMC
+	#define X_MAX_CURRENT 1000  //in mA
 	#define X_SENSE_RESISTOR 91 //in mOhms
 	#define X_MICROSTEPS 16     //number of microsteps
 	
 //	#define X2_IS_TMC
-	#define X2_MAX_CURRENT 2000  //in mA
+	#define X2_MAX_CURRENT 1000  //in mA
 	#define X2_SENSE_RESISTOR 91 //in mOhms
 	#define X2_MICROSTEPS 16     //number of microsteps
 	
-	#define Y_IS_TMC
-	#define Y_MAX_CURRENT 2000  //in mA
+//	#define Y_IS_TMC
+	#define Y_MAX_CURRENT 1000  //in mA
 	#define Y_SENSE_RESISTOR 91 //in mOhms
 	#define Y_MICROSTEPS 16     //number of microsteps
 	
 //	#define Y2_IS_TMC
-	#define Y2_MAX_CURRENT 2000  //in mA
+	#define Y2_MAX_CURRENT 1000  //in mA
 	#define Y2_SENSE_RESISTOR 91 //in mOhms
 	#define Y2_MICROSTEPS 16     //number of microsteps	
 	
-	#define Z_IS_TMC
-	#define Z_MAX_CURRENT 2000  //in mA
+//	#define Z_IS_TMC
+	#define Z_MAX_CURRENT 1000  //in mA
 	#define Z_SENSE_RESISTOR 91 //in mOhms
 	#define Z_MICROSTEPS 16     //number of microsteps
 	
 //	#define Z2_IS_TMC
-	#define Z2_MAX_CURRENT 2000  //in mA
+	#define Z2_MAX_CURRENT 1000  //in mA
 	#define Z2_SENSE_RESISTOR 91 //in mOhms
 	#define Z2_MICROSTEPS 16     //number of microsteps
 	
-	#define E0_IS_TMC
-	#define E0_MAX_CURRENT 2000  //in mA
+//	#define E0_IS_TMC
+	#define E0_MAX_CURRENT 1000  //in mA
 	#define E0_SENSE_RESISTOR 91 //in mOhms
 	#define E0_MICROSTEPS 16     //number of microsteps
 	
-	#define E1_IS_TMC
-	#define E1_MAX_CURRENT 2000  //in mA
+//	#define E1_IS_TMC
+	#define E1_MAX_CURRENT 1000  //in mA
 	#define E1_SENSE_RESISTOR 91 //in mOhms
 	#define E1_MICROSTEPS 16     //number of microsteps	
 	
 //	#define E2_IS_TMC
-	#define E2_MAX_CURRENT 2000  //in mA
+	#define E2_MAX_CURRENT 1000  //in mA
 	#define E2_SENSE_RESISTOR 91 //in mOhms
 	#define E2_MICROSTEPS 16     //number of microsteps	
 	
 //	#define E3_IS_TMC
-	#define E3_MAX_CURRENT 2000  //in mA
+	#define E3_MAX_CURRENT 1000  //in mA
 	#define E3_SENSE_RESISTOR 91 //in mOhms
 	#define E3_MICROSTEPS 16     //number of microsteps		
 
 #endif
 
+/******************************************************************************\
+ * enable this section if you have L6470  motor drivers. 
+ * you need to import the L6470 library into the arduino IDE for this
+ ******************************************************************************/
+
+//#define HAVE_L6470DRIVER
+#ifdef HAVE_L6470DRIVER
+
+//	#define X_IS_L6470
+	#define X_MICROSTEPS 16     //number of microsteps
+	#define X_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define X_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define X_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define X2_IS_L6470
+	#define X2_MICROSTEPS 16     //number of microsteps
+	#define X2_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define X2_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define X2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define Y_IS_L6470
+	#define Y_MICROSTEPS 16     //number of microsteps
+	#define Y_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define Y_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define Y_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define Y2_IS_L6470
+	#define Y2_MICROSTEPS 16     //number of microsteps	
+	#define Y2_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define Y2_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define Y2_STALLCURRENT 1500 //current in mA where the driver will detect a stall	
+	
+//	#define Z_IS_L6470
+	#define Z_MICROSTEPS 16     //number of microsteps
+	#define Z_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define Z_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define Z_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define Z2_IS_L6470
+	#define Z2_MICROSTEPS 16     //number of microsteps
+	#define Z2_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define Z2_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define Z2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define E0_IS_L6470
+	#define E0_MICROSTEPS 16     //number of microsteps
+	#define E0_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define E0_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define E0_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define E1_IS_L6470
+	#define E1_MICROSTEPS 16     //number of microsteps	
+	#define E1_MICROSTEPS 16     //number of microsteps
+	#define E1_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define E1_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define E1_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define E2_IS_L6470
+	#define E2_MICROSTEPS 16     //number of microsteps	
+	#define E2_MICROSTEPS 16     //number of microsteps
+	#define E2_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define E2_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define E2_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+//	#define E3_IS_L6470
+	#define E3_MICROSTEPS 16     //number of microsteps		
+	#define E3_MICROSTEPS 16     //number of microsteps
+	#define E3_K_VAL 50          // 0 - 255, Higher values, are higher power. Be carefull not to go too high    
+	#define E3_OVERCURRENT 2000  //maxc current in mA. If the current goes over this value, the driver will switch off
+	#define E3_STALLCURRENT 1500 //current in mA where the driver will detect a stall
+	
+#endif
+
+
 //===========================================================================
 //=============================  Define Defines  ============================
 //===========================================================================
diff --git a/Marlin/Marlin.ino b/Marlin/Marlin.ino
index 302fb3cf66..7b0c790694 100644
--- a/Marlin/Marlin.ino
+++ b/Marlin/Marlin.ino
@@ -59,3 +59,8 @@
   #include <SPI.h>
   #include <TMC26XStepper.h>
 #endif
+
+#ifdef HAVE_L6470DRIVER
+  #include <SPI.h>
+  #include <L6470.h>
+#endif
diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp
index 0419c48619..4331af3770 100644
--- a/Marlin/stepper.cpp
+++ b/Marlin/stepper.cpp
@@ -842,6 +842,11 @@ void st_init()
   #ifdef HAVE_TMCDRIVER
      tmc_init();
   #endif
+    // initialise L6470 Steppers
+  #ifdef HAVE_L6470DRIVER
+     L6470_init();
+  #endif
+  
   
   //Initialize Dir Pins
   #if defined(X_DIR_PIN) && X_DIR_PIN > -1
diff --git a/Marlin/stepper_indirection.cpp b/Marlin/stepper_indirection.cpp
index 4c722d3696..03c4a3c48a 100644
--- a/Marlin/stepper_indirection.cpp
+++ b/Marlin/stepper_indirection.cpp
@@ -103,4 +103,122 @@ void tmc_init()
 	stepperE3.start();
 #endif
 }
-#endif
\ No newline at end of file
+#endif
+
+// L6470 Driver objects and inits
+
+#ifdef HAVE_L6470DRIVER
+#include <SPI.h>
+#include <L6470.h>
+#endif
+
+// L6470 Stepper objects
+#ifdef X_IS_L6470
+	L6470 stepperX(X_ENABLE_PIN);
+#endif
+#ifdef X2_IS_L6470
+	L6470 stepperX2(X2_ENABLE_PIN);
+#endif
+#ifdef Y_IS_L6470
+	L6470 stepperY(Y_ENABLE_PIN);
+#endif
+#ifdef Y2_IS_L6470
+	L6470 stepperY2(Y2_ENABLE_PIN);
+#endif
+#ifdef Z_IS_L6470
+	L6470 stepperZ(Z_ENABLE_PIN);
+#endif
+#ifdef Z2_IS_L6470
+	L6470 stepperZ2(Z2_ENABLE_PIN);
+#endif
+#ifdef E0_IS_L6470
+	L6470 stepperE0(E0_ENABLE_PIN);
+#endif
+#ifdef E1_IS_L6470
+	L6470 stepperE1(E1_ENABLE_PIN);
+#endif
+#ifdef E2_IS_L6470
+	L6470 stepperE2(E2_ENABLE_PIN);
+#endif
+#ifdef E3_IS_L6470
+	L6470 stepperE3(E3_ENABLE_PIN);
+#endif	
+
+
+// init routine
+#ifdef HAVE_L6470DRIVER
+void L6470_init()
+{
+#ifdef X_IS_L6470
+	stepperX.init(X_K_VAL);
+	stepperX.softFree();
+	stepperX.setMicroSteps(X_MICROSTEPS);
+    stepperX.setOverCurrent(X_OVERCURRENT); //set overcurrent protection
+    stepperX.setStallCurrent(X_STALLCURRENT);
+#endif
+#ifdef X2_IS_L6470
+	stepperX2.init(X2_K_VAL);
+	stepperX2.softFree();
+	stepperX2.setMicroSteps(X2_MICROSTEPS);
+    stepperX2.setOverCurrent(X2_OVERCURRENT); //set overcurrent protection
+    stepperX2.setStallCurrent(X2_STALLCURRENT);
+#endif
+#ifdef Y_IS_L6470
+	stepperY.init(Y_K_VAL);
+	stepperY.softFree();
+	stepperY.setMicroSteps(Y_MICROSTEPS);
+    stepperY.setOverCurrent(Y_OVERCURRENT); //set overcurrent protection
+    stepperY.setStallCurrent(Y_STALLCURRENT);
+#endif
+#ifdef Y2_IS_L6470
+	stepperY2.init(Y2_K_VAL);
+	stepperY2.softFree();
+	stepperY2.setMicroSteps(Y2_MICROSTEPS);
+    stepperY2.setOverCurrent(Y2_OVERCURRENT); //set overcurrent protection
+    stepperY2.setStallCurrent(Y2_STALLCURRENT);
+#endif
+#ifdef Z_IS_L6470
+	stepperZ.init(Z_K_VAL);
+	stepperZ.softFree();
+	stepperZ.setMicroSteps(Z_MICROSTEPS);
+    stepperZ.setOverCurrent(Z_OVERCURRENT); //set overcurrent protection
+    stepperZ.setStallCurrent(Z_STALLCURRENT);
+#endif
+#ifdef Z2_IS_L6470
+	stepperZ2.init(Z2_K_VAL);
+	stepperZ2.softFree();
+	stepperZ2.setMicroSteps(Z2_MICROSTEPS);
+    stepperZ2.setOverCurrent(Z2_OVERCURRENT); //set overcurrent protection
+    stepperZ2.setStallCurrent(Z2_STALLCURRENT);
+#endif
+#ifdef E0_IS_L6470
+	stepperE0.init(E0_K_VAL);
+	stepperE0.softFree();
+	stepperE0.setMicroSteps(E0_MICROSTEPS);
+    stepperE0.setOverCurrent(E0_OVERCURRENT); //set overcurrent protection
+    stepperE0.setStallCurrent(E0_STALLCURRENT);
+#endif
+#ifdef E1_IS_L6470
+	stepperE1.init(E1_K_VAL);
+	stepperE1.softFree();
+	stepperE1.setMicroSteps(E1_MICROSTEPS);
+    stepperE1.setOverCurrent(E1_OVERCURRENT); //set overcurrent protection
+    stepperE1.setStallCurrent(E1_STALLCURRENT);
+#endif
+#ifdef E2_IS_L6470
+	stepperE2.init(E2_K_VAL);
+	stepperE2.softFree();
+	stepperE2.setMicroSteps(E2_MICROSTEPS);
+    stepperE2.setOverCurrent(E2_OVERCURRENT); //set overcurrent protection
+    stepperE2.setStallCurrent(E2_STALLCURRENT);
+#endif
+#ifdef E3_IS_L6470
+	stepperE3.init(E3_K_VAL);
+	stepperE3.softFree();
+	stepperE3.setMicroSteps(E3_MICROSTEPS);
+    stepperE3.setOverCurrent(E3_OVERCURRENT); //set overcurrent protection
+    stepperE3.setStallCurrent(E3_STALLCURRENT);
+#endif	
+}
+#endif
+
diff --git a/Marlin/stepper_indirection.h b/Marlin/stepper_indirection.h
index 6b226b74b6..408fccbec4 100644
--- a/Marlin/stepper_indirection.h
+++ b/Marlin/stepper_indirection.h
@@ -160,38 +160,9 @@
 #include <SPI.h>
 #include <TMC26XStepper.h>
 
-#ifdef X_IS_TMC
-	extern TMC26XStepper stepperX;
-#endif
-#ifdef X2_IS_TMC
-	extern TMC26XStepper stepperX2;
-#endif
-#ifdef Y_IS_TMC
-	extern TMC26XStepper stepperY;
-#endif
-#ifdef Y2_IS_TMC
-	extern TMC26XStepper stepperY2;
-#endif
-#ifdef Z_IS_TMC
-	extern TMC26XStepper stepperZ;
-#endif
-#ifdef Z2_IS_TMC
-	extern TMC26XStepper stepperZ2;
-#endif
-#ifdef E0_IS_TMC
-	extern TMC26XStepper stepperE0;
-#endif
-#ifdef E1_IS_TMC
-	extern TMC26XStepper stepperE1;
-#endif
-#ifdef E2_IS_TMC
-	extern TMC26XStepper stepperE2;
-#endif
-#ifdef E3_IS_TMC
-	extern TMC26XStepper stepperE3;
-#endif	
   void tmc_init();
 #ifdef X_IS_TMC
+   extern TMC26XStepper stepperX;
    #undef X_ENABLE_INIT 
    #define X_ENABLE_INIT ((void)0)
    
@@ -200,8 +171,10 @@
    
    #undef X_ENABLE_READ
    #define X_ENABLE_READ stepperX.isEnabled()
+   
 #endif
 #ifdef X2_IS_TMC
+   extern TMC26XStepper stepperX2;
    #undef X2_ENABLE_INIT
    #define X2_ENABLE_INIT ((void)0)
    
@@ -212,6 +185,7 @@
    #define X2_ENABLE_READ stepperX2.isEnabled()   
 #endif
 #ifdef Y_IS_TMC
+   extern TMC26XStepper stepperY;
    #undef Y_ENABLE_INIT
    #define Y_ENABLE_INIT ((void)0)
    
@@ -222,6 +196,7 @@
    #define Y_ENABLE_READ stepperY.isEnabled()   
 #endif
 #ifdef Y2_IS_TMC
+   extern TMC26XStepper stepperY2;
    #undef Y2_ENABLE_INIT
    #define Y2_ENABLE_INIT ((void)0)
    
@@ -232,6 +207,7 @@
    #define Y2_ENABLE_READ stepperY2.isEnabled()     
 #endif
 #ifdef Z_IS_TMC
+   extern TMC26XStepper stepperZ;
    #undef Z_ENABLE_INIT
    #define Z_ENABLE_INIT ((void)0)
    
@@ -242,6 +218,7 @@
    #define Z_ENABLE_READ stepperZ.isEnabled()       
 #endif
 #ifdef Z2_IS_TMC
+   extern TMC26XStepper stepperZ2;
    #undef Z2_ENABLE_INIT
    #define Z2_ENABLE_INIT ((void)0)
    
@@ -252,6 +229,7 @@
    #define Z2_ENABLE_READ stepperZ2.isEnabled()   
 #endif
 #ifdef E0_IS_TMC
+   extern TMC26XStepper stepperE0;
    #undef E0_ENABLE_INIT
    #define E0_ENABLE_INIT ((void)0)
    
@@ -262,6 +240,7 @@
    #define E0_ENABLE_READ stepperE0.isEnabled()   
 #endif
 #ifdef E1_IS_TMC
+   extern TMC26XStepper stepperE1;
    #undef E1_ENABLE_INIT
    #define E1_ENABLE_INIT ((void)0)
    
@@ -272,6 +251,7 @@
    #define E1_ENABLE_READ stepperE1.isEnabled()   
 #endif
 #ifdef E2_IS_TMC
+   extern TMC26XStepper stepperE2;
    #undef E2_ENABLE_INIT
    #define E2_ENABLE_INIT ((void)0)
    
@@ -282,6 +262,7 @@
    #define E2_ENABLE_READ stepperE2.isEnabled()   
 #endif
 #ifdef E3_IS_TMC
+   extern TMC26XStepper stepperE3;
    #undef E3_ENABLE_INIT
    #define E3_ENABLE_INIT ((void)0)
    
@@ -291,6 +272,221 @@
    #undef E3_ENABLE_READ
    #define E3_ENABLE_READ stepperE3.isEnabled()   
 #endif
+
+#endif  // HAVE_TMCDRIVER
+
+//////////////////////////////////
+// Pin redefines for L6470 drivers. 
+// L640 drivers have step on normal pins, but dir and everything else via SPI
+//////////////////////////////////
+#ifdef HAVE_L6470DRIVER
+
+#include <SPI.h>
+#include <L6470.h>
+
+  void L6470_init();
+#ifdef X_IS_L6470
+   extern L6470 stepperX;
+   #undef X_ENABLE_INIT 
+   #define X_ENABLE_INIT ((void)0)
+   
+   #undef X_ENABLE_WRITE
+   #define X_ENABLE_WRITE(STATE) {if(STATE) stepperX.Step_Clock(stepperX.getStatus() & STATUS_HIZ); else stepperX.softFree();}
+   
+   #undef X_ENABLE_READ
+   #define X_ENABLE_READ (stepperX.getStatus() & STATUS_HIZ)
+   
+   #undef X_DIR_INIT 
+   #define X_DIR_INIT ((void)0)
+   
+   #undef X_DIR_WRITE
+   #define X_DIR_WRITE(STATE) stepperX.Step_Clock(STATE)
+   
+   #undef X_DIR_READ
+   #define X_DIR_READ (stepperX.getStatus() & STATUS_DIR)
+   
+#endif
+#ifdef X2_IS_L6470
+   extern L6470 stepperX2;
+   #undef X2_ENABLE_INIT
+   #define X2_ENABLE_INIT ((void)0)
+   
+   #undef X2_ENABLE_WRITE
+   #define X2_ENABLE_WRITE(STATE) (if(STATE) stepperX2.Step_Clock(stepperX2.getStatus() & STATUS_HIZ); else stepperX2.softFree();)
+   
+   #undef X2_ENABLE_READ
+   #define X2_ENABLE_READ (stepperX2.getStatus() & STATUS_HIZ)
+   
+   #undef X2_DIR_INIT 
+   #define X2_DIR_INIT ((void)0)
+   
+   #undef X2_DIR_WRITE
+   #define X2_DIR_WRITE(STATE) stepperX2.Step_Clock(STATE)
+   
+   #undef X2_DIR_READ
+   #define X2_DIR_READ (stepperX2.getStatus() & STATUS_DIR)
+#endif
+#ifdef Y_IS_L6470
+   extern L6470 stepperY;
+   #undef Y_ENABLE_INIT
+   #define Y_ENABLE_INIT ((void)0)
+   
+   #undef Y_ENABLE_WRITE
+   #define Y_ENABLE_WRITE(STATE) (if(STATE) stepperY.Step_Clock(stepperY.getStatus() & STATUS_HIZ); else stepperY.softFree();)
+   
+   #undef Y_ENABLE_READ
+   #define Y_ENABLE_READ (stepperY.getStatus() & STATUS_HIZ)
+   
+   #undef Y_DIR_INIT 
+   #define Y_DIR_INIT ((void)0)
+   
+   #undef Y_DIR_WRITE
+   #define Y_DIR_WRITE(STATE) stepperY.Step_Clock(STATE)
+   
+   #undef Y_DIR_READ
+   #define Y_DIR_READ (stepperY.getStatus() & STATUS_DIR)  
+#endif
+#ifdef Y2_IS_L6470
+   extern L6470 stepperY2;
+   #undef Y2_ENABLE_INIT
+   #define Y2_ENABLE_INIT ((void)0)
+   
+   #undef Y2_ENABLE_WRITE
+   #define Y2_ENABLE_WRITE(STATE) (if(STATE) stepperY2.Step_Clock(stepperY2.getStatus() & STATUS_HIZ); else stepperY2.softFree();)
+   
+   #undef Y2_ENABLE_READ
+   #define Y2_ENABLE_READ (stepperY2.getStatus() & STATUS_HIZ)
+   
+   #undef Y2_DIR_INIT 
+   #define Y2_DIR_INIT ((void)0)
+   
+   #undef Y2_DIR_WRITE
+   #define Y2_DIR_WRITE(STATE) stepperY2.Step_Clock(STATE)
+   
+   #undef Y2_DIR_READ
+   #define Y2_DIR_READ (stepperY2.getStatus() & STATUS_DIR)   
+#endif
+#ifdef Z_IS_L6470
+   extern L6470 stepperZ;
+   #undef Z_ENABLE_INIT
+   #define Z_ENABLE_INIT ((void)0)
+   
+   #undef Z_ENABLE_WRITE
+   #define Z_ENABLE_WRITE(STATE) (if(STATE) stepperZ.Step_Clock(stepperZ.getStatus() & STATUS_HIZ); else stepperZ.softFree();)
+   
+   #undef Z_ENABLE_READ
+   #define Z_ENABLE_READ (stepperZ.getStatus() & STATUS_HIZ)
+   
+   #undef Z_DIR_INIT 
+   #define Z_DIR_INIT ((void)0)
+   
+   #undef Z_DIR_WRITE
+   #define Z_DIR_WRITE(STATE) stepperZ.Step_Clock(STATE)
+   
+   #undef Y_DIR_READ
+   #define Y_DIR_READ (stepperZ.getStatus() & STATUS_DIR)      
+#endif
+#ifdef Z2_IS_L6470
+   extern L6470 stepperZ2;
+   #undef Z2_ENABLE_INIT
+   #define Z2_ENABLE_INIT ((void)0)
+   
+   #undef Z2_ENABLE_WRITE
+   #define Z2_ENABLE_WRITE(STATE) (if(STATE) stepperZ2.Step_Clock(stepperZ2.getStatus() & STATUS_HIZ); else stepperZ2.softFree();)
+   
+   #undef Z2_ENABLE_READ
+   #define Z2_ENABLE_READ (stepperZ2.getStatus() & STATUS_HIZ)
+   
+   #undef Z2_DIR_INIT 
+   #define Z2_DIR_INIT ((void)0)
+   
+   #undef Z2_DIR_WRITE
+   #define Z2_DIR_WRITE(STATE) stepperZ2.Step_Clock(STATE)
+   
+   #undef Y2_DIR_READ
+   #define Y2_DIR_READ (stepperZ2.getStatus() & STATUS_DIR)       
+#endif
+#ifdef E0_IS_L6470
+   extern L6470 stepperE0;
+   #undef E0_ENABLE_INIT
+   #define E0_ENABLE_INIT ((void)0)
+   
+   #undef E0_ENABLE_WRITE
+   #define E0_ENABLE_WRITE(STATE) (if(STATE) stepperE0.Step_Clock(stepperE0.getStatus() & STATUS_HIZ); else stepperE0.softFree();)
+   
+   #undef E0_ENABLE_READ
+   #define E0_ENABLE_READ (stepperE0.getStatus() & STATUS_HIZ)
+   
+   #undef E0_DIR_INIT 
+   #define E0_DIR_INIT ((void)0)
+   
+   #undef E0_DIR_WRITE
+   #define E0_DIR_WRITE(STATE) stepperE0.Step_Clock(STATE)
+   
+   #undef E0_DIR_READ
+   #define E0_DIR_READ (stepperE0.getStatus() & STATUS_DIR)    
+#endif
+#ifdef E1_IS_L6470
+   extern L6470 stepperE1;
+   #undef E1_ENABLE_INIT
+   #define E1_ENABLE_INIT ((void)0)
+   
+   #undef E1_ENABLE_WRITE
+   #define E1_ENABLE_WRITE(STATE) (if(STATE) stepperE1.Step_Clock(stepperE1.getStatus() & STATUS_HIZ); else stepperE1.softFree();)
+   
+   #undef E1_ENABLE_READ
+   #define E1_ENABLE_READ (stepperE1.getStatus() & STATUS_HIZ)
+   
+   #undef E1_DIR_INIT 
+   #define E1_DIR_INIT ((void)0)
+   
+   #undef E1_DIR_WRITE
+   #define E1_DIR_WRITE(STATE) stepperE1.Step_Clock(STATE)
+   
+   #undef E1_DIR_READ
+   #define E1_DIR_READ (stepperE1.getStatus() & STATUS_DIR)  
+#endif
+#ifdef E2_IS_L6470
+   extern L6470 stepperE2;
+   #undef E2_ENABLE_INIT
+   #define E2_ENABLE_INIT ((void)0)
+   
+   #undef E2_ENABLE_WRITE
+   #define E2_ENABLE_WRITE(STATE) (if(STATE) stepperE2.Step_Clock(stepperE2.getStatus() & STATUS_HIZ); else stepperE2.softFree();)
+   
+   #undef E2_ENABLE_READ
+   #define E2_ENABLE_READ (stepperE2.getStatus() & STATUS_HIZ)
+   
+   #undef E2_DIR_INIT 
+   #define E2_DIR_INIT ((void)0)
+   
+   #undef E2_DIR_WRITE
+   #define E2_DIR_WRITE(STATE) stepperE2.Step_Clock(STATE)
+   
+   #undef E2_DIR_READ
+   #define E2_DIR_READ (stepperE2.getStatus() & STATUS_DIR)  
+#endif
+#ifdef E3_IS_L6470
+   extern L6470 stepperE3;
+   #undef E3_ENABLE_INIT
+   #define E3_ENABLE_INIT ((void)0)
+   
+   #undef E3_ENABLE_WRITE
+   #define E3_ENABLE_WRITE(STATE) (if(STATE) stepperE3.Step_Clock(stepperE3.getStatus() & STATUS_HIZ); else stepperE3.softFree();)
+   
+   #undef E3_ENABLE_READ
+   #define E3_ENABLE_READ (stepperE3.getStatus() & STATUS_HIZ)
+   
+   #undef E3_DIR_INIT 
+   #define E3_DIR_INIT ((void)0)
+   
+   #undef E3_DIR_WRITE
+   #define E3_DIR_WRITE(STATE) stepperE3.Step_Clock(STATE)
+   
+   #undef E3_DIR_READ
+   #define E3_DIR_READ (stepperE3.getStatus() & STATUS_DIR)  
 #endif
 
-#endif
+#endif  //HAVE_L6470DRIVER
+
+#endif // STEPPER_INDIRECTION_H
\ No newline at end of file