0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-19 08:08:25 +00:00

🧑‍💻 Replace axis_bits_t with AxisBits class (#25761)

This commit is contained in:
Scott Lahteine 2023-05-05 03:03:33 -05:00 committed by GitHub
parent 2538a7c4d6
commit 664b35b77c
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 239 additions and 113 deletions

View file

@ -199,8 +199,6 @@ enum AxisEnum : uint8_t {
, ALL_AXES_ENUM = 0xFE, NO_AXIS_ENUM = 0xFF
};
typedef bits_t(NUM_AXIS_ENUMS) axis_bits_t;
//
// Loop over axes
//
@ -789,6 +787,156 @@ struct XYZEval {
FI bool operator!=(const XYZEval<T> &rs) const { return !operator==(rs); }
};
#include <string.h> // for memset
class AxisBits;
class AxisBits {
public:
typedef bits_t(NUM_AXIS_ENUMS) el;
union {
el bits;
struct {
union {
bool NUM_AXIS_LIST(x:1, y:1, z:1, i:1, j:1, k:1, u:1, v:1, w:1);
bool NUM_AXIS_LIST(X:1, Y:1, Z:1, I:1, J:1, K:1, U:1, V:1, W:1);
bool NUM_AXIS_LIST(a:1, b:1, c:1, _i:1, _j:1, _k:1, _u:1, _v:1, _w:1);
bool NUM_AXIS_LIST(A:1, B:1, C:1, _I:1, _J:1, _K:1, _U:1, _V:1, _W:1);
};
#if HAS_EXTRUDERS
union { bool e:1; bool e0:1; };
#define _EN_ITEM(N) bool e##N:1;
REPEAT_S(1,EXTRUDERS,_EN_ITEM)
#undef _EN_ITEM
#endif
#if ANY(IS_CORE, MARKFORGED_XY, MARKFORGED_YX)
bool hx:1, hy:1, hz:1;
#endif
};
};
AxisBits() { bits = 0; }
// Constructor, setter, and operator= for bit mask
AxisBits(const el p) { set(p); }
void set(const el p) { bits = el(p); }
FI AxisBits& operator=(const el p) { set(p); return *this; }
#define MSET(pE,pX,pY,pZ,pI,pJ,pK,pU,pV,pW) LOGICAL_AXIS_CODE(e=pE, x=pX, y=pY, z=pZ, i=pI, j=pJ, k=pK, u=pU, v=pV, w=pW)
// Constructor, setter, and operator= for XYZE type
AxisBits(const xyze_bool_t &p) { set(p); }
void set(const xyze_bool_t &p) {
MSET(p.e, p.x, p.y, p.z, p.i, p.j, p.k, p.u, p.v, p.w);
}
FI AxisBits& operator=(const xyze_bool_t &p) { set(p); return *this; }
// Constructor, setter, and operator= for bool array
AxisBits(const bool (&p)[LOGICAL_AXES]) { set(p); }
void set(const bool (&p)[LOGICAL_AXES]) {
MSET(p[E_AXIS], p[X_AXIS], p[Y_AXIS], p[Z_AXIS],
p[I_AXIS], p[J_AXIS], p[K_AXIS],
p[U_AXIS], p[V_AXIS], p[W_AXIS]);
}
FI AxisBits& operator=(const bool (&p)[LOGICAL_AXES]) { set(p); return *this; }
// Constructor, setter, and operator= for undersized bool arrays
#if LOGICAL_AXES > 1
AxisBits(const bool (&p)[1]) { set(p); }
FI void set(const bool (&p)[1]) {
MSET(0, p[X_AXIS], 0, 0, 0, 0, 0, 0, 0, 0);
}
FI AxisBits& operator=(const bool (&p)[1]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 2
AxisBits(const bool (&p)[2]) { set(p); }
FI void set(const bool (&p)[2]) {
MSET(0, p[X_AXIS], p[Y_AXIS], 0, 0, 0, 0, 0, 0, 0);
}
FI AxisBits& operator=(const bool (&p)[2]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 3
AxisBits(const bool (&p)[3]) { set(p); }
FI void set(const bool (&p)[3]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], 0, 0, 0, 0, 0, 0);
}
FI AxisBits& operator=(const bool (&p)[3]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 4
AxisBits(const bool (&p)[4]) { set(p); }
FI void set(const bool (&p)[4]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], p[I_AXIS], 0, 0, 0, 0, 0);
}
FI AxisBits& operator=(const bool (&p)[4]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 5
AxisBits(const bool (&p)[5]) { set(p); }
FI void set(const bool (&p)[5]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], p[I_AXIS], p[J_AXIS], 0, 0, 0, 0);
}
FI AxisBits& operator=(const bool (&p)[5]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 6
AxisBits(const bool (&p)[6]) { set(p); }
FI void set(const bool (&p)[6]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], p[I_AXIS], p[J_AXIS], p[K_AXIS], 0, 0, 0);
}
FI AxisBits& operator=(const bool (&p)[6]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 7
AxisBits(const bool (&p)[7]) { set(p); }
FI void set(const bool (&p)[7]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], p[I_AXIS], p[J_AXIS], p[K_AXIS], p[U_AXIS], 0, 0);
}
FI AxisBits& operator=(const bool (&p)[7]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 8
AxisBits(const bool (&p)[8]) { set(p); }
FI void set(const bool (&p)[8]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], p[I_AXIS], p[J_AXIS], p[K_AXIS], p[U_AXIS], p[V_AXIS], 0);
}
FI AxisBits& operator=(const bool (&p)[8]) { set(p); return *this; }
#endif
#if LOGICAL_AXES > 9
AxisBits(const bool (&p)[9]) { set(p); }
FI void set(const bool (&p)[9]) {
MSET(0, p[X_AXIS], p[Y_AXIS], p[Z_AXIS], p[I_AXIS], p[J_AXIS], p[K_AXIS], p[U_AXIS], p[V_AXIS], p[W_AXIS]);
}
FI AxisBits& operator=(const bool (&p)[9]) { set(p); return *this; }
#endif
#undef MSET
FI const bool toggle(const AxisEnum n) { return TBI(bits, n); }
// Accessor via an AxisEnum (or any integer) [index]
FI const bool operator[](const int n) const { return TEST(bits, n); }
FI const bool operator[](const AxisEnum n) const { return TEST(bits, n); }
FI AxisBits& operator|=(const el &p) { bits |= el(p); return *this; }
FI AxisBits& operator&=(const el &p) { bits &= el(p); return *this; }
FI AxisBits& operator^=(const el &p) { bits ^= el(p); return *this; }
FI AxisBits& operator|=(const AxisBits &p) { bits |= p.bits; return *this; }
FI AxisBits& operator&=(const AxisBits &p) { bits &= p.bits; return *this; }
FI AxisBits& operator^=(const AxisBits &p) { bits ^= p.bits; return *this; }
FI bool operator==(const AxisBits &p) const { return p.bits == bits; }
FI bool operator!=(const AxisBits &p) const { return p.bits != bits; }
FI el operator|(const el &p) const { return bits | el(p); }
FI el operator&(const el &p) const { return bits & el(p); }
FI el operator^(const el &p) const { return bits ^ el(p); }
FI AxisBits operator|(const AxisBits &p) const { return AxisBits(bits | p.bits); }
FI AxisBits operator&(const AxisBits &p) const { return AxisBits(bits & p.bits); }
FI AxisBits operator^(const AxisBits &p) const { return AxisBits(bits ^ p.bits); }
FI operator bool() const { return !!bits; }
FI operator uint16_t() const { return uint16_t(bits & 0xFFFF); }
FI operator uint32_t() const { return uint32_t(bits); }
};
#undef _RECIP
#undef _ABS
#undef _LS

View file

@ -29,7 +29,7 @@
#include "../module/motion.h"
#include "../module/planner.h"
axis_bits_t Backlash::last_direction_bits;
AxisBits Backlash::last_direction_bits;
xyz_long_t Backlash::residual_error{0};
#ifdef BACKLASH_DISTANCE_MM
@ -63,25 +63,25 @@ Backlash backlash;
* spread over multiple segments, smoothing out artifacts even more.
*/
void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const int32_t &dc, const axis_bits_t dm, block_t * const block) {
axis_bits_t changed_dir = last_direction_bits ^ dm;
void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const int32_t &dc, const AxisBits dm, block_t * const block) {
AxisBits changed_dir = last_direction_bits ^ dm;
// Ignore direction change unless steps are taken in that direction
#if DISABLED(CORE_BACKLASH) || EITHER(MARKFORGED_XY, MARKFORGED_YX)
if (!da) CBI(changed_dir, X_AXIS);
if (!db) CBI(changed_dir, Y_AXIS);
if (!dc) CBI(changed_dir, Z_AXIS);
if (!da) changed_dir.x = false;
if (!db) changed_dir.y = false;
if (!dc) changed_dir.z = false;
#elif CORE_IS_XY
if (!(da + db)) CBI(changed_dir, X_AXIS);
if (!(da - db)) CBI(changed_dir, Y_AXIS);
if (!dc) CBI(changed_dir, Z_AXIS);
if (!(da + db)) changed_dir.x = false;
if (!(da - db)) changed_dir.y = false;
if (!dc) changed_dir.z = false;
#elif CORE_IS_XZ
if (!(da + dc)) CBI(changed_dir, X_AXIS);
if (!(da - dc)) CBI(changed_dir, Z_AXIS);
if (!db) CBI(changed_dir, Y_AXIS);
if (!(da + dc)) changed_dir.x = false;
if (!(da - dc)) changed_dir.z = false;
if (!db) changed_dir.y = false;
#elif CORE_IS_YZ
if (!(db + dc)) CBI(changed_dir, Y_AXIS);
if (!(db - dc)) CBI(changed_dir, Z_AXIS);
if (!da) CBI(changed_dir, X_AXIS);
if (!(db + dc)) changed_dir.y = false;
if (!(db - dc)) changed_dir.z = false;
if (!da) changed_dir.x = false;
#endif
last_direction_bits ^= changed_dir;
@ -99,10 +99,10 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const
LOOP_NUM_AXES(axis) {
if (distance_mm[axis]) {
const bool reverse = TEST(dm, axis);
const bool reverse = dm[axis];
// When an axis changes direction, add axis backlash to the residual error
if (TEST(changed_dir, axis))
if (changed_dir[axis])
residual_error[axis] += (reverse ? -f_corr : f_corr) * distance_mm[axis] * planner.settings.axis_steps_per_mm[axis];
// Decide how much of the residual error to correct in this segment
@ -147,7 +147,7 @@ void Backlash::add_correction_steps(const int32_t &da, const int32_t &db, const
int32_t Backlash::get_applied_steps(const AxisEnum axis) {
if (axis >= NUM_AXES) return 0;
const bool reverse = TEST(last_direction_bits, axis);
const bool reverse = last_direction_bits[axis];
const int32_t residual_error_axis = residual_error[axis];

View file

@ -29,7 +29,7 @@ public:
static constexpr uint8_t all_on = 0xFF, all_off = 0x00;
private:
static axis_bits_t last_direction_bits;
static AxisBits last_direction_bits;
static xyz_long_t residual_error;
#if ENABLED(BACKLASH_GCODE)
@ -72,7 +72,7 @@ public:
return has_measurement(X_AXIS) || has_measurement(Y_AXIS) || has_measurement(Z_AXIS);
}
static void add_correction_steps(const int32_t &da, const int32_t &db, const int32_t &dc, const axis_bits_t dm, block_t * const block);
static void add_correction_steps(const int32_t &da, const int32_t &db, const int32_t &dc, const AxisBits dm, block_t * const block);
static int32_t get_applied_steps(const AxisEnum axis);
#if ENABLED(BACKLASH_GCODE)

View file

@ -411,7 +411,7 @@ class FilamentSensorBase {
// Only trigger on extrusion with XYZ movement to allow filament change and retract/recover.
const uint8_t e = b->extruder;
const int32_t steps = b->steps.e;
const float mm = (TEST(b->direction_bits, E_AXIS) ? -steps : steps) * planner.mm_per_step[E_AXIS_N(e)];
const float mm = (b->direction_bits.e ? -steps : steps) * planner.mm_per_step[E_AXIS_N(e)];
if (e < NUM_RUNOUT_SENSORS) mm_countdown.runout[e] -= mm;
#if ENABLED(FILAMENT_SWITCH_AND_MOTION)
if (e < NUM_MOTION_SENSORS) mm_countdown.motion[e] -= mm;

View file

@ -484,33 +484,33 @@ void FxdTiCtrl::loadBlockData(block_t * const current_block) {
const float totalLength = current_block->millimeters,
oneOverLength = 1.0f / totalLength;
const axis_bits_t direction = current_block->direction_bits;
const AxisBits direction = current_block->direction_bits;
#if HAS_X_AXIS
x_startPosn = x_endPosn_prevBlock;
float x_moveDist = current_block->steps.a / planner.settings.axis_steps_per_mm[X_AXIS];
if (TEST(direction, X_AXIS)) x_moveDist *= -1.0f;
if (direction.x) x_moveDist *= -1.0f;
x_Ratio = x_moveDist * oneOverLength;
#endif
#if HAS_Y_AXIS
y_startPosn = y_endPosn_prevBlock;
float y_moveDist = current_block->steps.b / planner.settings.axis_steps_per_mm[Y_AXIS];
if (TEST(direction, Y_AXIS)) y_moveDist *= -1.0f;
if (direction.y) y_moveDist *= -1.0f;
y_Ratio = y_moveDist * oneOverLength;
#endif
#if HAS_Z_AXIS
z_startPosn = z_endPosn_prevBlock;
float z_moveDist = current_block->steps.c / planner.settings.axis_steps_per_mm[Z_AXIS];
if (TEST(direction, Z_AXIS)) z_moveDist *= -1.0f;
if (direction.z) z_moveDist *= -1.0f;
z_Ratio = z_moveDist * oneOverLength;
#endif
#if HAS_EXTRUDERS
e_startPosn = e_endPosn_prevBlock;
float extrusion = current_block->steps.e / planner.settings.axis_steps_per_mm[E_AXIS_N(current_block->extruder)];
if (TEST(direction, E_AXIS_N(current_block->extruder))) extrusion *= -1.0f;
if (direction.e) extrusion *= -1.0f;
e_Ratio = extrusion * oneOverLength;
#endif

View file

@ -1968,54 +1968,50 @@ bool Planner::_populate_block(
#endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
// Compute direction bit-mask for this block
axis_bits_t dm = 0;
AxisBits dm;
#if ANY(CORE_IS_XY, MARKFORGED_XY, MARKFORGED_YX)
if (da < 0) SBI(dm, X_HEAD); // Save the toolhead's true direction in X
if (db < 0) SBI(dm, Y_HEAD); // ...and Y
TERN_(HAS_Z_AXIS, if (dc < 0) SBI(dm, Z_AXIS));
dm.hx = (da < 0); // Save the toolhead's true direction in X
dm.hy = (db < 0); // ...and Y
TERN_(HAS_Z_AXIS, dm.z = (dc < 0));
#endif
#if IS_CORE
#if CORE_IS_XY
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
if (CORESIGN(da - db) < 0) SBI(dm, B_AXIS); // Motor B direction
dm.a = (da + db < 0); // Motor A direction
dm.b = (CORESIGN(da - db) < 0); // Motor B direction
#elif CORE_IS_XZ
if (da < 0) SBI(dm, X_HEAD); // Save the toolhead's true direction in X
if (db < 0) SBI(dm, Y_AXIS);
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (da + dc < 0) SBI(dm, A_AXIS); // Motor A direction
if (CORESIGN(da - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
dm.hx = (da < 0); // Save the toolhead's true direction in X
dm.y = (db < 0);
dm.hz = (dc < 0); // ...and Z
dm.a = (da + dc < 0); // Motor A direction
dm.c = (CORESIGN(da - dc) < 0); // Motor C direction
#elif CORE_IS_YZ
if (da < 0) SBI(dm, X_AXIS);
if (db < 0) SBI(dm, Y_HEAD); // Save the toolhead's true direction in Y
if (dc < 0) SBI(dm, Z_HEAD); // ...and Z
if (db + dc < 0) SBI(dm, B_AXIS); // Motor B direction
if (CORESIGN(db - dc) < 0) SBI(dm, C_AXIS); // Motor C direction
dm.x = (da < 0);
dm.hy = (db < 0); // Save the toolhead's true direction in Y
dm.hz = (dc < 0); // ...and Z
dm.b = (db + dc < 0); // Motor B direction
dm.c = (CORESIGN(db - dc) < 0); // Motor C direction
#endif
#elif ENABLED(MARKFORGED_XY)
if (da + db < 0) SBI(dm, A_AXIS); // Motor A direction
if (db < 0) SBI(dm, B_AXIS); // Motor B direction
dm.a = (da + db < 0); // Motor A direction
dm.b = (db < 0); // Motor B direction
#elif ENABLED(MARKFORGED_YX)
if (da < 0) SBI(dm, A_AXIS); // Motor A direction
if (db + da < 0) SBI(dm, B_AXIS); // Motor B direction
dm.a = (da < 0); // Motor A direction
dm.b = (db + da < 0); // Motor B direction
#else
XYZ_CODE(
if (da < 0) SBI(dm, X_AXIS),
if (db < 0) SBI(dm, Y_AXIS),
if (dc < 0) SBI(dm, Z_AXIS)
dm.x = (da < 0),
dm.y = (db < 0),
dm.z = (dc < 0)
);
#endif
SECONDARY_AXIS_CODE(
if (di < 0) SBI(dm, I_AXIS),
if (dj < 0) SBI(dm, J_AXIS),
if (dk < 0) SBI(dm, K_AXIS),
if (du < 0) SBI(dm, U_AXIS),
if (dv < 0) SBI(dm, V_AXIS),
if (dw < 0) SBI(dm, W_AXIS)
dm.i = (di < 0), dm.j = (dj < 0), dm.k = (dk < 0),
dm.u = (du < 0), dm.v = (dv < 0), dm.w = (dw < 0)
);
#if HAS_EXTRUDERS
if (de < 0) SBI(dm, E_AXIS);
dm.e = (de < 0);
const float esteps_float = de * e_factor[extruder];
const uint32_t esteps = ABS(esteps_float) + 0.5f;
#else
@ -2435,11 +2431,11 @@ bool Planner::_populate_block(
#ifdef XY_FREQUENCY_LIMIT
static axis_bits_t old_direction_bits; // = 0
static AxisBits old_direction_bits; // = 0
if (xy_freq_limit_hz) {
// Check and limit the xy direction change frequency
const axis_bits_t direction_change = block->direction_bits ^ old_direction_bits;
const AxisBits direction_change = block->direction_bits ^ old_direction_bits;
old_direction_bits = block->direction_bits;
segment_time_us = LROUND(float(segment_time_us) / speed_factor);

View file

@ -246,7 +246,7 @@ typedef struct PlannerBlock {
uint32_t acceleration_rate; // The acceleration rate used for acceleration calculation
#endif
axis_bits_t direction_bits; // Direction bits set for this block, where 1 is negative motion
AxisBits direction_bits; // Direction bits set for this block, where 1 is negative motion
// Advance extrusion
#if ENABLED(LIN_ADVANCE)

View file

@ -166,8 +166,8 @@ stepper_flags_t Stepper::axis_enabled; // {0}
block_t* Stepper::current_block; // (= nullptr) A pointer to the block currently being traced
axis_bits_t Stepper::last_direction_bits, // = 0
Stepper::axis_did_move; // = 0
AxisBits Stepper::last_direction_bits, // = 0
Stepper::axis_did_move; // = 0
bool Stepper::abort_current_block;
@ -624,15 +624,11 @@ void Stepper::apply_directions() {
DIR_WAIT_BEFORE();
TERN_(HAS_X_DIR, SET_STEP_DIR(X)); // A
TERN_(HAS_Y_DIR, SET_STEP_DIR(Y)); // B
TERN_(HAS_Z_DIR, SET_STEP_DIR(Z)); // C
TERN_(HAS_I_DIR, SET_STEP_DIR(I));
TERN_(HAS_J_DIR, SET_STEP_DIR(J));
TERN_(HAS_K_DIR, SET_STEP_DIR(K));
TERN_(HAS_U_DIR, SET_STEP_DIR(U));
TERN_(HAS_V_DIR, SET_STEP_DIR(V));
TERN_(HAS_W_DIR, SET_STEP_DIR(W));
NUM_AXIS_CODE(
SET_STEP_DIR(X), SET_STEP_DIR(Y), SET_STEP_DIR(Z), // ABC
SET_STEP_DIR(I), SET_STEP_DIR(J), SET_STEP_DIR(K),
SET_STEP_DIR(U), SET_STEP_DIR(V), SET_STEP_DIR(W)
);
#if HAS_EXTRUDERS
// Because this is valid for the whole block we don't know
@ -1829,7 +1825,7 @@ void Stepper::pulse_phase_isr() {
de += step_fwd ? -128 : 128; \
if ((MAXDIR(AXIS) && step_bak) || (MINDIR(AXIS) && step_fwd)) { \
{ USING_TIMED_PULSE(); START_TIMED_PULSE(); AWAIT_LOW_PULSE(); } \
TBI(last_direction_bits, _AXIS(AXIS)); \
last_direction_bits.toggle(_AXIS(AXIS)); \
DIR_WAIT_BEFORE(); \
SET_STEP_DIR(AXIS); \
DIR_WAIT_AFTER(); \
@ -1861,11 +1857,11 @@ void Stepper::pulse_phase_isr() {
#if STEPPER_PAGE_FORMAT == SP_4x4D_128
#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
if ((VALUE) < 7) SBI(dm, _AXIS(AXIS)); \
else if ((VALUE) > 7) CBI(dm, _AXIS(AXIS)); \
page_step_state.sd[_AXIS(AXIS)] = VALUE; \
page_step_state.bd[_AXIS(AXIS)] += VALUE; \
#define PAGE_SEGMENT_UPDATE(AXIS, VALUE) do{ \
if ((VALUE) < 7) dm[_AXIS(AXIS)] = true; \
else if ((VALUE) > 7) dm[_AXIS(AXIS)] = false; \
page_step_state.sd[_AXIS(AXIS)] = VALUE; \
page_step_state.bd[_AXIS(AXIS)] += VALUE; \
}while(0)
#define PAGE_PULSE_PREP(AXIS) do{ \
@ -1881,7 +1877,7 @@ void Stepper::pulse_phase_isr() {
case 0: {
const uint8_t low = page_step_state.page[page_step_state.segment_idx],
high = page_step_state.page[page_step_state.segment_idx + 1];
axis_bits_t dm = last_direction_bits;
const AxisBits dm = last_direction_bits;
PAGE_SEGMENT_UPDATE(X, low >> 4);
PAGE_SEGMENT_UPDATE(Y, low & 0xF);
@ -2417,7 +2413,7 @@ hal_timer_t Stepper::block_phase_isr() {
la_interval = calc_timer_interval((reverse_e ? la_step_rate - step_rate : step_rate - la_step_rate) >> current_block->la_scaling);
if (reverse_e != motor_direction(E_AXIS)) {
TBI(last_direction_bits, E_AXIS);
last_direction_bits.toggle(E_AXIS);
count_direction.e = -count_direction.e;
DIR_WAIT_BEFORE();
@ -2648,7 +2644,7 @@ hal_timer_t Stepper::block_phase_isr() {
#define Z_MOVE_TEST !!current_block->steps.c
#endif
axis_bits_t axis_bits = 0;
AxisBits axis_bits;
NUM_AXIS_CODE(
if (X_MOVE_TEST) SBI(axis_bits, A_AXIS),
if (Y_MOVE_TEST) SBI(axis_bits, B_AXIS),
@ -2692,24 +2688,24 @@ hal_timer_t Stepper::block_phase_isr() {
#if ENABLED(INPUT_SHAPING_X)
if (shaping_x.enabled) {
const int64_t steps = TEST(current_block->direction_bits, X_AXIS) ? -int64_t(current_block->steps.x) : int64_t(current_block->steps.x);
const int64_t steps = current_block->direction_bits.x ? -int64_t(current_block->steps.x) : int64_t(current_block->steps.x);
shaping_x.last_block_end_pos += steps;
// If there are any remaining echos unprocessed, then direction change must
// be delayed and processed in PULSE_PREP_SHAPING. This will cause half a step
// to be missed, which will need recovering and this can be done through shaping_x.remainder.
shaping_x.forward = !TEST(current_block->direction_bits, X_AXIS);
if (!ShapingQueue::empty_x()) SET_BIT_TO(current_block->direction_bits, X_AXIS, TEST(last_direction_bits, X_AXIS));
shaping_x.forward = !current_block->direction_bits.x;
if (!ShapingQueue::empty_x()) current_block->direction_bits.x = last_direction_bits.x;
}
#endif
// Y follows the same logic as X (but the comments aren't repeated)
#if ENABLED(INPUT_SHAPING_Y)
if (shaping_y.enabled) {
const int64_t steps = TEST(current_block->direction_bits, Y_AXIS) ? -int64_t(current_block->steps.y) : int64_t(current_block->steps.y);
const int64_t steps = current_block->direction_bits.y ? -int64_t(current_block->steps.y) : int64_t(current_block->steps.y);
shaping_y.last_block_end_pos += steps;
shaping_y.forward = !TEST(current_block->direction_bits, Y_AXIS);
if (!ShapingQueue::empty_y()) SET_BIT_TO(current_block->direction_bits, Y_AXIS, TEST(last_direction_bits, Y_AXIS));
shaping_y.forward = !current_block->direction_bits.y;
if (!ShapingQueue::empty_y()) current_block->direction_bits.y = last_direction_bits.y;
}
#endif
@ -2912,24 +2908,10 @@ void Stepper::init() {
Z4_DIR_INIT();
#endif
#endif
#if HAS_I_DIR
I_DIR_INIT();
#endif
#if HAS_J_DIR
J_DIR_INIT();
#endif
#if HAS_K_DIR
K_DIR_INIT();
#endif
#if HAS_U_DIR
U_DIR_INIT();
#endif
#if HAS_V_DIR
V_DIR_INIT();
#endif
#if HAS_W_DIR
W_DIR_INIT();
#endif
SECONDARY_AXIS_CODE(
I_DIR_INIT(), J_DIR_INIT(), K_DIR_INIT(),
U_DIR_INIT(), V_DIR_INIT(), W_DIR_INIT()
);
#if HAS_E0_DIR
E0_DIR_INIT();
#endif

View file

@ -317,17 +317,17 @@ class Stepper {
#endif
#if ENABLED(FREEZE_FEATURE)
static bool frozen; // Set this flag to instantly freeze motion
static bool frozen; // Set this flag to instantly freeze motion
#endif
private:
static block_t* current_block; // A pointer to the block currently being traced
static block_t* current_block; // A pointer to the block currently being traced
static axis_bits_t last_direction_bits, // The next stepping-bits to be output
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static AxisBits last_direction_bits, // The next stepping-bits to be output
axis_did_move; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static bool abort_current_block; // Signals to the stepper that current block should be aborted
static bool abort_current_block; // Signals to the stepper that current block should be aborted
#if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_X_motor, locked_X2_motor;
@ -523,10 +523,10 @@ class Stepper {
FORCE_INLINE static void quick_stop() { abort_current_block = true; }
// The direction of a single motor. A true result indicates reversed or negative motion.
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return TEST(last_direction_bits, axis); }
FORCE_INLINE static bool motor_direction(const AxisEnum axis) { return last_direction_bits[axis]; }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return TEST(axis_did_move, axis); }
FORCE_INLINE static bool axis_is_moving(const AxisEnum axis) { return axis_did_move[axis]; }
// Handle a triggered endstop
static void endstop_triggered(const AxisEnum axis);
@ -626,7 +626,7 @@ class Stepper {
static void apply_directions();
// Set direction bits and update all stepper DIR states
static void set_directions(const axis_bits_t bits) {
static void set_directions(const AxisBits bits) {
last_direction_bits = bits;
apply_directions();
}