mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-17 23:18:34 +00:00
Fixed some arc bugs
This commit is contained in:
parent
76b3f805c0
commit
5cf349a24a
2 changed files with 12 additions and 114 deletions
|
@ -1139,8 +1139,8 @@ inline void get_coordinates()
|
|||
inline void get_arc_coordinates()
|
||||
{
|
||||
get_coordinates();
|
||||
if(code_seen("I")) offset[0] = code_value();
|
||||
if(code_seen("J")) offset[1] = code_value();
|
||||
if(code_seen('I')) offset[0] = code_value();
|
||||
if(code_seen('J')) offset[1] = code_value();
|
||||
}
|
||||
|
||||
void prepare_move()
|
||||
|
@ -1152,119 +1152,16 @@ void prepare_move()
|
|||
}
|
||||
|
||||
void prepare_arc_move(char isclockwise) {
|
||||
#if 0
|
||||
if (radius_mode) {
|
||||
/*
|
||||
We need to calculate the center of the circle that has the designated radius and passes
|
||||
through both the current position and the target position. This method calculates the following
|
||||
set of equations where [x,y] is the vector from current to target position, d == magnitude of
|
||||
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
|
||||
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
|
||||
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
|
||||
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
|
||||
|
||||
d^2 == x^2 + y^2
|
||||
h^2 == r^2 - (d/2)^2
|
||||
i == x/2 - y/d*h
|
||||
j == y/2 + x/d*h
|
||||
|
||||
O <- [i,j]
|
||||
- |
|
||||
r - |
|
||||
- |
|
||||
- | h
|
||||
- |
|
||||
[0,0] -> C -----------------+--------------- T <- [x,y]
|
||||
| <------ d/2 ---->|
|
||||
|
||||
C - Current position
|
||||
T - Target position
|
||||
O - center of circle that pass through both C and T
|
||||
d - distance from C to T
|
||||
r - designated radius
|
||||
h - distance from center of CT to O
|
||||
|
||||
Expanding the equations:
|
||||
|
||||
d -> sqrt(x^2 + y^2)
|
||||
h -> sqrt(4 * r^2 - x^2 - y^2)/2
|
||||
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
||||
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
|
||||
|
||||
Which can be written:
|
||||
|
||||
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
||||
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
|
||||
|
||||
Which we for size and speed reasons optimize to:
|
||||
|
||||
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
|
||||
i = (x - (y * h_x2_div_d))/2
|
||||
j = (y + (x * h_x2_div_d))/2
|
||||
|
||||
*/
|
||||
|
||||
// Calculate the change in position along each selected axis
|
||||
double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
|
||||
double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
|
||||
|
||||
clear_vector(offset);
|
||||
double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
|
||||
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
|
||||
// real CNC, and thus - for practical reasons - we will terminate promptly:
|
||||
if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
|
||||
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
|
||||
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
|
||||
|
||||
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
|
||||
the left hand circle will be generated - when it is negative the right hand circle is generated.
|
||||
|
||||
|
||||
T <-- Target position
|
||||
|
||||
^
|
||||
Clockwise circles with this center | Clockwise circles with this center will have
|
||||
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
|
||||
\ | /
|
||||
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
||||
|
|
||||
|
|
||||
|
||||
C <-- Current position */
|
||||
|
||||
|
||||
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
|
||||
// even though it is advised against ever generating such circles in a single line of g-code. By
|
||||
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
|
||||
// travel and thus we get the unadvisably long arcs as prescribed.
|
||||
if (r < 0) {
|
||||
h_x2_div_d = -h_x2_div_d;
|
||||
r = -r; // Finished with r. Set to positive for mc_arc
|
||||
}
|
||||
// Complete the operation by calculating the actual center of the arc
|
||||
offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
|
||||
offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
|
||||
|
||||
} else { // Offset mode specific computations
|
||||
#endif
|
||||
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
||||
|
||||
// }
|
||||
|
||||
// Set clockwise/counter-clockwise sign for mc_arc computations
|
||||
// uint8_t isclockwise = false;
|
||||
// if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
|
||||
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
||||
|
||||
// Trace the arc
|
||||
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
|
||||
|
||||
// }
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
for(int ii=0; ii < NUM_AXIS; ii++) {
|
||||
current_position[ii] = destination[ii];
|
||||
for(int i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -19,12 +19,8 @@
|
|||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
//#include "motion_control.h"
|
||||
#include "Configuration.h"
|
||||
#include "Marlin.h"
|
||||
//#include <util/delay.h>
|
||||
//#include <math.h>
|
||||
//#include <stdlib.h>
|
||||
#include "stepper.h"
|
||||
#include "planner.h"
|
||||
|
||||
|
@ -35,10 +31,10 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
|
|||
{
|
||||
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
|
||||
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
|
||||
SERIAL_ECHOLN("mc_arc.");
|
||||
float center_axis0 = position[axis_0] + offset[axis_0];
|
||||
float center_axis1 = position[axis_1] + offset[axis_1];
|
||||
float linear_travel = target[axis_linear] - position[axis_linear];
|
||||
float extruder_travel = target[E_AXIS] - position[E_AXIS];
|
||||
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
|
||||
float r_axis1 = -offset[axis_1];
|
||||
float rt_axis0 = target[axis_0] - center_axis0;
|
||||
|
@ -60,6 +56,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
|
|||
*/
|
||||
float theta_per_segment = angular_travel/segments;
|
||||
float linear_per_segment = linear_travel/segments;
|
||||
float extruder_per_segment = extruder_travel/segments;
|
||||
|
||||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
||||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
||||
|
@ -90,7 +87,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
|
|||
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
||||
float sin_T = theta_per_segment;
|
||||
|
||||
float arc_target[3];
|
||||
float arc_target[4];
|
||||
float sin_Ti;
|
||||
float cos_Ti;
|
||||
float r_axisi;
|
||||
|
@ -99,6 +96,9 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
|
|||
|
||||
// Initialize the linear axis
|
||||
arc_target[axis_linear] = position[axis_linear];
|
||||
|
||||
// Initialize the extruder axis
|
||||
arc_target[E_AXIS] = position[E_AXIS];
|
||||
|
||||
for (i = 1; i<segments; i++) { // Increment (segments-1)
|
||||
|
||||
|
@ -122,6 +122,7 @@ void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8
|
|||
arc_target[axis_0] = center_axis0 + r_axis0;
|
||||
arc_target[axis_1] = center_axis1 + r_axis1;
|
||||
arc_target[axis_linear] += linear_per_segment;
|
||||
arc_target[E_AXIS] += extruder_per_segment;
|
||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], target[E_AXIS], feed_rate);
|
||||
|
||||
}
|
||||
|
|
Loading…
Reference in a new issue