mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-18 07:29:33 +00:00
A lot of changes in the planner code
This commit is contained in:
parent
72ace55e6a
commit
65934eee9c
7 changed files with 2019 additions and 1877 deletions
|
@ -6,6 +6,15 @@
|
|||
#define MM_PER_ARC_SEGMENT 1
|
||||
#define N_ARC_CORRECTION 25
|
||||
|
||||
// Frequency limit
|
||||
// See nophead's blog for more info
|
||||
#define XY_FREQUENCY_LIMIT 15
|
||||
|
||||
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
|
||||
// of the buffer and all stops. This should not be much greater than zero and should only be changed
|
||||
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
|
||||
#define MINIMUM_PLANNER_SPEED 2.0 // (mm/sec)
|
||||
|
||||
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
|
||||
|
||||
//// The following define selects which electronics board you have. Please choose the one that matches your setup
|
||||
|
@ -97,6 +106,11 @@ const int dropsegments=5; //everything with this number of steps will be ignore
|
|||
#define DISABLE_E false
|
||||
|
||||
// Inverting axis direction
|
||||
//#define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
|
||||
//#define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false
|
||||
//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
|
||||
//#define INVERT_E_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||
|
||||
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
||||
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
||||
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
||||
|
@ -117,7 +131,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
|
|||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
//note: on bernhards ultimaker 200 200 12 are working well.
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
|
||||
#define HOMING_FEEDRATE {50*60, 50*60, 4*60, 0} // set the homing speeds (mm/min)
|
||||
|
||||
#define AXIS_RELATIVE_MODES {false, false, false, false}
|
||||
|
||||
|
@ -126,19 +140,20 @@ const int dropsegments=5; //everything with this number of steps will be ignore
|
|||
// default settings
|
||||
|
||||
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
|
||||
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
|
||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
||||
//#define DEFAULT_AXIS_STEPS_PER_UNIT {40, 40, 3333.92, 67}
|
||||
#define DEFAULT_MAX_FEEDRATE {500, 500, 10, 500000} // (mm/min)
|
||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
||||
|
||||
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
||||
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
|
||||
|
||||
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
|
||||
#define DEFAULT_MINTRAVELFEEDRATE 10
|
||||
#define DEFAULT_MINIMUMFEEDRATE 0 // minimum feedrate
|
||||
#define DEFAULT_MINTRAVELFEEDRATE 0
|
||||
|
||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
||||
#define DEFAULT_MINSEGMENTTIME 20000
|
||||
#define DEFAULT_XYJERK 30.0*60
|
||||
#define DEFAULT_ZJERK 10.0*60
|
||||
#define DEFAULT_XYJERK 30.0 // (mm/sec)
|
||||
#define DEFAULT_ZJERK 0.4 // (mm/sec)
|
||||
|
||||
|
||||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
||||
|
@ -162,7 +177,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
|
|||
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
|
||||
|
||||
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
||||
#define HEATER_0_MINTEMP 5
|
||||
//#define HEATER_0_MINTEMP 5
|
||||
//#define HEATER_1_MINTEMP 5
|
||||
//#define BED_MINTEMP 5
|
||||
|
||||
|
@ -170,7 +185,7 @@ const int dropsegments=5; //everything with this number of steps will be ignore
|
|||
// When temperature exceeds max temp, your heater will be switched off.
|
||||
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
|
||||
// You should use MINTEMP for thermistor short/failure protection.
|
||||
#define HEATER_0_MAXTEMP 275
|
||||
//#define HEATER_0_MAXTEMP 275
|
||||
//#define_HEATER_1_MAXTEMP 275
|
||||
//#define BED_MAXTEMP 150
|
||||
|
||||
|
@ -246,9 +261,9 @@ const int dropsegments=5; //everything with this number of steps will be ignore
|
|||
// The number of linear motions that can be in the plan at any give time.
|
||||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
|
||||
#if defined SDSUPPORT
|
||||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||
#define BLOCK_BUFFER_SIZE 8 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||
#else
|
||||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
||||
#define BLOCK_BUFFER_SIZE 8 // maximize block buffer
|
||||
#endif
|
||||
|
||||
//The ASCII buffer for recieving from the serial:
|
||||
|
|
|
@ -114,7 +114,9 @@ extern float HeaterPower;
|
|||
//===========================================================================
|
||||
//=============================public variables=============================
|
||||
//===========================================================================
|
||||
#ifdef SDSUPPORT
|
||||
CardReader card;
|
||||
#endif
|
||||
float homing_feedrate[] = HOMING_FEEDRATE;
|
||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||
volatile int feedmultiply=100; //100->1 200->2
|
||||
|
@ -215,7 +217,9 @@ void loop()
|
|||
{
|
||||
if(buflen<3)
|
||||
get_command();
|
||||
#ifdef SDSUPPORT
|
||||
card.checkautostart(false);
|
||||
#endif
|
||||
if(buflen)
|
||||
{
|
||||
#ifdef SDSUPPORT
|
||||
|
@ -933,7 +937,7 @@ inline void get_arc_coordinates()
|
|||
|
||||
void prepare_move()
|
||||
{
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
|
@ -943,7 +947,7 @@ void prepare_arc_move(char isclockwise) {
|
|||
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
|
||||
|
||||
// Trace the arc
|
||||
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
|
||||
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
|
|
|
@ -83,6 +83,8 @@ unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
|||
|
||||
// The current position of the tool in absolute steps
|
||||
long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
|
||||
static float previous_speed[4]; // Speed of previous path line segment
|
||||
static float previous_nominal_speed; // Nominal speed of previous path line segment
|
||||
|
||||
|
||||
//===========================================================================
|
||||
|
@ -92,12 +94,30 @@ static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for
|
|||
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||
static volatile unsigned char block_buffer_tail; // Index of the block to process now
|
||||
|
||||
// Used for the frequency limit
|
||||
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
||||
static long x_segment_time[3]={0,0,0}; // Segment times (in us). Used for speed calculations
|
||||
static long y_segment_time[3]={0,0,0};
|
||||
|
||||
// Returns the index of the next block in the ring buffer
|
||||
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
||||
static int8_t next_block_index(int8_t block_index) {
|
||||
block_index++;
|
||||
if (block_index == BLOCK_BUFFER_SIZE) { block_index = 0; }
|
||||
return(block_index);
|
||||
}
|
||||
|
||||
|
||||
// Returns the index of the previous block in the ring buffer
|
||||
static int8_t prev_block_index(int8_t block_index) {
|
||||
if (block_index == 0) { block_index = BLOCK_BUFFER_SIZE; }
|
||||
block_index--;
|
||||
return(block_index);
|
||||
}
|
||||
|
||||
//===========================================================================
|
||||
//=============================functions ============================
|
||||
//===========================================================================
|
||||
#define ONE_MINUTE_OF_MICROSECONDS 60000000.0
|
||||
|
||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||
// given acceleration:
|
||||
|
@ -128,43 +148,46 @@ inline float intersection_distance(float initial_rate, float final_rate, float a
|
|||
|
||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||
|
||||
void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit_speed) {
|
||||
if(block->busy == true) return; // If block is busy then bail out.
|
||||
float entry_factor = entry_speed / block->nominal_speed;
|
||||
float exit_factor = exit_speed / block->nominal_speed;
|
||||
long initial_rate = ceil(block->nominal_rate*entry_factor);
|
||||
long final_rate = ceil(block->nominal_rate*exit_factor);
|
||||
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
|
||||
long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
|
||||
long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
||||
|
||||
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||||
if(initial_rate <120) {initial_rate=120; }
|
||||
if(final_rate < 120) {final_rate=120; }
|
||||
|
||||
long acceleration = block->acceleration_st;
|
||||
int32_t accelerate_steps =
|
||||
ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
|
||||
int32_t decelerate_steps =
|
||||
floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
|
||||
|
||||
// Calculate the size of Plateau of Nominal Rate.
|
||||
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||
|
||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||
// in order to reach the final_rate exactly at the end of this block.
|
||||
if (plateau_steps < 0) {
|
||||
accelerate_steps = ceil(
|
||||
intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
|
||||
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
|
||||
accelerate_steps = min(accelerate_steps,block->step_event_count);
|
||||
plateau_steps = 0;
|
||||
}
|
||||
|
||||
#ifdef ADVANCE
|
||||
long initial_advance = block->advance*entry_factor*entry_factor;
|
||||
long final_advance = block->advance*exit_factor*exit_factor;
|
||||
#endif // ADVANCE
|
||||
|
||||
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||||
if(initial_rate <120) initial_rate=120;
|
||||
if(final_rate < 120) final_rate=120;
|
||||
|
||||
// Calculate the acceleration steps
|
||||
long acceleration = block->acceleration_st;
|
||||
long accelerate_steps = estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration);
|
||||
long decelerate_steps = estimate_acceleration_distance(final_rate, block->nominal_rate, acceleration);
|
||||
// Calculate the size of Plateau of Nominal Rate.
|
||||
long plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
||||
|
||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||
// in order to reach the final_rate exactly at the end of this block.
|
||||
if (plateau_steps < 0) {
|
||||
accelerate_steps = intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count);
|
||||
plateau_steps = 0;
|
||||
}
|
||||
|
||||
long decelerate_after = accelerate_steps+plateau_steps;
|
||||
// block->accelerate_until = accelerate_steps;
|
||||
// block->decelerate_after = accelerate_steps+plateau_steps;
|
||||
|
||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||
if(block->busy == false) { // Don't update variables if block is busy.
|
||||
block->accelerate_until = accelerate_steps;
|
||||
block->decelerate_after = decelerate_after;
|
||||
block->decelerate_after = accelerate_steps+plateau_steps;
|
||||
block->initial_rate = initial_rate;
|
||||
block->final_rate = final_rate;
|
||||
#ifdef ADVANCE
|
||||
|
@ -178,71 +201,40 @@ void calculate_trapezoid_for_block(block_t *block, float entry_speed, float exit
|
|||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||
// acceleration within the allotted distance.
|
||||
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||
return sqrt(target_velocity*target_velocity-2*acceleration*60*60*distance);
|
||||
return sqrt(target_velocity*target_velocity-2*acceleration*distance);
|
||||
}
|
||||
|
||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||
// This method will calculate the junction jerk as the euclidean distance between the nominal
|
||||
// velocities of the respective blocks.
|
||||
inline float junction_jerk(block_t *before, block_t *after) {
|
||||
return sqrt(
|
||||
pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
|
||||
}
|
||||
//inline float junction_jerk(block_t *before, block_t *after) {
|
||||
// return sqrt(
|
||||
// pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
|
||||
//}
|
||||
|
||||
// Return the safe speed which is max_jerk/2, e.g. the
|
||||
// speed under which you cannot exceed max_jerk no matter what you do.
|
||||
float safe_speed(block_t *block) {
|
||||
float safe_speed;
|
||||
safe_speed = max_xy_jerk/2;
|
||||
if(abs(block->speed_z) > max_z_jerk/2)
|
||||
safe_speed = max_z_jerk/2;
|
||||
if (safe_speed > block->nominal_speed)
|
||||
safe_speed = block->nominal_speed;
|
||||
return safe_speed;
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) {
|
||||
return;
|
||||
}
|
||||
if(!current) { return; }
|
||||
|
||||
float entry_speed = current->nominal_speed;
|
||||
float exit_factor;
|
||||
float exit_speed;
|
||||
if (next) {
|
||||
exit_speed = next->entry_speed;
|
||||
}
|
||||
else {
|
||||
exit_speed = safe_speed(current);
|
||||
}
|
||||
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
||||
// If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
|
||||
// check for maximum allowable speed reductions to ensure maximum possible planned speed.
|
||||
if (current->entry_speed != current->max_entry_speed) {
|
||||
|
||||
// Calculate the entry_factor for the current block.
|
||||
if (previous) {
|
||||
// Reduce speed so that junction_jerk is within the maximum allowed
|
||||
float jerk = junction_jerk(previous, current);
|
||||
if((previous->steps_x == 0) && (previous->steps_y == 0)) {
|
||||
entry_speed = safe_speed(current);
|
||||
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
||||
// for max allowable speed if block is decelerating and nominal length is false.
|
||||
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
||||
current->entry_speed = min( current->max_entry_speed,
|
||||
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
||||
} else {
|
||||
current->entry_speed = current->max_entry_speed;
|
||||
}
|
||||
else if (jerk > max_xy_jerk) {
|
||||
entry_speed = (max_xy_jerk/jerk) * entry_speed;
|
||||
current->recalculate_flag = true;
|
||||
|
||||
}
|
||||
if(abs(previous->speed_z - current->speed_z) > max_z_jerk) {
|
||||
entry_speed = (max_z_jerk/abs(previous->speed_z - current->speed_z)) * entry_speed;
|
||||
}
|
||||
// If the required deceleration across the block is too rapid, reduce the entry_factor accordingly.
|
||||
if (entry_speed > exit_speed) {
|
||||
float max_entry_speed = max_allowable_speed(-current->acceleration,exit_speed, current->millimeters);
|
||||
if (max_entry_speed < entry_speed) {
|
||||
entry_speed = max_entry_speed;
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
entry_speed = safe_speed(current);
|
||||
}
|
||||
// Store result
|
||||
current->entry_speed = entry_speed;
|
||||
} // Skip last block. Already initialized and set for recalculation.
|
||||
}
|
||||
|
||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||
|
@ -251,33 +243,34 @@ void planner_reverse_pass() {
|
|||
char block_index = block_buffer_head;
|
||||
if(((block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
||||
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
||||
block_t *block[5] = {
|
||||
NULL, NULL, NULL, NULL, NULL };
|
||||
block_t *block[3] = { NULL, NULL, NULL };
|
||||
while(block_index != block_buffer_tail) {
|
||||
block_index = (block_index-1) & (BLOCK_BUFFER_SIZE -1);
|
||||
block_index = prev_block_index(block_index);
|
||||
block[2]= block[1];
|
||||
block[1]= block[0];
|
||||
block[0] = &block_buffer[block_index];
|
||||
planner_reverse_pass_kernel(block[0], block[1], block[2]);
|
||||
}
|
||||
planner_reverse_pass_kernel(NULL, block[0], block[1]);
|
||||
}
|
||||
}
|
||||
|
||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||
if(!current) {
|
||||
return;
|
||||
}
|
||||
if(previous) {
|
||||
// If the previous block is an acceleration block, but it is not long enough to
|
||||
// complete the full speed change within the block, we need to adjust out entry
|
||||
// speed accordingly. Remember current->entry_factor equals the exit factor of
|
||||
// the previous block.
|
||||
if(!previous) { return; }
|
||||
|
||||
// If the previous block is an acceleration block, but it is not long enough to complete the
|
||||
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
||||
// speeds have already been reset, maximized, and reverse planned by reverse planner.
|
||||
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
||||
if (!previous->nominal_length_flag) {
|
||||
if (previous->entry_speed < current->entry_speed) {
|
||||
float max_entry_speed = max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters);
|
||||
if (max_entry_speed < current->entry_speed) {
|
||||
current->entry_speed = max_entry_speed;
|
||||
double entry_speed = min( current->entry_speed,
|
||||
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
|
||||
|
||||
// Check for junction speed change
|
||||
if (current->entry_speed != entry_speed) {
|
||||
current->entry_speed = entry_speed;
|
||||
current->recalculate_flag = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -287,15 +280,14 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
|||
// implements the forward pass.
|
||||
void planner_forward_pass() {
|
||||
char block_index = block_buffer_tail;
|
||||
block_t *block[3] = {
|
||||
NULL, NULL, NULL };
|
||||
block_t *block[3] = { NULL, NULL, NULL };
|
||||
|
||||
while(block_index != block_buffer_head) {
|
||||
block[0] = block[1];
|
||||
block[1] = block[2];
|
||||
block[2] = &block_buffer[block_index];
|
||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
block_index = next_block_index(block_index);
|
||||
}
|
||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||
}
|
||||
|
@ -304,18 +296,30 @@ void planner_forward_pass() {
|
|||
// entry_factor for each junction. Must be called by planner_recalculate() after
|
||||
// updating the blocks.
|
||||
void planner_recalculate_trapezoids() {
|
||||
char block_index = block_buffer_tail;
|
||||
int8_t block_index = block_buffer_tail;
|
||||
block_t *current;
|
||||
block_t *next = NULL;
|
||||
|
||||
while(block_index != block_buffer_head) {
|
||||
current = next;
|
||||
next = &block_buffer[block_index];
|
||||
if (current) {
|
||||
calculate_trapezoid_for_block(current, current->entry_speed, next->entry_speed);
|
||||
// Recalculate if current block entry or exit junction speed has changed.
|
||||
if (current->recalculate_flag || next->recalculate_flag) {
|
||||
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
|
||||
next->entry_speed/current->nominal_speed);
|
||||
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
||||
}
|
||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
}
|
||||
calculate_trapezoid_for_block(next, next->entry_speed, safe_speed(next));
|
||||
block_index = next_block_index( block_index );
|
||||
}
|
||||
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||
if(next != NULL) {
|
||||
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
||||
MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
||||
next->recalculate_flag = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Recalculates the motion plan according to the following algorithm:
|
||||
|
@ -345,6 +349,11 @@ void plan_init() {
|
|||
block_buffer_head = 0;
|
||||
block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
previous_speed[0] = 0.0;
|
||||
previous_speed[1] = 0.0;
|
||||
previous_speed[2] = 0.0;
|
||||
previous_speed[3] = 0.0;
|
||||
previous_nominal_speed = 0.0;
|
||||
}
|
||||
|
||||
|
||||
|
@ -387,13 +396,15 @@ void check_axes_activity() {
|
|||
if((DISABLE_E) && (e_active == 0)) disable_e();
|
||||
}
|
||||
|
||||
|
||||
float junction_deviation = 0.1;
|
||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate)
|
||||
{
|
||||
// Calculate the buffer head after we push this byte
|
||||
int next_buffer_head = (block_buffer_head + 1) & (BLOCK_BUFFER_SIZE - 1);
|
||||
int next_buffer_head = next_block_index(block_buffer_head);
|
||||
|
||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||
// Rest here until there is room in the buffer.
|
||||
|
@ -426,9 +437,14 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
||||
|
||||
// Bail if this is a zero-length block
|
||||
if (block->step_event_count <=dropsegments) {
|
||||
return;
|
||||
};
|
||||
if (block->step_event_count <=dropsegments) { return; };
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) { block->direction_bits |= (1<<X_AXIS); }
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) { block->direction_bits |= (1<<Y_AXIS); }
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) { block->direction_bits |= (1<<Z_AXIS); }
|
||||
if (target[E_AXIS] < position[E_AXIS]) { block->direction_bits |= (1<<E_AXIS); }
|
||||
|
||||
//enable active axes
|
||||
if(block->steps_x != 0) enable_x();
|
||||
|
@ -436,14 +452,23 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
if(block->steps_z != 0) enable_z();
|
||||
if(block->steps_e != 0) enable_e();
|
||||
|
||||
float delta_x_mm = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||||
float delta_y_mm = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||
float delta_z_mm = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
float delta_e_mm = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||||
block->millimeters = sqrt(square(delta_x_mm) + square(delta_y_mm) + square(delta_z_mm) + square(delta_e_mm));
|
||||
float delta_mm[4];
|
||||
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
||||
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[E_AXIS] = (target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS];
|
||||
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) +
|
||||
square(delta_mm[Z_AXIS]));
|
||||
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
||||
|
||||
unsigned long microseconds;
|
||||
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
||||
float inverse_second = feed_rate * inverse_millimeters;
|
||||
|
||||
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
||||
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
||||
|
||||
// unsigned long microseconds;
|
||||
#if 0
|
||||
if (block->steps_e == 0) {
|
||||
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
||||
}
|
||||
|
@ -466,75 +491,168 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
if (microseconds<minsegmenttime) microseconds=minsegmenttime;
|
||||
}
|
||||
// END OF SLOW DOWN SECTION
|
||||
#endif
|
||||
|
||||
|
||||
// Calculate speed in mm/minute for each axis
|
||||
float multiplier = 60.0*1000000.0/microseconds;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_e = delta_e_mm * multiplier;
|
||||
|
||||
// Calculate speed in mm/sec for each axis
|
||||
float current_speed[4];
|
||||
for(int i=0; i < 4; i++) {
|
||||
current_speed[i] = delta_mm[i] * inverse_second;
|
||||
}
|
||||
|
||||
// Limit speed per axis
|
||||
float speed_factor = 1; //factor <=1 do decrease speed
|
||||
if(abs(block->speed_x) > max_feedrate[X_AXIS]) {
|
||||
speed_factor = max_feedrate[X_AXIS] / abs(block->speed_x);
|
||||
//if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor; /is not need here because auf the init above
|
||||
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||
for(int i=0; i < 4; i++) {
|
||||
if(abs(current_speed[i]) > max_feedrate[i])
|
||||
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
|
||||
}
|
||||
if(abs(block->speed_y) > max_feedrate[Y_AXIS]){
|
||||
float tmp_speed_factor = max_feedrate[Y_AXIS] / abs(block->speed_y);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_z) > max_feedrate[Z_AXIS]){
|
||||
float tmp_speed_factor = max_feedrate[Z_AXIS] / abs(block->speed_z);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
if(abs(block->speed_e) > max_feedrate[E_AXIS]){
|
||||
float tmp_speed_factor = max_feedrate[E_AXIS] / abs(block->speed_e);
|
||||
if(speed_factor > tmp_speed_factor) speed_factor = tmp_speed_factor;
|
||||
}
|
||||
multiplier = multiplier * speed_factor;
|
||||
block->speed_z = delta_z_mm * multiplier;
|
||||
block->speed_x = delta_x_mm * multiplier;
|
||||
block->speed_y = delta_y_mm * multiplier;
|
||||
block->speed_e = delta_e_mm * multiplier;
|
||||
block->nominal_speed = block->millimeters * multiplier;
|
||||
block->nominal_rate = ceil(block->step_event_count * multiplier / 60);
|
||||
|
||||
if(block->nominal_rate < 120)
|
||||
block->nominal_rate = 120;
|
||||
block->entry_speed = safe_speed(block);
|
||||
// Max segement time in us.
|
||||
|
||||
// Compute the acceleration rate for the trapezoid generator.
|
||||
float travel_per_step = block->millimeters/block->step_event_count;
|
||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
||||
block->acceleration_st = ceil( (retract_acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||||
#ifdef XY_FREQUENCY_LIMIT
|
||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||
|
||||
// Check and limit the xy direction change frequency
|
||||
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
||||
old_direction_bits = block->direction_bits;
|
||||
long segment_time = lround(1000000.0/inverse_second);
|
||||
if((direction_change & (1<<X_AXIS)) == 0) {
|
||||
x_segment_time[0] += segment_time;
|
||||
}
|
||||
else {
|
||||
block->acceleration_st = ceil( (acceleration)/travel_per_step); // convert to: acceleration steps/sec^2
|
||||
float tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
x_segment_time[2] = x_segment_time[1];
|
||||
x_segment_time[1] = x_segment_time[0];
|
||||
x_segment_time[0] = segment_time;
|
||||
}
|
||||
if((direction_change & (1<<Y_AXIS)) == 0) {
|
||||
y_segment_time[0] += segment_time;
|
||||
}
|
||||
else {
|
||||
y_segment_time[2] = y_segment_time[1];
|
||||
y_segment_time[1] = y_segment_time[0];
|
||||
y_segment_time[0] = segment_time;
|
||||
}
|
||||
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
||||
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
||||
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
||||
if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
||||
#endif
|
||||
|
||||
|
||||
// Correct the speed
|
||||
if( speed_factor < 1.0) {
|
||||
// Serial.print("speed factor : "); Serial.println(speed_factor);
|
||||
for(int i=0; i < 4; i++) {
|
||||
if(abs(current_speed[i]) > max_feedrate[i])
|
||||
speed_factor = min(speed_factor, max_feedrate[i] / abs(current_speed[i]));
|
||||
// Serial.print("current_speed"); Serial.print(i); Serial.print(" : "); Serial.println(current_speed[i]);
|
||||
}
|
||||
for(unsigned char i=0; i < 4; i++) {
|
||||
current_speed[i] *= speed_factor;
|
||||
}
|
||||
block->nominal_speed *= speed_factor;
|
||||
block->nominal_rate *= speed_factor;
|
||||
}
|
||||
|
||||
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||
float steps_per_mm = block->step_event_count/block->millimeters;
|
||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
|
||||
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
}
|
||||
else {
|
||||
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||
// Limit acceleration per axis
|
||||
if((tmp_acceleration * block->steps_x) > axis_steps_per_sqr_second[X_AXIS]) {
|
||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
if((tmp_acceleration * block->steps_y) > axis_steps_per_sqr_second[Y_AXIS]) {
|
||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
if((tmp_acceleration * block->steps_e) > axis_steps_per_sqr_second[E_AXIS]) {
|
||||
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
if((tmp_acceleration * block->steps_z) > axis_steps_per_sqr_second[Z_AXIS]) {
|
||||
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
||||
tmp_acceleration = (float)block->acceleration_st / (float)block->step_event_count;
|
||||
}
|
||||
}
|
||||
block->acceleration = block->acceleration_st * travel_per_step;
|
||||
block->acceleration = block->acceleration_st / steps_per_mm;
|
||||
block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
|
||||
|
||||
#if 0 // Use old jerk for now
|
||||
// Compute path unit vector
|
||||
double unit_vec[3];
|
||||
|
||||
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
|
||||
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
|
||||
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
|
||||
|
||||
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
||||
// Let a circle be tangent to both previous and current path line segments, where the junction
|
||||
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
||||
// colinear with the circle center. The circular segment joining the two paths represents the
|
||||
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
||||
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
||||
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
|
||||
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
||||
// nonlinearities of both the junction angle and junction velocity.
|
||||
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
||||
|
||||
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
||||
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
||||
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
||||
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
||||
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
||||
|
||||
// Skip and use default max junction speed for 0 degree acute junction.
|
||||
if (cos_theta < 0.95) {
|
||||
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
||||
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
||||
if (cos_theta > -0.95) {
|
||||
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
||||
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
||||
vmax_junction = min(vmax_junction,
|
||||
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif
|
||||
// Start with a safe speed
|
||||
float vmax_junction = max_xy_jerk/2;
|
||||
if(abs(current_speed[Z_AXIS]) > max_z_jerk/2)
|
||||
vmax_junction = max_z_jerk/2;
|
||||
vmax_junction = min(vmax_junction, block->nominal_speed);
|
||||
|
||||
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
|
||||
if((previous_speed[X_AXIS] != 0.0) || (previous_speed[Y_AXIS] != 0.0)) {
|
||||
vmax_junction = block->nominal_speed;
|
||||
}
|
||||
if (jerk > max_xy_jerk) {
|
||||
vmax_junction *= (max_xy_jerk/jerk);
|
||||
}
|
||||
if(abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
|
||||
vmax_junction *= (max_z_jerk/abs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]));
|
||||
}
|
||||
}
|
||||
block->max_entry_speed = vmax_junction;
|
||||
|
||||
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
||||
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
|
||||
block->entry_speed = min(vmax_junction, v_allowable);
|
||||
|
||||
// Initialize planner efficiency flags
|
||||
// Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
|
||||
// If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
|
||||
// the current block and next block junction speeds are guaranteed to always be at their maximum
|
||||
// junction speeds in deceleration and acceleration, respectively. This is due to how the current
|
||||
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
||||
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
||||
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
||||
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = true; }
|
||||
else { block->nominal_length_flag = false; }
|
||||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||
|
||||
// Update previous path unit_vector and nominal speed
|
||||
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
||||
previous_nominal_speed = block->nominal_speed;
|
||||
|
||||
#ifdef ADVANCE
|
||||
// Calculate advance rate
|
||||
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
||||
|
@ -555,24 +673,11 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
}
|
||||
#endif // ADVANCE
|
||||
|
||||
// compute a preliminary conservative acceleration trapezoid
|
||||
float safespeed = safe_speed(block);
|
||||
calculate_trapezoid_for_block(block, safespeed, safespeed);
|
||||
|
||||
// Compute direction bits for this block
|
||||
block->direction_bits = 0;
|
||||
if (target[X_AXIS] < position[X_AXIS]) {
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS]) {
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
}
|
||||
if (target[Z_AXIS] < position[Z_AXIS]) {
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
}
|
||||
if (target[E_AXIS] < position[E_AXIS]) {
|
||||
block->direction_bits |= (1<<E_AXIS);
|
||||
}
|
||||
|
||||
|
||||
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
|
||||
MINIMUM_PLANNER_SPEED/block->nominal_speed);
|
||||
|
||||
// Move buffer head
|
||||
block_buffer_head = next_buffer_head;
|
||||
|
@ -581,6 +686,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
|||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
||||
|
||||
planner_recalculate();
|
||||
|
||||
st_wake_up();
|
||||
}
|
||||
|
||||
|
@ -590,5 +696,10 @@ void plan_set_position(const float &x, const float &y, const float &z, const flo
|
|||
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
||||
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
||||
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
previous_speed[0] = 0.0;
|
||||
previous_speed[1] = 0.0;
|
||||
previous_speed[2] = 0.0;
|
||||
previous_speed[3] = 0.0;
|
||||
}
|
||||
|
||||
|
|
|
@ -37,18 +37,21 @@ typedef struct {
|
|||
volatile long acceleration_rate; // The acceleration rate used for acceleration calculation
|
||||
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
|
||||
#ifdef ADVANCE
|
||||
long advance_rate;
|
||||
volatile long initial_advance;
|
||||
volatile long final_advance;
|
||||
float advance;
|
||||
// long advance_rate;
|
||||
// volatile long initial_advance;
|
||||
// volatile long final_advance;
|
||||
// float advance;
|
||||
#endif
|
||||
|
||||
// Fields used by the motion planner to manage acceleration
|
||||
float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
|
||||
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/minute for each axis
|
||||
float nominal_speed; // The nominal speed for this block in mm/min
|
||||
float entry_speed; // Entry speed at previous-current junction in mm/min
|
||||
float max_entry_speed; // Maximum allowable junction entry speed in mm/min
|
||||
float millimeters; // The total travel of this block in mm
|
||||
float entry_speed;
|
||||
float acceleration; // acceleration mm/sec^2
|
||||
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
|
||||
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
|
||||
|
||||
// Settings for the trapezoid generator
|
||||
long nominal_rate; // The nominal step rate for this block in step_events/sec
|
||||
|
|
|
@ -174,6 +174,7 @@ asm volatile ( \
|
|||
|
||||
void st_wake_up() {
|
||||
// TCNT1 = 0;
|
||||
if(busy == false)
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
|
@ -208,7 +209,7 @@ inline unsigned short calc_timer(unsigned short step_rate) {
|
|||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||||
}
|
||||
if(timer < 100) timer = 100;
|
||||
//if(timer < 100) timer = 100;
|
||||
return timer;
|
||||
}
|
||||
|
||||
|
@ -220,7 +221,6 @@ inline void trapezoid_generator_reset() {
|
|||
final_advance = current_block->final_advance;
|
||||
#endif
|
||||
deceleration_time = 0;
|
||||
// advance_rate = current_block->advance_rate;
|
||||
// step_rate to timer interval
|
||||
acc_step_rate = current_block->initial_rate;
|
||||
acceleration_time = calc_timer(acc_step_rate);
|
||||
|
@ -232,7 +232,7 @@ inline void trapezoid_generator_reset() {
|
|||
ISR(TIMER1_COMPA_vect)
|
||||
{
|
||||
if(busy){
|
||||
SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself.");
|
||||
/* SERIAL_ERRORLN(*(unsigned short *)OCR1A<< " ISR overtaking itself.");*/
|
||||
return;
|
||||
} // The busy-flag is used to avoid reentering this interrupt
|
||||
|
||||
|
@ -448,6 +448,11 @@ ISR(TIMER1_COMPA_vect)
|
|||
deceleration_time += timer;
|
||||
OCR1A = timer;
|
||||
}
|
||||
else {
|
||||
timer = calc_timer(current_block->nominal_rate);
|
||||
OCR1A = timer;
|
||||
}
|
||||
|
||||
// If current block is finished, reset pointer
|
||||
if (step_events_completed >= current_block->step_event_count) {
|
||||
current_block = NULL;
|
||||
|
|
|
@ -28,6 +28,7 @@
|
|||
|
||||
This firmware is optimized for gen6 electronics.
|
||||
*/
|
||||
#include <avr/pgmspace.h>
|
||||
|
||||
#include "fastio.h"
|
||||
#include "Configuration.h"
|
||||
|
@ -54,7 +55,9 @@ int current_raw[3] = {0, 0, 0};
|
|||
float Kp=DEFAULT_Kp;
|
||||
float Ki=DEFAULT_Ki;
|
||||
float Kd=DEFAULT_Kd;
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
float Kc=DEFAULT_Kc;
|
||||
#endif
|
||||
#endif //PIDTEMP
|
||||
|
||||
|
||||
|
@ -153,9 +156,9 @@ void manage_heater()
|
|||
#define K2 (1.0-K1)
|
||||
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
||||
temp_dState = pid_input;
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
||||
#endif
|
||||
// #ifdef PID_ADD_EXTRUSION_RATE
|
||||
// pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
||||
// #endif
|
||||
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
||||
}
|
||||
#endif //PID_OPENLOOP
|
||||
|
@ -203,18 +206,18 @@ int temp2analog(int celsius) {
|
|||
|
||||
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
||||
{
|
||||
if (heater_0_temptable[i][1] < celsius)
|
||||
if (pgm_read_word(&(heater_0_temptable[i][1])) < celsius)
|
||||
{
|
||||
raw = heater_0_temptable[i-1][0] +
|
||||
(celsius - heater_0_temptable[i-1][1]) *
|
||||
(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /
|
||||
(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]);
|
||||
raw = pgm_read_word(&(heater_0_temptable[i-1][0])) +
|
||||
(celsius - pgm_read_word(&(heater_0_temptable[i-1][1]))) *
|
||||
(pgm_read_word(&(heater_0_temptable[i][0])) - pgm_read_word(&(heater_0_temptable[i-1][0]))) /
|
||||
(pgm_read_word(&(heater_0_temptable[i][1])) - pgm_read_word(&(heater_0_temptable[i-1][1])));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == NUMTEMPS_HEATER_0) raw = heater_0_temptable[i-1][0];
|
||||
if (i == NUMTEMPS_HEATER_0) raw = pgm_read_word(&(heater_0_temptable[i-1][0]));
|
||||
|
||||
return (1023 * OVERSAMPLENR) - raw;
|
||||
#elif defined HEATER_0_USES_AD595
|
||||
|
@ -234,19 +237,19 @@ int temp2analogBed(int celsius) {
|
|||
|
||||
for (i=1; i<BNUMTEMPS; i++)
|
||||
{
|
||||
if (bedtemptable[i][1] < celsius)
|
||||
if (pgm_read_word(&)bedtemptable[i][1])) < celsius)
|
||||
{
|
||||
raw = bedtemptable[i-1][0] +
|
||||
(celsius - bedtemptable[i-1][1]) *
|
||||
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
|
||||
(bedtemptable[i][1] - bedtemptable[i-1][1]);
|
||||
raw = pgm_read_word(&(bedtemptable[i-1][0])) +
|
||||
(celsius - pgm_read_word(&(bedtemptable[i-1][1]))) *
|
||||
(pgm_read_word(&(bedtemptable[i][0])) - pgm_read_word(&(bedtemptable[i-1][0]))) /
|
||||
(pgm_read_word(&(bedtemptable[i][1])) - pgm_read_word(&(bedtemptable[i-1][1])));
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
|
||||
if (i == BNUMTEMPS) raw = pgm_read_word(&(bedtemptable[i-1][0]));
|
||||
|
||||
return (1023 * OVERSAMPLENR) - raw;
|
||||
#elif defined BED_USES_AD595
|
||||
|
@ -263,19 +266,18 @@ float analog2temp(int raw) {
|
|||
raw = (1023 * OVERSAMPLENR) - raw;
|
||||
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
||||
{
|
||||
if (heater_0_temptable[i][0] > raw)
|
||||
if ((short)pgm_read_word(&heater_0_temptable[i][0]) > raw)
|
||||
{
|
||||
celsius = heater_0_temptable[i-1][1] +
|
||||
(raw - heater_0_temptable[i-1][0]) *
|
||||
(float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /
|
||||
(float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);
|
||||
|
||||
celsius = (short)pgm_read_word(&heater_0_temptable[i-1][1]) +
|
||||
(raw - (short)pgm_read_word(&heater_0_temptable[i-1][0])) *
|
||||
(float)((short)pgm_read_word(&heater_0_temptable[i][1]) - (short)pgm_read_word(&heater_0_temptable[i-1][1])) /
|
||||
(float)((short)pgm_read_word(&heater_0_temptable[i][0]) - (short)pgm_read_word(&heater_0_temptable[i-1][0]));
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];
|
||||
if (i == NUMTEMPS_HEATER_0) celsius = (short)pgm_read_word(&(heater_0_temptable[i-1][1]));
|
||||
|
||||
return celsius;
|
||||
#elif defined HEATER_0_USES_AD595
|
||||
|
@ -294,19 +296,19 @@ float analog2tempBed(int raw) {
|
|||
|
||||
for (i=1; i<BNUMTEMPS; i++)
|
||||
{
|
||||
if (bedtemptable[i][0] > raw)
|
||||
if (pgm_read_word(&(bedtemptable[i][0])) > raw)
|
||||
{
|
||||
celsius = bedtemptable[i-1][1] +
|
||||
(raw - bedtemptable[i-1][0]) *
|
||||
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
|
||||
(bedtemptable[i][0] - bedtemptable[i-1][0]);
|
||||
celsius = pgm_read_word(&(bedtemptable[i-1][1])) +
|
||||
(raw - pgm_read_word(&(bedtemptable[i-1][0]))) *
|
||||
(pgm_read_word(&(bedtemptable[i][1])) - pgm_read_word(&(bedtemptable[i-1][1]))) /
|
||||
(pgm_read_word(&(bedtemptable[i][0])) - pgm_read_word(&(bedtemptable[i-1][0])));
|
||||
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow: Set to last value in the table
|
||||
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
|
||||
if (i == BNUMTEMPS) celsius = pgm_read_word(&(bedtemptable[i-1][1]));
|
||||
|
||||
return celsius;
|
||||
|
||||
|
|
|
@ -1,12 +1,14 @@
|
|||
#ifndef THERMISTORTABLES_H_
|
||||
#define THERMISTORTABLES_H_
|
||||
|
||||
#include <avr/pgmspace.h>
|
||||
|
||||
#define OVERSAMPLENR 16
|
||||
|
||||
#if (THERMISTORHEATER_0 == 1) || (THERMISTORHEATER_1 == 1) || (THERMISTORBED == 1) //100k bed thermistor
|
||||
|
||||
#define NUMTEMPS_1 61
|
||||
const short temptable_1[NUMTEMPS_1][2] = {
|
||||
const short temptable_1[NUMTEMPS_1][2] PROGMEM = {
|
||||
{ 23*OVERSAMPLENR , 300 },
|
||||
{ 25*OVERSAMPLENR , 295 },
|
||||
{ 27*OVERSAMPLENR , 290 },
|
||||
|
@ -72,7 +74,7 @@ const short temptable_1[NUMTEMPS_1][2] = {
|
|||
#endif
|
||||
#if (THERMISTORHEATER_0 == 2) || (THERMISTORHEATER_1 == 2) || (THERMISTORBED == 2) //200k bed thermistor
|
||||
#define NUMTEMPS_2 21
|
||||
const short temptable_2[NUMTEMPS_2][2] = {
|
||||
const short temptable_2[NUMTEMPS_2][2] PROGMEM = {
|
||||
{1*OVERSAMPLENR, 848},
|
||||
{54*OVERSAMPLENR, 275},
|
||||
{107*OVERSAMPLENR, 228},
|
||||
|
@ -99,7 +101,7 @@ const short temptable_2[NUMTEMPS_2][2] = {
|
|||
#endif
|
||||
#if (THERMISTORHEATER_0 == 3) || (THERMISTORHEATER_1 == 3) || (THERMISTORBED == 3) //mendel-parts
|
||||
#define NUMTEMPS_3 28
|
||||
const short temptable_3[NUMTEMPS_3][2] = {
|
||||
const short temptable_3[NUMTEMPS_3][2] PROGMEM = {
|
||||
{1*OVERSAMPLENR,864},
|
||||
{21*OVERSAMPLENR,300},
|
||||
{25*OVERSAMPLENR,290},
|
||||
|
@ -134,7 +136,7 @@ const short temptable_3[NUMTEMPS_3][2] = {
|
|||
#if (THERMISTORHEATER_0 == 4) || (THERMISTORHEATER_1 == 4) || (THERMISTORBED == 4) //10k thermistor
|
||||
|
||||
#define NUMTEMPS_4 20
|
||||
short temptable_4[NUMTEMPS_4][2] = {
|
||||
const short temptable_4[NUMTEMPS_4][2] PROGMEM = {
|
||||
{1*OVERSAMPLENR, 430},
|
||||
{54*OVERSAMPLENR, 137},
|
||||
{107*OVERSAMPLENR, 107},
|
||||
|
@ -161,7 +163,7 @@ short temptable_4[NUMTEMPS_4][2] = {
|
|||
#if (THERMISTORHEATER_0 == 5) || (THERMISTORHEATER_1 == 5) || (THERMISTORBED == 5) //100k ParCan thermistor (104GT-2)
|
||||
|
||||
#define NUMTEMPS_5 61
|
||||
const short temptable_5[NUMTEMPS_5][2] = {
|
||||
const short temptable_5[NUMTEMPS_5][2] PROGMEM = {
|
||||
{1*OVERSAMPLENR, 713},
|
||||
{18*OVERSAMPLENR, 316},
|
||||
{35*OVERSAMPLENR, 266},
|
||||
|
@ -228,7 +230,7 @@ const short temptable_5[NUMTEMPS_5][2] = {
|
|||
|
||||
#if (THERMISTORHEATER_0 == 6) || (THERMISTORHEATER_1 == 6) || (THERMISTORBED == 6) // 100k Epcos thermistor
|
||||
#define NUMTEMPS_6 36
|
||||
const short temptable_6[NUMTEMPS_6][2] = {
|
||||
const short temptable_6[NUMTEMPS_6][2] PROGMEM = {
|
||||
{28*OVERSAMPLENR, 250},
|
||||
{31*OVERSAMPLENR, 245},
|
||||
{35*OVERSAMPLENR, 240},
|
||||
|
@ -270,7 +272,7 @@ const short temptable_6[NUMTEMPS_6][2] = {
|
|||
|
||||
#if (THERMISTORHEATER_0 == 7) || (THERMISTORHEATER_1 == 7) || (THERMISTORBED == 7) // 100k Honeywell 135-104LAG-J01
|
||||
#define NUMTEMPS_7 54
|
||||
const short temptable_7[NUMTEMPS_7][2] = {
|
||||
const short temptable_7[NUMTEMPS_7][2] PROGMEM = {
|
||||
{46*OVERSAMPLENR, 270},
|
||||
{50*OVERSAMPLENR, 265},
|
||||
{54*OVERSAMPLENR, 260},
|
||||
|
|
Loading…
Reference in a new issue