1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-27 13:56:24 +00:00

Merge pull request #4256 from thinkyhead/rc_fix_singlenozzle_temp

Additional tweaks for HOTENDS == 1
This commit is contained in:
Scott Lahteine 2016-07-10 17:57:00 -07:00 committed by GitHub
commit 5b0e46c986
6 changed files with 184 additions and 170 deletions

View File

@ -57,9 +57,6 @@ void prt_hex_byte(unsigned int);
void prt_hex_word(unsigned int);
int how_many_E5s_are_here(unsigned char*);
void gcode_M100() {
static int m100_not_initialized = 1;
unsigned char* sp, *ptr;
@ -73,49 +70,49 @@ void gcode_M100() {
// probably caused by bad pointers. Any unexpected values will be flagged in
// the right hand column to help spotting them.
//
#if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
if (code_seen('D')) {
ptr = (unsigned char*) __brkval;
//
// We want to start and end the dump on a nice 16 byte boundry even though
// the values we are using are not 16 byte aligned.
//
SERIAL_ECHOPGM("\n__brkval : ");
prt_hex_word((unsigned int) ptr);
ptr = (unsigned char*)((unsigned long) ptr & 0xfff0);
sp = top_of_stack();
SERIAL_ECHOPGM("\nStack Pointer : ");
prt_hex_word((unsigned int) sp);
SERIAL_EOL;
sp = (unsigned char*)((unsigned long) sp | 0x000f);
n = sp - ptr;
//
// This is the main loop of the Dump command.
//
while (ptr < sp) {
prt_hex_word((unsigned int) ptr); // Print the address
SERIAL_CHAR(':');
for (i = 0; i < 16; i++) { // and 16 data bytes
prt_hex_byte(*(ptr + i));
SERIAL_CHAR(' ');
delay(2);
}
SERIAL_CHAR('|'); // now show where non 0xE5's are
for (i = 0; i < 16; i++) {
delay(2);
if (*(ptr + i) == 0xe5)
SERIAL_CHAR(' ');
else
SERIAL_CHAR('?');
}
#if ENABLED(M100_FREE_MEMORY_DUMPER) // Disable to remove Dump sub-command
if (code_seen('D')) {
ptr = (unsigned char*) __brkval;
//
// We want to start and end the dump on a nice 16 byte boundry even though
// the values we are using are not 16 byte aligned.
//
SERIAL_ECHOPGM("\n__brkval : ");
prt_hex_word((unsigned int) ptr);
ptr = (unsigned char*)((unsigned long) ptr & 0xfff0);
sp = top_of_stack();
SERIAL_ECHOPGM("\nStack Pointer : ");
prt_hex_word((unsigned int) sp);
SERIAL_EOL;
ptr += 16;
delay(2);
sp = (unsigned char*)((unsigned long) sp | 0x000f);
n = sp - ptr;
//
// This is the main loop of the Dump command.
//
while (ptr < sp) {
prt_hex_word((unsigned int) ptr); // Print the address
SERIAL_CHAR(':');
for (i = 0; i < 16; i++) { // and 16 data bytes
prt_hex_byte(*(ptr + i));
SERIAL_CHAR(' ');
delay(2);
}
SERIAL_CHAR('|'); // now show where non 0xE5's are
for (i = 0; i < 16; i++) {
delay(2);
if (*(ptr + i) == 0xe5)
SERIAL_CHAR(' ');
else
SERIAL_CHAR('?');
}
SERIAL_EOL;
ptr += 16;
delay(2);
}
SERIAL_ECHOLNPGM("Done.");
return;
}
SERIAL_ECHOLNPGM("Done.");
return;
}
#endif
#endif
//
// M100 F requests the code to return the number of free bytes in the memory pool along with
// other vital statistics that define the memory pool.
@ -158,28 +155,28 @@ void gcode_M100() {
// M100 C x Corrupts x locations in the free memory pool and reports the locations of the corruption.
// This is useful to check the correctness of the M100 D and the M100 F commands.
//
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
if (code_seen('C')) {
int x = code_value_int(); // x gets the # of locations to corrupt within the memory pool
SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
ptr = (unsigned char*) __brkval;
SERIAL_ECHOPAIR("\n__brkval : ", ptr);
ptr += 8;
sp = top_of_stack();
SERIAL_ECHOPAIR("\nStack Pointer : ", sp);
SERIAL_ECHOLNPGM("\n");
n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
// has altered the stack.
j = n / (x + 1);
for (i = 1; i <= x; i++) {
*(ptr + (i * j)) = i;
SERIAL_ECHOPGM("\nCorrupting address: 0x");
prt_hex_word((unsigned int)(ptr + (i * j)));
#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
if (code_seen('C')) {
int x = code_value_int(); // x gets the # of locations to corrupt within the memory pool
SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
ptr = (unsigned char*) __brkval;
SERIAL_ECHOPAIR("\n__brkval : ", ptr);
ptr += 8;
sp = top_of_stack();
SERIAL_ECHOPAIR("\nStack Pointer : ", sp);
SERIAL_ECHOLNPGM("\n");
n = sp - ptr - 64; // -64 just to keep us from finding interrupt activity that
// has altered the stack.
j = n / (x + 1);
for (i = 1; i <= x; i++) {
*(ptr + (i * j)) = i;
SERIAL_ECHOPGM("\nCorrupting address: 0x");
prt_hex_word((unsigned int)(ptr + (i * j)));
}
SERIAL_ECHOLNPGM("\n");
return;
}
SERIAL_ECHOLNPGM("\n");
return;
}
#endif
#endif
//
// M100 I Initializes the free memory pool so it can be watched and prints vital
// statistics that define the free memory pool.

View File

@ -4365,7 +4365,7 @@ inline void gcode_M104() {
SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
#endif
#if HOTENDS > 1
for (int8_t e = 0; e < HOTENDS; ++e) {
HOTEND_LOOP() {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':');
@ -4391,7 +4391,7 @@ inline void gcode_M104() {
SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
#endif
#if HOTENDS > 1
for (int8_t e = 0; e < HOTENDS; ++e) {
HOTEND_LOOP() {
SERIAL_PROTOCOLPGM(" @");
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':');
@ -4410,13 +4410,13 @@ inline void gcode_M104() {
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
#endif
for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
HOTEND_LOOP() {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_hotend);
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
}
#endif
}
@ -5436,7 +5436,7 @@ inline void gcode_M206() {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for (int e = 0; e < HOTENDS; e++) {
HOTEND_LOOP() {
SERIAL_CHAR(' ');
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
SERIAL_CHAR(',');
@ -7968,8 +7968,9 @@ void prepare_move_to_destination() {
float max_temp = 0.0;
if (ELAPSED(millis(), next_status_led_update_ms)) {
next_status_led_update_ms += 500; // Update every 0.5s
for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
HOTEND_LOOP() {
max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
}
#if HAS_TEMP_BED
max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
#endif

View File

@ -618,7 +618,7 @@ void Config_ResetDefault() {
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_HOTEND)
for (uint8_t e = 0; e < HOTENDS; e++)
HOTEND_LOOP
#else
int e = 0; UNUSED(e); // only need to write once
#endif
@ -834,15 +834,15 @@ void Config_PrintSettings(bool forReplay) {
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
for (uint8_t i = 0; i < HOTENDS; i++) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", i);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, i));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, i)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, i)));
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, i));
if (i == 0) SERIAL_ECHOPAIR(" L", lpq_len);
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}

View File

@ -392,7 +392,7 @@ static void lcd_implementation_status_screen() {
#endif
// Extruders
for (int i = 0; i < HOTENDS; i++) _draw_heater_status(5 + i * 25, i);
HOTEND_LOOP() _draw_heater_status(5 + e * 25, e);
// Heated bed
#if HOTENDS < 4 && HAS_TEMP_BED

View File

@ -436,7 +436,7 @@ Temperature::Temperature() { }
void Temperature::updatePID() {
#if ENABLED(PIDTEMP)
for (int e = 0; e < HOTENDS; e++) {
HOTEND_LOOP() {
temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
last_position[e] = 0;
@ -465,12 +465,12 @@ int Temperature::getHeaterPower(int heater) {
EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN ? 2 : 3
};
uint8_t fanState = 0;
for (int f = 0; f < HOTENDS; f++) {
if (current_temperature[f] > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, fanBit[f]);
HOTEND_LOOP() {
if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, fanBit[e]);
}
uint8_t fanDone = 0;
for (int f = 0; f <= 3; f++) {
for (int8_t f = 0; f <= 3; f++) {
int8_t pin = fanPin[f];
if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
unsigned char newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
@ -507,95 +507,99 @@ void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg
}
void Temperature::max_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
#if HOTENDS == 1
UNUSED(e);
#endif
_temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
}
void Temperature::min_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
#if HOTENDS == 1
UNUSED(e);
#endif
_temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
}
float Temperature::get_pid_output(int e) {
#if HOTENDS == 1
UNUSED(e);
#define _HOTEND_TEST true
#define _HOTEND_EXTRUDER active_extruder
#else
#define _HOTEND_TEST e == active_extruder
#define _HOTEND_EXTRUDER e
#endif
float pid_output;
#if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP)
pid_error[e] = target_temperature[e] - current_temperature[e];
dTerm[e] = K2 * PID_PARAM(Kd, e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
temp_dState[e] = current_temperature[e];
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[e] = true;
pid_reset[HOTEND_INDEX] = true;
}
else if (pid_error[e] < -(PID_FUNCTIONAL_RANGE) || target_temperature[e] == 0) {
else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
pid_output = 0;
pid_reset[e] = true;
pid_reset[HOTEND_INDEX] = true;
}
else {
if (pid_reset[e]) {
temp_iState[e] = 0.0;
pid_reset[e] = false;
if (pid_reset[HOTEND_INDEX]) {
temp_iState[HOTEND_INDEX] = 0.0;
pid_reset[HOTEND_INDEX] = false;
}
pTerm[e] = PID_PARAM(Kp, e) * pid_error[e];
temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = PID_PARAM(Ki, e) * temp_iState[e];
pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
temp_iState[HOTEND_INDEX] = constrain(temp_iState[HOTEND_INDEX], temp_iState_min[HOTEND_INDEX], temp_iState_max[HOTEND_INDEX]);
iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
#if ENABLED(SINGLENOZZLE)
#define _NOZZLE_TEST true
#define _NOZZLE_EXTRUDER active_extruder
#define _CTERM_INDEX 0
#else
#define _NOZZLE_TEST e == active_extruder
#define _NOZZLE_EXTRUDER e
#define _CTERM_INDEX e
#endif
pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
cTerm[_CTERM_INDEX] = 0;
if (_NOZZLE_TEST) {
cTerm[HOTEND_INDEX] = 0;
if (_HOTEND_TEST) {
long e_position = stepper.position(E_AXIS);
if (e_position > last_position[_NOZZLE_EXTRUDER]) {
lpq[lpq_ptr++] = e_position - last_position[_NOZZLE_EXTRUDER];
last_position[_NOZZLE_EXTRUDER] = e_position;
if (e_position > last_position[_HOTEND_EXTRUDER]) {
lpq[lpq_ptr++] = e_position - last_position[_HOTEND_EXTRUDER];
last_position[_HOTEND_EXTRUDER] = e_position;
}
else {
lpq[lpq_ptr++] = 0;
}
if (lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[_CTERM_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, e);
pid_output += cTerm[e];
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += cTerm[HOTEND_INDEX];
}
#endif //PID_ADD_EXTRUSION_RATE
if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
pid_output = 0;
}
}
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
#endif //PID_OPENLOOP
#if ENABLED(PID_DEBUG)
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(MSG_PID_DEBUG, e);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[e]);
SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
#endif
SERIAL_EOL;
#endif //PID_DEBUG
#else /* PID off */
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
#endif
return pid_output;
@ -672,7 +676,7 @@ void Temperature::manage_heater() {
#endif
// Loop through all hotends
for (int e = 0; e < HOTENDS; e++) {
HOTEND_LOOP() {
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
@ -879,7 +883,7 @@ void Temperature::updateTemperaturesFromRawValues() {
#if ENABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = read_max6675();
#endif
for (uint8_t e = 0; e < HOTENDS; e++) {
HOTEND_LOOP() {
current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
}
current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
@ -933,7 +937,7 @@ void Temperature::init() {
#endif
// Finish init of mult hotend arrays
for (int e = 0; e < HOTENDS; e++) {
HOTEND_LOOP() {
// populate with the first value
maxttemp[e] = maxttemp[0];
#if ENABLED(PIDTEMP)
@ -1140,13 +1144,16 @@ void Temperature::init() {
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void Temperature::start_watching_heater(int e) {
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[e] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
void Temperature::start_watching_heater(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
}
else
watch_heater_next_ms[e] = 0;
watch_heater_next_ms[HOTEND_INDEX] = 0;
}
#endif
@ -1224,7 +1231,7 @@ void Temperature::init() {
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
void Temperature::disable_all_heaters() {
for (int i = 0; i < HOTENDS; i++) setTargetHotend(0, i);
HOTEND_LOOP() setTargetHotend(0, e);
setTargetBed(0);
// If all heaters go down then for sure our print job has stopped

View File

@ -38,6 +38,16 @@
#define SOFT_PWM_SCALE 0
#endif
#if HOTENDS == 1
#define HOTEND_LOOP() const uint8_t e = 0;
#define HOTEND_INDEX 0
#define EXTRUDER_IDX 0
#else
#define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
#define HOTEND_INDEX e
#define EXTRUDER_IDX active_extruder
#endif
class Temperature {
public:
@ -112,7 +122,12 @@ class Temperature {
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
static float extrude_min_temp;
static bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
static bool tooColdToExtrude(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return degHotend(HOTEND_INDEX) < extrude_min_temp;
}
#else
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
#endif
@ -230,53 +245,47 @@ class Temperature {
//inline so that there is no performance decrease.
//deg=degreeCelsius
#if HOTENDS == 1
#define HOTEND_ARG 0
#else
#define HOTEND_ARG hotend
#endif
static float degHotend(uint8_t hotend) {
static float degHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(hotend);
UNUSED(e);
#endif
return current_temperature[HOTEND_ARG];
return current_temperature[HOTEND_INDEX];
}
static float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static float rawHotendTemp(uint8_t hotend) {
static float rawHotendTemp(uint8_t e) {
#if HOTENDS == 1
UNUSED(hotend);
UNUSED(e);
#endif
return current_temperature_raw[HOTEND_ARG];
return current_temperature_raw[HOTEND_INDEX];
}
static float rawBedTemp() { return current_temperature_bed_raw; }
#endif
static float degTargetHotend(uint8_t hotend) {
static float degTargetHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(hotend);
UNUSED(e);
#endif
return target_temperature[HOTEND_ARG];
return target_temperature[HOTEND_INDEX];
}
static float degTargetBed() { return target_temperature_bed; }
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
static void start_watching_heater(int e = 0);
static void start_watching_heater(uint8_t e = 0);
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
static void start_watching_bed();
#endif
static void setTargetHotend(const float& celsius, uint8_t hotend) {
static void setTargetHotend(const float& celsius, uint8_t e) {
#if HOTENDS == 1
UNUSED(hotend);
UNUSED(e);
#endif
target_temperature[HOTEND_ARG] = celsius;
target_temperature[HOTEND_INDEX] = celsius;
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
start_watching_heater(HOTEND_ARG);
start_watching_heater(HOTEND_INDEX);
#endif
}
@ -287,19 +296,19 @@ class Temperature {
#endif
}
static bool isHeatingHotend(uint8_t hotend) {
static bool isHeatingHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(hotend);
UNUSED(e);
#endif
return target_temperature[HOTEND_ARG] > current_temperature[HOTEND_ARG];
return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
}
static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
static bool isCoolingHotend(uint8_t hotend) {
static bool isCoolingHotend(uint8_t e) {
#if HOTENDS == 1
UNUSED(hotend);
UNUSED(e);
#endif
return target_temperature[HOTEND_ARG] < current_temperature[HOTEND_ARG];
return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
}
static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
@ -329,8 +338,8 @@ class Temperature {
#if ENABLED(AUTOTEMP)
if (planner.autotemp_enabled) {
planner.autotemp_enabled = false;
if (degTargetHotend(active_extruder) > planner.autotemp_min)
setTargetHotend(0, active_extruder);
if (degTargetHotend(EXTRUDER_IDX) > planner.autotemp_min)
setTargetHotend(0, EXTRUDER_IDX);
}
#endif
}