From 13fbf42d95251eb3ccc36449a8056de8cd8d228a Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Fri, 20 Mar 2015 20:42:49 -0700 Subject: [PATCH 1/2] Cleanup of planner code - Use named axis indexes, `X_AXIS` etc. - Replace `block.steps_A` with block.steps[A]` - Replace `A_segment_time` with `segment_time[A]` - Add `A_AXIS`, `B_AXIS` for `COREXY` axes - Conditional compile based on `EXTRUDERS` - Add BLOCK_MOD macro for planner block indexes - Apply coding standards to `planner.h` and `planner.cpp` - Small optimizations of planner code - Update `stepper.cpp` for new `block` struct - Replace `memcpy` with loops, let the compiler unroll them - Make `movesplanned` into an inline function --- Marlin/Marlin.h | 4 +- Marlin/planner.cpp | 1142 ++++++++++++++++++++------------------------ Marlin/planner.h | 117 ++--- Marlin/stepper.cpp | 107 ++--- 4 files changed, 616 insertions(+), 754 deletions(-) diff --git a/Marlin/Marlin.h b/Marlin/Marlin.h index 44a85f78df..7e426d9c7a 100644 --- a/Marlin/Marlin.h +++ b/Marlin/Marlin.h @@ -183,7 +183,7 @@ void manage_inactivity(bool ignore_stepper_queue=false); #define disable_e3() /* nothing */ #endif -enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; +enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; //X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots. void FlushSerialRequestResend(); @@ -270,7 +270,7 @@ extern unsigned char fanSpeedSoftPwm; extern bool filament_sensor; //indicates that filament sensor readings should control extrusion extern float filament_width_meas; //holds the filament diameter as accurately measured extern signed char measurement_delay[]; //ring buffer to delay measurement - extern int delay_index1, delay_index2; //index into ring buffer + extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code extern float delay_dist; //delay distance counter extern int meas_delay_cm; //delay distance #endif diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 316c0de2f9..a105548b47 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -77,12 +77,12 @@ float mintravelfeedrate; unsigned long axis_steps_per_sqr_second[NUM_AXIS]; #ifdef ENABLE_AUTO_BED_LEVELING -// this holds the required transform to compensate for bed level -matrix_3x3 plan_bed_level_matrix = { - 1.0, 0.0, 0.0, - 0.0, 1.0, 0.0, - 0.0, 0.0, 1.0 -}; + // this holds the required transform to compensate for bed level + matrix_3x3 plan_bed_level_matrix = { + 1.0, 0.0, 0.0, + 0.0, 1.0, 0.0, + 0.0, 0.0, 1.0 + }; #endif // #ifdef ENABLE_AUTO_BED_LEVELING // The current position of the tool in absolute steps @@ -91,10 +91,10 @@ static float previous_speed[NUM_AXIS]; // Speed of previous path line segment static float previous_nominal_speed; // Nominal speed of previous path line segment #ifdef AUTOTEMP -float autotemp_max=250; -float autotemp_min=210; -float autotemp_factor=0.1; -bool autotemp_enabled=false; + float autotemp_max = 250; + float autotemp_min = 210; + float autotemp_factor = 0.1; + bool autotemp_enabled = false; #endif unsigned char g_uc_extruder_last_move[4] = {0,0,0,0}; @@ -110,55 +110,35 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro //=============================private variables ============================ //=========================================================================== #ifdef PREVENT_DANGEROUS_EXTRUDE -float extrude_min_temp=EXTRUDE_MINTEMP; + float extrude_min_temp = EXTRUDE_MINTEMP; #endif #ifdef XY_FREQUENCY_LIMIT -#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) -// Used for the frequency limit -static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations -static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations -static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; + // Used for the frequency limit + #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) + // Old direction bits. Used for speed calculations + static unsigned char old_direction_bits = 0; + // Segment times (in µs). Used for speed calculations + static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} }; #endif #ifdef FILAMENT_SENSOR - static char meas_sample; //temporary variable to hold filament measurement sample + static char meas_sample; //temporary variable to hold filament measurement sample #endif -// Returns the index of the next block in the ring buffer -// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. -static int8_t next_block_index(int8_t block_index) { - block_index++; - if (block_index == BLOCK_BUFFER_SIZE) { - block_index = 0; - } - return(block_index); -} - - -// Returns the index of the previous block in the ring buffer -static int8_t prev_block_index(int8_t block_index) { - if (block_index == 0) { - block_index = BLOCK_BUFFER_SIZE; - } - block_index--; - return(block_index); -} +// Get the next / previous index of the next block in the ring buffer +// NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2 +FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } +FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } //=========================================================================== -//=============================functions ============================ +//================================ Functions ================================ //=========================================================================== // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration: -FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) -{ - if (acceleration!=0) { - return((target_rate*target_rate-initial_rate*initial_rate)/ - (2.0*acceleration)); - } - else { - return 0.0; // acceleration was 0, set acceleration distance to 0 - } +FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { + if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0 + return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); } // This function gives you the point at which you must start braking (at the rate of -acceleration) if @@ -166,67 +146,55 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ // a total travel of distance. This can be used to compute the intersection point between acceleration and // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) -FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) -{ - if (acceleration!=0) { - return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ - (4.0*acceleration) ); - } - else { - return 0.0; // acceleration was 0, set intersection distance to 0 - } +FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { + if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0 + return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4); } // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) { - unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min) - unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min) + unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min) + unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min) // Limit minimal step rate (Otherwise the timer will overflow.) - if(initial_rate <120) { - initial_rate=120; - } - if(final_rate < 120) { - final_rate=120; - } + if (initial_rate < 120) initial_rate = 120; + if (final_rate < 120) final_rate = 120; long acceleration = block->acceleration_st; - int32_t accelerate_steps = - ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); - int32_t decelerate_steps = - floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration)); + int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); + int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration)); // Calculate the size of Plateau of Nominal Rate. - int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; + int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort acceleration and start braking // in order to reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count)); - accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off - accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) + accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off + accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) plateau_steps = 0; } #ifdef ADVANCE - volatile long initial_advance = block->advance*entry_factor*entry_factor; - volatile long final_advance = block->advance*exit_factor*exit_factor; + volatile long initial_advance = block->advance * entry_factor * entry_factor; + volatile long final_advance = block->advance * exit_factor * exit_factor; #endif // ADVANCE // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section - if(block->busy == false) { // Don't update variables if block is busy. + if (!block->busy) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps+plateau_steps; block->initial_rate = initial_rate; block->final_rate = final_rate; -#ifdef ADVANCE - block->initial_advance = initial_advance; - block->final_advance = final_advance; -#endif //ADVANCE + #ifdef ADVANCE + block->initial_advance = initial_advance; + block->final_advance = final_advance; + #endif } CRITICAL_SECTION_END; } @@ -234,7 +202,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { - return sqrt(target_velocity*target_velocity-2*acceleration*distance); + return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. @@ -248,9 +216,7 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity // The kernel called by planner_recalculate() when scanning the plan from last to first entry. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { - if(!current) { - return; - } + if (!current) return; if (next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. @@ -260,9 +226,9 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. - if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { - current->entry_speed = min( current->max_entry_speed, - max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); + if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) { + current->entry_speed = min(current->max_entry_speed, + max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); } else { current->entry_speed = current->max_entry_speed; @@ -280,15 +246,14 @@ void planner_reverse_pass() { //Make a local copy of block_buffer_tail, because the interrupt can alter it CRITICAL_SECTION_START; - unsigned char tail = block_buffer_tail; + unsigned char tail = block_buffer_tail; CRITICAL_SECTION_END - if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { - block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); - block_t *block[3] = { - NULL, NULL, NULL }; - while(block_index != tail) { - block_index = prev_block_index(block_index); + if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued + block_index = BLOCK_MOD(block_buffer_head - 3); + block_t *block[3] = { NULL, NULL, NULL }; + while (block_index != tail) { + block_index = prev_block_index(block_index); block[2]= block[1]; block[1]= block[0]; block[0] = &block_buffer[block_index]; @@ -299,9 +264,7 @@ void planner_reverse_pass() { // The kernel called by planner_recalculate() when scanning the plan from first to last entry. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { - if(!previous) { - return; - } + if (!previous) return; // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry @@ -309,8 +272,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!previous->nominal_length_flag) { if (previous->entry_speed < current->entry_speed) { - double entry_speed = min( current->entry_speed, - max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); + double entry_speed = min(current->entry_speed, + max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); // Check for junction speed change if (current->entry_speed != entry_speed) { @@ -321,18 +284,17 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n } } -// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This +// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the forward pass. void planner_forward_pass() { uint8_t block_index = block_buffer_tail; - block_t *block[3] = { - NULL, NULL, NULL }; + block_t *block[3] = { NULL, NULL, NULL }; - while(block_index != block_buffer_head) { + while (block_index != block_buffer_head) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[block_index]; - planner_forward_pass_kernel(block[0],block[1],block[2]); + planner_forward_pass_kernel(block[0], block[1], block[2]); block_index = next_block_index(block_index); } planner_forward_pass_kernel(block[1], block[2], NULL); @@ -346,22 +308,23 @@ void planner_recalculate_trapezoids() { block_t *current; block_t *next = NULL; - while(block_index != block_buffer_head) { + while (block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { // Recalculate if current block entry or exit junction speed has changed. if (current->recalculate_flag || next->recalculate_flag) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. - calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed, - next->entry_speed/current->nominal_speed); + calculate_trapezoid_for_block(current, + current->entry_speed / current->nominal_speed, + next->entry_speed / current->nominal_speed); current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed } } block_index = next_block_index( block_index ); } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. - if(next != NULL) { + if (next) { calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, MINIMUM_PLANNER_SPEED/next->nominal_speed); next->recalculate_flag = false; @@ -392,148 +355,120 @@ void planner_recalculate() { } void plan_init() { - block_buffer_head = 0; - block_buffer_tail = 0; + block_buffer_head = block_buffer_tail = 0; memset(position, 0, sizeof(position)); // clear position - previous_speed[0] = 0.0; - previous_speed[1] = 0.0; - previous_speed[2] = 0.0; - previous_speed[3] = 0.0; + for (int i=0; ihigh) - { - high=se; + float high = 0.0; + uint8_t block_index = block_buffer_tail; + + while (block_index != block_buffer_head) { + if ((block_buffer[block_index].steps[X_AXIS] != 0) || + (block_buffer[block_index].steps[Y_AXIS] != 0) || + (block_buffer[block_index].steps[Z_AXIS] != 0)) { + float se=(float(block_buffer[block_index].steps[E_AXIS])/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; + //se; mm/sec; + if (se > high) high = se; } + block_index = next_block_index(block_index); } - block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); - } - float g=autotemp_min+high*autotemp_factor; - float t=g; - if(tautotemp_max) - t=autotemp_max; - if(oldt>t) - { - t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t; + float t = autotemp_min + high * autotemp_factor; + if (t < autotemp_min) t = autotemp_min; + if (t > autotemp_max) t = autotemp_max; + if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t; + oldt = t; + setTargetHotend0(t); } - oldt=t; - setTargetHotend0(t); -} #endif -void check_axes_activity() -{ - unsigned char x_active = 0; - unsigned char y_active = 0; - unsigned char z_active = 0; - unsigned char e_active = 0; - unsigned char tail_fan_speed = fanSpeed; +void check_axes_activity() { + unsigned char axis_active[NUM_AXIS], + tail_fan_speed = fanSpeed; #ifdef BARICUDA - unsigned char tail_valve_pressure = ValvePressure; - unsigned char tail_e_to_p_pressure = EtoPPressure; + unsigned char tail_valve_pressure = ValvePressure, + tail_e_to_p_pressure = EtoPPressure; #endif block_t *block; - if(block_buffer_tail != block_buffer_head) - { + if (blocks_queued()) { uint8_t block_index = block_buffer_tail; tail_fan_speed = block_buffer[block_index].fan_speed; #ifdef BARICUDA - tail_valve_pressure = block_buffer[block_index].valve_pressure; - tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure; + tail_valve_pressure = block_buffer[block_index].valve_pressure; + tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure; #endif - while(block_index != block_buffer_head) - { + while (block_index != block_buffer_head) { block = &block_buffer[block_index]; - if(block->steps_x != 0) x_active++; - if(block->steps_y != 0) y_active++; - if(block->steps_z != 0) z_active++; - if(block->steps_e != 0) e_active++; - block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1); + for (int i=0; isteps[i]) axis_active[i]++; + block_index = next_block_index(block_index); } } - if((DISABLE_X) && (x_active == 0)) disable_x(); - if((DISABLE_Y) && (y_active == 0)) disable_y(); - if((DISABLE_Z) && (z_active == 0)) disable_z(); - if((DISABLE_E) && (e_active == 0)) - { + if (DISABLE_X && !axis_active[X_AXIS]) disable_x(); + if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y(); + if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z(); + if (DISABLE_E && !axis_active[E_AXIS]) { disable_e0(); disable_e1(); - disable_e2(); + disable_e2(); disable_e3(); } -#if defined(FAN_PIN) && FAN_PIN > -1 - #ifdef FAN_KICKSTART_TIME - static unsigned long fan_kick_end; - if (tail_fan_speed) { - if (fan_kick_end == 0) { - // Just starting up fan - run at full power. - fan_kick_end = millis() + FAN_KICKSTART_TIME; - tail_fan_speed = 255; - } else if (fan_kick_end > millis()) - // Fan still spinning up. - tail_fan_speed = 255; - } else { - fan_kick_end = 0; - } - #endif//FAN_KICKSTART_TIME - #ifdef FAN_SOFT_PWM - fanSpeedSoftPwm = tail_fan_speed; - #else - analogWrite(FAN_PIN,tail_fan_speed); - #endif//!FAN_SOFT_PWM -#endif//FAN_PIN > -1 -#ifdef AUTOTEMP - getHighESpeed(); -#endif -#ifdef BARICUDA - #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 + #if defined(FAN_PIN) && FAN_PIN > -1 // HAS_FAN + #ifdef FAN_KICKSTART_TIME + static unsigned long fan_kick_end; + if (tail_fan_speed) { + if (fan_kick_end == 0) { + // Just starting up fan - run at full power. + fan_kick_end = millis() + FAN_KICKSTART_TIME; + tail_fan_speed = 255; + } else if (fan_kick_end > millis()) + // Fan still spinning up. + tail_fan_speed = 255; + } else { + fan_kick_end = 0; + } + #endif//FAN_KICKSTART_TIME + #ifdef FAN_SOFT_PWM + fanSpeedSoftPwm = tail_fan_speed; + #else + analogWrite(FAN_PIN, tail_fan_speed); + #endif //!FAN_SOFT_PWM + #endif //FAN_PIN > -1 + + #ifdef AUTOTEMP + getHighESpeed(); + #endif + + #ifdef BARICUDA + #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 // HAS_HEATER_1 analogWrite(HEATER_1_PIN,tail_valve_pressure); - #endif - - #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 + #endif + #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 // HAS_HEATER_2 analogWrite(HEATER_2_PIN,tail_e_to_p_pressure); + #endif #endif -#endif } float junction_deviation = 0.1; -// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in +// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // calculation the caller must also provide the physical length of the line in millimeters. #ifdef ENABLE_AUTO_BED_LEVELING -void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder) + void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder) #else -void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder) + void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder) #endif //ENABLE_AUTO_BED_LEVELING { // Calculate the buffer head after we push this byte @@ -541,45 +476,45 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. - while(block_buffer_tail == next_buffer_head) - { + while(block_buffer_tail == next_buffer_head) { manage_heater(); manage_inactivity(); lcd_update(); } -#ifdef ENABLE_AUTO_BED_LEVELING - apply_rotation_xyz(plan_bed_level_matrix, x, y, z); -#endif // ENABLE_AUTO_BED_LEVELING + #ifdef ENABLE_AUTO_BED_LEVELING + apply_rotation_xyz(plan_bed_level_matrix, x, y, z); + #endif // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow - long target[4]; - target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); - target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); - target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); - target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); + long target[NUM_AXIS]; + target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); + target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); + target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); + target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); + + float dx = target[X_AXIS] - position[X_AXIS], + dy = target[Y_AXIS] - position[Y_AXIS], + dz = target[Z_AXIS] - position[Z_AXIS], + de = target[E_AXIS] - position[E_AXIS]; #ifdef PREVENT_DANGEROUS_EXTRUDE - if(target[E_AXIS]!=position[E_AXIS]) - { - if(degHotend(active_extruder) axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) { + position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part + SERIAL_ECHO_START; + SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); + } + #endif } - - #ifdef PREVENT_LENGTHY_EXTRUDE - if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH) - { - position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part - SERIAL_ECHO_START; - SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); - } - #endif - } #endif // Prepare to set up new block @@ -589,139 +524,122 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa block->busy = false; // Number of steps for each axis -#ifndef COREXY -// default non-h-bot planning -block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); -block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); -#else -// corexy planning -// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html -block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS])); -block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS])); -#endif - block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]); - block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); - block->steps_e *= volumetric_multiplier[active_extruder]; - block->steps_e *= extrudemultiply; - block->steps_e /= 100; - block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); + #ifdef COREXY + // corexy planning + // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html + block->steps[A_AXIS] = labs(dx + dy); + block->steps[B_AXIS] = labs(dx - dy); + #else + // default non-h-bot planning + block->steps[X_AXIS] = labs(dx); + block->steps[Y_AXIS] = labs(dy); + #endif + + block->steps[Z_AXIS] = labs(dz); + block->steps[E_AXIS] = labs(de); + block->steps[E_AXIS] *= volumetric_multiplier[active_extruder]; + block->steps[E_AXIS] *= extrudemultiply; + block->steps[E_AXIS] /= 100; + block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS]))); // Bail if this is a zero-length block - if (block->step_event_count <= dropsegments) - { - return; - } + if (block->step_event_count <= dropsegments) return; block->fan_speed = fanSpeed; #ifdef BARICUDA - block->valve_pressure = ValvePressure; - block->e_to_p_pressure = EtoPPressure; + block->valve_pressure = ValvePressure; + block->e_to_p_pressure = EtoPPressure; #endif // Compute direction bits for this block - block->direction_bits = 0; -#ifndef COREXY - if (target[X_AXIS] < position[X_AXIS]) - { - block->direction_bits |= BIT(X_AXIS); - } - if (target[Y_AXIS] < position[Y_AXIS]) - { - block->direction_bits |= BIT(Y_AXIS); - } -#else - if (target[X_AXIS] < position[X_AXIS]) - { - block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis - } - if (target[Y_AXIS] < position[Y_AXIS]) - { - block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis - } - if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0) - { - block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS) - } - if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0) - { - block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS) - } -#endif - if (target[Z_AXIS] < position[Z_AXIS]) - { - block->direction_bits |= BIT(Z_AXIS); - } - if (target[E_AXIS] < position[E_AXIS]) - { - block->direction_bits |= BIT(E_AXIS); - } + uint8_t db = 0; + #ifdef COREXY + if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis + if (dy < 0) db |= BIT(Y_HEAD); // ...and Y + if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction + if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction + #else + if (dx < 0) db |= BIT(X_AXIS); + if (dy < 0) db |= BIT(Y_AXIS); + #endif + if (dz < 0) db |= BIT(Z_AXIS); + if (de < 0) db |= BIT(E_AXIS); + block->direction_bits = db; block->active_extruder = extruder; //enable active axes #ifdef COREXY - if((block->steps_x != 0) || (block->steps_y != 0)) - { - enable_x(); - enable_y(); - } + if (block->steps[A_AXIS] || block->steps[B_AXIS]) { + enable_x(); + enable_y(); + } #else - if(block->steps_x != 0) enable_x(); - if(block->steps_y != 0) enable_y(); + if (block->steps[X_AXIS]) enable_x(); + if (block->steps[Y_AXIS]) enable_y(); + #endif + + #ifndef Z_LATE_ENABLE + if (block->steps[Z_AXIS]) enable_z(); #endif -#ifndef Z_LATE_ENABLE - if(block->steps_z != 0) enable_z(); -#endif // Enable extruder(s) - if(block->steps_e != 0) - { - if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder - { + if (block->steps[E_AXIS]) { + if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder - if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--; - if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--; - if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--; - if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--; + for (int i=0; i 0) g_uc_extruder_last_move[i]--; - switch(extruder) - { - case 0: - enable_e0(); - g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2; - - if(g_uc_extruder_last_move[1] == 0) disable_e1(); - if(g_uc_extruder_last_move[2] == 0) disable_e2(); - if(g_uc_extruder_last_move[3] == 0) disable_e3(); + switch(extruder) { + case 0: + enable_e0(); + g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2; + #if EXTRUDERS > 1 + if (g_uc_extruder_last_move[1] == 0) disable_e1(); + #if EXTRUDERS > 2 + if (g_uc_extruder_last_move[2] == 0) disable_e2(); + #if EXTRUDERS > 3 + if (g_uc_extruder_last_move[3] == 0) disable_e3(); + #endif + #endif + #endif break; - case 1: - enable_e1(); - g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2; - - if(g_uc_extruder_last_move[0] == 0) disable_e0(); - if(g_uc_extruder_last_move[2] == 0) disable_e2(); - if(g_uc_extruder_last_move[3] == 0) disable_e3(); - break; - case 2: - enable_e2(); - g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2; - - if(g_uc_extruder_last_move[0] == 0) disable_e0(); - if(g_uc_extruder_last_move[1] == 0) disable_e1(); - if(g_uc_extruder_last_move[3] == 0) disable_e3(); - break; - case 3: - enable_e3(); - g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2; - - if(g_uc_extruder_last_move[0] == 0) disable_e0(); - if(g_uc_extruder_last_move[1] == 0) disable_e1(); - if(g_uc_extruder_last_move[2] == 0) disable_e2(); - break; + #if EXTRUDERS > 1 + case 1: + enable_e1(); + g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2; + if (g_uc_extruder_last_move[0] == 0) disable_e0(); + #if EXTRUDERS > 2 + if (g_uc_extruder_last_move[2] == 0) disable_e2(); + #if EXTRUDERS > 3 + if (g_uc_extruder_last_move[3] == 0) disable_e3(); + #endif + #endif + break; + #if EXTRUDERS > 2 + case 2: + enable_e2(); + g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2; + if (g_uc_extruder_last_move[0] == 0) disable_e0(); + if (g_uc_extruder_last_move[1] == 0) disable_e1(); + #if EXTRUDERS > 3 + if (g_uc_extruder_last_move[3] == 0) disable_e3(); + #endif + break; + #if EXTRUDERS > 3 + case 3: + enable_e3(); + g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2; + if (g_uc_extruder_last_move[0] == 0) disable_e0(); + if (g_uc_extruder_last_move[1] == 0) disable_e1(); + if (g_uc_extruder_last_move[2] == 0) disable_e2(); + break; + #endif // EXTRUDERS > 3 + #endif // EXTRUDERS > 2 + #endif // EXTRUDERS > 1 } } - else //enable all - { + else { // enable all enable_e0(); enable_e1(); enable_e2(); @@ -729,276 +647,256 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi } } - if (block->steps_e == 0) - { - if(feed_ratesteps[E_AXIS]) { + if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate; } - else - { - if(feed_ratesteps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) - { + delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; + delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0; + + if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { block->millimeters = fabs(delta_mm[E_AXIS]); } - else - { - #ifndef COREXY - block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); - #else - block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])); - #endif + else { + block->millimeters = sqrt( + #ifdef COREXY + square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + #else + square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + #endif + + square(delta_mm[Z_AXIS]) + ); } - float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides + float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides - // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. + // Calculate speed in mm/second for each axis. No divide by zero due to previous checks. float inverse_second = feed_rate * inverse_millimeters; - int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); + int moves_queued = movesplanned(); // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill -#ifdef OLD_SLOWDOWN - if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) - feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); -#endif + bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2; + #ifdef OLD_SLOWDOWN + if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE; + #endif -#ifdef SLOWDOWN - // segment time im micro seconds - unsigned long segment_time = lround(1000000.0/inverse_second); - if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) - { - if (segment_time < minsegmenttime) - { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. - inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); - #ifdef XY_FREQUENCY_LIMIT - segment_time = lround(1000000.0/inverse_second); - #endif + #ifdef SLOWDOWN + // segment time im micro seconds + unsigned long segment_time = lround(1000000.0/inverse_second); + if (mq) { + if (segment_time < minsegmenttime) { + // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. + inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued)); + #ifdef XY_FREQUENCY_LIMIT + segment_time = lround(1000000.0 / inverse_second); + #endif + } } - } -#endif + #endif // END OF SLOW DOWN SECTION - block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 -#ifdef FILAMENT_SENSOR - //FMM update ring buffer used for delay with filament measurements + #ifdef FILAMENT_SENSOR + //FMM update ring buffer used for delay with filament measurements - - if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized - { - delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis - - while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm - delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer - while (delay_dist<0) - delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer - - delay_index1=delay_dist/10.0; //calculate index - - //ensure the number is within range of the array after converting from floating point - if(delay_index1<0) - delay_index1=0; - else if (delay_index1>MAX_MEASUREMENT_DELAY) - delay_index1=MAX_MEASUREMENT_DELAY; - - if(delay_index1 != delay_index2) //moved index - { - meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char - } - while( delay_index1 != delay_index2) - { - delay_index2 = delay_index2 + 1; - if(delay_index2>MAX_MEASUREMENT_DELAY) - delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing - if(delay_index2<0) - delay_index2=0; - else if (delay_index2>MAX_MEASUREMENT_DELAY) - delay_index2=MAX_MEASUREMENT_DELAY; - - measurement_delay[delay_index2]=meas_sample; - } - - - } -#endif + if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized + const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10; + + delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis + while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer + while (delay_dist < 0) delay_dist += MMD10; + + delay_index1 = delay_dist / 10.0; // calculate index + delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above) + + if (delay_index1 != delay_index2) { // moved index + meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char + while (delay_index1 != delay_index2) { + // Increment and loop around buffer + if (++delay_index2 >= MMD) delay_index2 -= MMD; + delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY); + measurement_delay[delay_index2] = meas_sample; + } + } + } + #endif // Calculate and limit speed in mm/sec for each axis - float current_speed[4]; + float current_speed[NUM_AXIS]; float speed_factor = 1.0; //factor <=1 do decrease speed - for(int i=0; i < 4; i++) - { + for (int i = 0; i < NUM_AXIS; i++) { current_speed[i] = delta_mm[i] * inverse_second; - if(fabs(current_speed[i]) > max_feedrate[i]) - speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); + float cs = fabs(current_speed[i]), mf = max_feedrate[i]; + if (cs > mf) speed_factor = min(speed_factor, mf / cs); } // Max segement time in us. -#ifdef XY_FREQUENCY_LIMIT -#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) - // Check and limit the xy direction change frequency - unsigned char direction_change = block->direction_bits ^ old_direction_bits; - old_direction_bits = block->direction_bits; - segment_time = lround((float)segment_time / speed_factor); + #ifdef XY_FREQUENCY_LIMIT + #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT) + + // Check and limit the xy direction change frequency + unsigned char direction_change = block->direction_bits ^ old_direction_bits; + old_direction_bits = block->direction_bits; + segment_time = lround((float)segment_time / speed_factor); - if((direction_change & BIT(X_AXIS)) == 0) - { - x_segment_time[0] += segment_time; - } - else - { - x_segment_time[2] = x_segment_time[1]; - x_segment_time[1] = x_segment_time[0]; - x_segment_time[0] = segment_time; - } - if((direction_change & BIT(Y_AXIS)) == 0) - { - y_segment_time[0] += segment_time; - } - else - { - y_segment_time[2] = y_segment_time[1]; - y_segment_time[1] = y_segment_time[0]; - y_segment_time[0] = segment_time; - } - long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2])); - long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2])); - long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time); - if(min_xy_segment_time < MAX_FREQ_TIME) - speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME); -#endif // XY_FREQUENCY_LIMIT + long xs0 = axis_segment_time[X_AXIS][0], + xs1 = axis_segment_time[X_AXIS][1], + xs2 = axis_segment_time[X_AXIS][2], + ys0 = axis_segment_time[Y_AXIS][0], + ys1 = axis_segment_time[Y_AXIS][1], + ys2 = axis_segment_time[Y_AXIS][2]; + + if ((direction_change & BIT(X_AXIS)) != 0) { + xs2 = axis_segment_time[X_AXIS][2] = xs1; + xs1 = axis_segment_time[X_AXIS][1] = xs0; + xs0 = 0; + } + xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time; + + if ((direction_change & BIT(Y_AXIS)) != 0) { + ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1]; + ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0]; + ys0 = 0; + } + ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time; + + long max_x_segment_time = max(xs0, max(xs1, xs2)), + max_y_segment_time = max(ys0, max(ys1, ys2)), + min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); + if (min_xy_segment_time < MAX_FREQ_TIME) { + float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME; + speed_factor = min(speed_factor, low_sf); + } + #endif // XY_FREQUENCY_LIMIT // Correct the speed - if( speed_factor < 1.0) - { - for(unsigned char i=0; i < 4; i++) - { - current_speed[i] *= speed_factor; - } + if (speed_factor < 1.0) { + for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor; block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. - float steps_per_mm = block->step_event_count/block->millimeters; - if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) - { + float steps_per_mm = block->step_event_count / block->millimeters; + long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; + if (bsx == 0 && bsy == 0 && bsz == 0) { block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } - else if(block->steps_e == 0) - { + else if (bse == 0) { block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } - else - { + else { block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } // Limit acceleration per axis - if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) - block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; - if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) - block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; - if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) - block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; - if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) - block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; + unsigned long acc_st = block->acceleration_st, + xsteps = axis_steps_per_sqr_second[X_AXIS], + ysteps = axis_steps_per_sqr_second[Y_AXIS], + zsteps = axis_steps_per_sqr_second[Z_AXIS], + esteps = axis_steps_per_sqr_second[E_AXIS]; + if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps; + if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps; + if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps; + if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps; - block->acceleration = block->acceleration_st / steps_per_mm; - block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0))); + block->acceleration_st = acc_st; + block->acceleration = acc_st / steps_per_mm; + block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); -#if 0 // Use old jerk for now - // Compute path unit vector - double unit_vec[3]; + #if 0 // Use old jerk for now + // Compute path unit vector + double unit_vec[3]; - unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; - unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; - unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; + unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; + unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; + unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; - // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. - // Let a circle be tangent to both previous and current path line segments, where the junction - // deviation is defined as the distance from the junction to the closest edge of the circle, - // colinear with the circle center. The circular segment joining the two paths represents the - // path of centripetal acceleration. Solve for max velocity based on max acceleration about the - // radius of the circle, defined indirectly by junction deviation. This may be also viewed as - // path width or max_jerk in the previous grbl version. This approach does not actually deviate - // from path, but used as a robust way to compute cornering speeds, as it takes into account the - // nonlinearities of both the junction angle and junction velocity. - double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed + // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. + // Let a circle be tangent to both previous and current path line segments, where the junction + // deviation is defined as the distance from the junction to the closest edge of the circle, + // colinear with the circle center. The circular segment joining the two paths represents the + // path of centripetal acceleration. Solve for max velocity based on max acceleration about the + // radius of the circle, defined indirectly by junction deviation. This may be also viewed as + // path width or max_jerk in the previous grbl version. This approach does not actually deviate + // from path, but used as a robust way to compute cornering speeds, as it takes into account the + // nonlinearities of both the junction angle and junction velocity. + double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed - // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. - if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { - // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) - // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. - double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] - - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; + // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. + if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { + // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) + // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. + double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] + - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] + - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; - // Skip and use default max junction speed for 0 degree acute junction. - if (cos_theta < 0.95) { - vmax_junction = min(previous_nominal_speed,block->nominal_speed); - // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. - if (cos_theta > -0.95) { - // Compute maximum junction velocity based on maximum acceleration and junction deviation - double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. - vmax_junction = min(vmax_junction, - sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); + // Skip and use default max junction speed for 0 degree acute junction. + if (cos_theta < 0.95) { + vmax_junction = min(previous_nominal_speed,block->nominal_speed); + // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. + if (cos_theta > -0.95) { + // Compute maximum junction velocity based on maximum acceleration and junction deviation + double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. + vmax_junction = min(vmax_junction, + sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); + } } } - } -#endif + #endif + // Start with a safe speed - float vmax_junction = max_xy_jerk/2; + float vmax_junction = max_xy_jerk / 2; float vmax_junction_factor = 1.0; - if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) - vmax_junction = min(vmax_junction, max_z_jerk/2); - if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) - vmax_junction = min(vmax_junction, max_e_jerk/2); + float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2; + float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS]; + if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2); + if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2); vmax_junction = min(vmax_junction, block->nominal_speed); float safe_speed = vmax_junction; if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { - float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); - // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { + float dx = current_speed[X_AXIS] - previous_speed[X_AXIS], + dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS], + dz = fabs(csz - previous_speed[Z_AXIS]), + de = fabs(cse - previous_speed[E_AXIS]), + jerk = sqrt(dx * dx + dy * dy); + + // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { vmax_junction = block->nominal_speed; // } - if (jerk > max_xy_jerk) { - vmax_junction_factor = (max_xy_jerk/jerk); - } - if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) { - vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]))); - } - if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) { - vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]))); - } + if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk; + if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz); + if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de); + vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed } block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. - double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); + double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags @@ -1009,119 +907,95 @@ Having the real displacement of the head, we can calculate the total movement le // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. - if (block->nominal_speed <= v_allowable) { - block->nominal_length_flag = true; - } - else { - block->nominal_length_flag = false; - } + block->nominal_length_flag = (block->nominal_speed <= v_allowable); block->recalculate_flag = true; // Always calculate trapezoid for new block // Update previous path unit_vector and nominal speed - memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] + for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i]; previous_nominal_speed = block->nominal_speed; - -#ifdef ADVANCE - // Calculate advance rate - if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) { - block->advance_rate = 0; - block->advance = 0; - } - else { - long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); - float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * - (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256; - block->advance = advance; - if(acc_dist == 0) { + #ifdef ADVANCE + // Calculate advance rate + if (!bse || (!bsx && !bsy && !bsz)) { block->advance_rate = 0; - } - else { - block->advance_rate = advance / (float)acc_dist; + block->advance = 0; } - } - /* - SERIAL_ECHO_START; - SERIAL_ECHOPGM("advance :"); - SERIAL_ECHO(block->advance/256.0); - SERIAL_ECHOPGM("advance rate :"); - SERIAL_ECHOLN(block->advance_rate/256.0); - */ -#endif // ADVANCE + else { + long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); + float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256; + block->advance = advance; + block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; + } + /* + SERIAL_ECHO_START; + SERIAL_ECHOPGM("advance :"); + SERIAL_ECHO(block->advance/256.0); + SERIAL_ECHOPGM("advance rate :"); + SERIAL_ECHOLN(block->advance_rate/256.0); + */ + #endif // ADVANCE - calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, - safe_speed/block->nominal_speed); + calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); // Move buffer head block_buffer_head = next_buffer_head; // Update position - memcpy(position, target, sizeof(target)); // position[] = target[] + for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i]; planner_recalculate(); st_wake_up(); -} -#if defined(ENABLE_AUTO_BED_LEVELING) && not defined(DELTA) -vector_3 plan_get_position() { - vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS)); - - //position.debug("in plan_get position"); - //plan_bed_level_matrix.debug("in plan_get bed_level"); - matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); - //inverse.debug("in plan_get inverse"); - position.apply_rotation(inverse); - //position.debug("after rotation"); - - return position; -} -#endif // ENABLE_AUTO_BED_LEVELING +} // plan_buffer_line() #ifdef ENABLE_AUTO_BED_LEVELING -void plan_set_position(float x, float y, float z, const float &e) -{ - apply_rotation_xyz(plan_bed_level_matrix, x, y, z); + + #ifndef DELTA + vector_3 plan_get_position() { + vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS)); + + //position.debug("in plan_get position"); + //plan_bed_level_matrix.debug("in plan_get bed_level"); + matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); + //inverse.debug("in plan_get inverse"); + position.apply_rotation(inverse); + //position.debug("after rotation"); + + return position; + } + #endif //!DELTA + + void plan_set_position(float x, float y, float z, const float &e) #else -void plan_set_position(const float &x, const float &y, const float &z, const float &e) -{ + void plan_set_position(const float &x, const float &y, const float &z, const float &e) #endif // ENABLE_AUTO_BED_LEVELING + { + #ifdef ENABLE_AUTO_BED_LEVELING + apply_rotation_xyz(plan_bed_level_matrix, x, y, z); + #endif - position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); - position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); - position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); - position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); - st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]); - previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. - previous_speed[0] = 0.0; - previous_speed[1] = 0.0; - previous_speed[2] = 0.0; - previous_speed[3] = 0.0; -} + float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); + float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); + float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); + float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); + st_set_position(nx, ny, nz, ne); + previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. -void plan_set_e_position(const float &e) -{ - position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); + for (int i=0; ibusy = true; - return(block); -} // Returns true if the buffer has a queued block, false otherwise FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); } +// Called when the current block is no longer needed. Discards +// the block and makes the memory available for new blocks. +FORCE_INLINE void plan_discard_current_block() { + if (blocks_queued()) + block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1); +} + +// Gets the current block. Returns NULL if buffer empty +FORCE_INLINE block_t *plan_get_current_block() { + if (blocks_queued()) { + block_t *block = &block_buffer[block_buffer_tail]; + block->busy = true; + return block; + } + else + return NULL; +} + #ifdef PREVENT_DANGEROUS_EXTRUDE -void set_extrude_min_temp(float temp); + void set_extrude_min_temp(float temp); #endif void reset_acceleration_rates(); -#endif + +#endif //PLANNER_H diff --git a/Marlin/stepper.cpp b/Marlin/stepper.cpp index 9f09f727f0..2989ca9577 100644 --- a/Marlin/stepper.cpp +++ b/Marlin/stepper.cpp @@ -370,7 +370,7 @@ ISR(TIMER1_COMPA_vect) { step_events_completed = 0; #ifdef Z_LATE_ENABLE - if (current_block->steps_z > 0) { + if (current_block->steps[Z_AXIS] > 0) { enable_z(); OCR1A = 2000; //1ms wait return; @@ -411,7 +411,7 @@ ISR(TIMER1_COMPA_vect) { #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \ bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \ - if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \ + if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \ endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \ endstop_## axis ##_hit = true; \ step_events_completed = current_block->step_event_count; \ @@ -420,54 +420,54 @@ ISR(TIMER1_COMPA_vect) { // Check X and Y endstops if (check_endstops) { - #ifndef COREXY - if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot) - #else + #ifdef COREXY // Head direction in -X axis for CoreXY bots. // If DeltaX == -DeltaY, the movement is only in Y axis - if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS))) - if (TEST(out_bits, X_HEAD)) - #endif - { // -direction - #ifdef DUAL_X_CARRIAGE - // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder - if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) - #endif - { - #if defined(X_MIN_PIN) && X_MIN_PIN >= 0 - UPDATE_ENDSTOP(x, X, min, MIN); - #endif - } - } - else { // +direction - #ifdef DUAL_X_CARRIAGE - // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder - if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) - #endif - { - #if defined(X_MAX_PIN) && X_MAX_PIN >= 0 - UPDATE_ENDSTOP(x, X, max, MAX); - #endif - } - } - #ifndef COREXY - if (TEST(out_bits, Y_AXIS)) // -direction + if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) + if (TEST(out_bits, X_HEAD)) #else + if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot) + #endif + { // -direction + #ifdef DUAL_X_CARRIAGE + // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder + if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) + #endif + { + #if defined(X_MIN_PIN) && X_MIN_PIN >= 0 + UPDATE_ENDSTOP(x, X, min, MIN); + #endif + } + } + else { // +direction + #ifdef DUAL_X_CARRIAGE + // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder + if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) + #endif + { + #if defined(X_MAX_PIN) && X_MAX_PIN >= 0 + UPDATE_ENDSTOP(x, X, max, MAX); + #endif + } + } + #ifdef COREXY // Head direction in -Y axis for CoreXY bots. // If DeltaX == DeltaY, the movement is only in X axis - if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS))) - if (TEST(out_bits, Y_HEAD)) + if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) + if (TEST(out_bits, Y_HEAD)) + #else + if (TEST(out_bits, Y_AXIS)) // -direction #endif - { // -direction - #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0 - UPDATE_ENDSTOP(y, Y, min, MIN); - #endif - } - else { // +direction - #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0 - UPDATE_ENDSTOP(y, Y, max, MAX); - #endif - } + { // -direction + #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0 + UPDATE_ENDSTOP(y, Y, min, MIN); + #endif + } + else { // +direction + #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0 + UPDATE_ENDSTOP(y, Y, max, MAX); + #endif + } } if (TEST(out_bits, Z_AXIS)) { // -direction @@ -515,7 +515,7 @@ ISR(TIMER1_COMPA_vect) { #endif #ifdef ADVANCE - counter_e += current_block->steps_e; + counter_e += current_block->steps[E_AXIS]; if (counter_e > 0) { counter_e -= current_block->step_event_count; e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1; @@ -529,15 +529,14 @@ ISR(TIMER1_COMPA_vect) { * instead of doing each in turn. The extra tests add enough * lag to allow it work with without needing NOPs */ - counter_x += current_block->steps_x; - if (counter_x > 0) X_STEP_WRITE(HIGH); - counter_y += current_block->steps_y; - if (counter_y > 0) Y_STEP_WRITE(HIGH); - counter_z += current_block->steps_z; - if (counter_z > 0) Z_STEP_WRITE(HIGH); + #define STEP_ADD(axis, AXIS) \ + counter_## axis += current_block->steps[AXIS ##_AXIS]; \ + if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); } + STEP_ADD(x,X); + STEP_ADD(y,Y); + STEP_ADD(z,Z); #ifndef ADVANCE - counter_e += current_block->steps_e; - if (counter_e > 0) E_STEP_WRITE(HIGH); + STEP_ADD(e,E); #endif #define STEP_IF_COUNTER(axis, AXIS) \ @@ -557,7 +556,7 @@ ISR(TIMER1_COMPA_vect) { #else // !CONFIG_STEPPERS_TOSHIBA #define APPLY_MOVEMENT(axis, AXIS) \ - counter_## axis += current_block->steps_## axis; \ + counter_## axis += current_block->steps[AXIS ##_AXIS]; \ if (counter_## axis > 0) { \ AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \ counter_## axis -= current_block->step_event_count; \ From af14c684b5d2ca58d44687f7d04dbd7bbb36f930 Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Fri, 20 Mar 2015 20:57:06 -0700 Subject: [PATCH 2/2] Minor optimizations to planner code - Prefetch values used more than once --- Marlin/planner.cpp | 23 +++++++++++------------ 1 file changed, 11 insertions(+), 12 deletions(-) diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index a105548b47..6b36cefab1 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -315,9 +315,8 @@ void planner_recalculate_trapezoids() { // Recalculate if current block entry or exit junction speed has changed. if (current->recalculate_flag || next->recalculate_flag) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. - calculate_trapezoid_for_block(current, - current->entry_speed / current->nominal_speed, - next->entry_speed / current->nominal_speed); + float nom = current->nominal_speed; + calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom); current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed } } @@ -325,8 +324,8 @@ void planner_recalculate_trapezoids() { } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { - calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, - MINIMUM_PLANNER_SPEED/next->nominal_speed); + float nom = next->nominal_speed; + calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom); next->recalculate_flag = false; } } @@ -373,11 +372,9 @@ void plan_init() { uint8_t block_index = block_buffer_tail; while (block_index != block_buffer_head) { - if ((block_buffer[block_index].steps[X_AXIS] != 0) || - (block_buffer[block_index].steps[Y_AXIS] != 0) || - (block_buffer[block_index].steps[Z_AXIS] != 0)) { - float se=(float(block_buffer[block_index].steps[E_AXIS])/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; - //se; mm/sec; + block_t *block = &block_buffer[block_index]; + if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { + float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; if (se > high) high = se; } block_index = next_block_index(block_index); @@ -399,14 +396,16 @@ void check_axes_activity() { unsigned char tail_valve_pressure = ValvePressure, tail_e_to_p_pressure = EtoPPressure; #endif + block_t *block; if (blocks_queued()) { uint8_t block_index = block_buffer_tail; tail_fan_speed = block_buffer[block_index].fan_speed; #ifdef BARICUDA - tail_valve_pressure = block_buffer[block_index].valve_pressure; - tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure; + block = &block_buffer[block_index]; + tail_valve_pressure = block->valve_pressure; + tail_e_to_p_pressure = block->e_to_p_pressure; #endif while (block_index != block_buffer_head) { block = &block_buffer[block_index];