mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-17 23:18:34 +00:00
Merge branch 'deltabot' into Marlin_v1
This commit is contained in:
commit
6f4a6e531c
3 changed files with 120 additions and 12 deletions
|
@ -63,6 +63,43 @@
|
|||
|
||||
#define POWER_SUPPLY 1
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//============================== Delta Settings =============================
|
||||
//===========================================================================
|
||||
// Enable DELTA kinematics
|
||||
#define DELTA
|
||||
|
||||
// Make delta curves from many straight lines (linear interpolation).
|
||||
// This is a trade-off between visible corners (not enough segments)
|
||||
// and processor overload (too many expensive sqrt calls).
|
||||
#define DELTA_SEGMENTS_PER_SECOND 200
|
||||
|
||||
// Center-to-center distance of the holes in the diagonal push rods.
|
||||
#define DELTA_DIAGONAL_ROD 250.0 // mm
|
||||
|
||||
// Horizontal offset from middle of printer to smooth rod center.
|
||||
#define DELTA_SMOOTH_ROD_OFFSET 175.0 // mm
|
||||
|
||||
// Horizontal offset of the universal joints on the end effector.
|
||||
#define DELTA_EFFECTOR_OFFSET 33.0 // mm
|
||||
|
||||
// Horizontal offset of the universal joints on the carriages.
|
||||
#define DELTA_CARRIAGE_OFFSET 18.0 // mm
|
||||
|
||||
// Effective horizontal distance bridged by diagonal push rods.
|
||||
#define DELTA_RADIUS (DELTA_SMOOTH_ROD_OFFSET-DELTA_EFFECTOR_OFFSET-DELTA_CARRIAGE_OFFSET)
|
||||
|
||||
// Effective X/Y positions of the three vertical towers.
|
||||
#define SIN_60 0.8660254037844386
|
||||
#define COS_60 0.5
|
||||
#define DELTA_TOWER1_X -SIN_60*DELTA_RADIUS // front left tower
|
||||
#define DELTA_TOWER1_Y -COS_60*DELTA_RADIUS
|
||||
#define DELTA_TOWER2_X SIN_60*DELTA_RADIUS // front right tower
|
||||
#define DELTA_TOWER2_Y -COS_60*DELTA_RADIUS
|
||||
#define DELTA_TOWER3_X 0.0 // back middle tower
|
||||
#define DELTA_TOWER3_Y DELTA_RADIUS
|
||||
|
||||
//===========================================================================
|
||||
//=============================Thermal Settings ============================
|
||||
//===========================================================================
|
||||
|
@ -128,8 +165,8 @@
|
|||
// PID settings:
|
||||
// Comment the following line to disable PID and enable bang-bang.
|
||||
#define PIDTEMP
|
||||
#define BANG_MAX 256 // limits current to nozzle while in bang-bang mode; 256=full current
|
||||
#define PID_MAX 256 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 256=full current
|
||||
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
|
||||
#define PID_MAX 255 // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
|
||||
#ifdef PIDTEMP
|
||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
|
||||
|
@ -172,9 +209,9 @@
|
|||
|
||||
// This sets the max power delived to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
|
||||
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
|
||||
// setting this to anything other than 256 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
|
||||
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
|
||||
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
|
||||
#define MAX_BED_POWER 256 // limits duty cycle to bed; 256=full current
|
||||
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
//120v 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
|
||||
|
@ -287,9 +324,11 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
|
|||
//#define BED_CENTER_AT_0_0 // If defined, the center of the bed is at (X=0, Y=0)
|
||||
|
||||
//Manual homing switch locations:
|
||||
// For deltabots this means top and center of the cartesian print volume.
|
||||
#define MANUAL_X_HOME_POS 0
|
||||
#define MANUAL_Y_HOME_POS 0
|
||||
#define MANUAL_Z_HOME_POS 0
|
||||
//#define MANUAL_Z_HOME_POS 402 // For delta: Distance between nozzle and print surface after homing.
|
||||
|
||||
//// MOVEMENT SETTINGS
|
||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||
|
|
|
@ -157,6 +157,9 @@ void FlushSerialRequestResend();
|
|||
void ClearToSend();
|
||||
|
||||
void get_coordinates();
|
||||
#ifdef DELTA
|
||||
void calculate_delta(float cartesian[3]);
|
||||
#endif
|
||||
void prepare_move();
|
||||
void kill();
|
||||
void Stop();
|
||||
|
|
|
@ -198,6 +198,9 @@ int EtoPPressure=0;
|
|||
//===========================================================================
|
||||
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
||||
static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
|
||||
#ifdef DELTA
|
||||
static float delta[3] = {0.0, 0.0, 0.0};
|
||||
#endif
|
||||
static float offset[3] = {0.0, 0.0, 0.0};
|
||||
static bool home_all_axis = true;
|
||||
static float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
||||
|
@ -806,8 +809,8 @@ void process_commands()
|
|||
destination[i] = current_position[i];
|
||||
}
|
||||
feedrate = 0.0;
|
||||
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
||||
|
||||
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])))
|
||||
|| ((code_seen(axis_codes[0])) && (code_seen(axis_codes[1])) && (code_seen(axis_codes[2])));
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||
HOMEAXIS(Z);
|
||||
|
@ -836,6 +839,10 @@ void process_commands()
|
|||
feedrate = 0.0;
|
||||
st_synchronize();
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
current_position[X_AXIS] = destination[X_AXIS];
|
||||
current_position[Y_AXIS] = destination[Y_AXIS];
|
||||
current_position[Z_AXIS] = destination[Z_AXIS];
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -847,14 +854,14 @@ void process_commands()
|
|||
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
||||
HOMEAXIS(Y);
|
||||
}
|
||||
|
||||
|
||||
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
|
||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
#endif
|
||||
|
||||
if(code_seen(axis_codes[X_AXIS]))
|
||||
|
||||
if(code_seen(axis_codes[X_AXIS]))
|
||||
{
|
||||
if(code_value_long() != 0) {
|
||||
current_position[X_AXIS]=code_value()+add_homeing[0];
|
||||
|
@ -872,8 +879,12 @@ void process_commands()
|
|||
current_position[Z_AXIS]=code_value()+add_homeing[2];
|
||||
}
|
||||
}
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
|
||||
#ifdef DELTA
|
||||
calculate_delta(current_position);
|
||||
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
||||
#else
|
||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||
#endif
|
||||
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
||||
enable_endstops(false);
|
||||
#endif
|
||||
|
@ -2051,11 +2062,64 @@ void clamp_to_software_endstops(float target[3])
|
|||
}
|
||||
}
|
||||
|
||||
#ifdef DELTA
|
||||
void calculate_delta(float cartesian[3])
|
||||
{
|
||||
delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
||||
- sq(DELTA_TOWER1_X-cartesian[X_AXIS])
|
||||
- sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
||||
- sq(DELTA_TOWER2_X-cartesian[X_AXIS])
|
||||
- sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
|
||||
- sq(DELTA_TOWER3_X-cartesian[X_AXIS])
|
||||
- sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
|
||||
) + cartesian[Z_AXIS];
|
||||
/*
|
||||
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
||||
|
||||
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
||||
*/
|
||||
}
|
||||
#endif
|
||||
|
||||
void prepare_move()
|
||||
{
|
||||
clamp_to_software_endstops(destination);
|
||||
|
||||
previous_millis_cmd = millis();
|
||||
#ifdef DELTA
|
||||
float difference[NUM_AXIS];
|
||||
for (int8_t i=0; i < NUM_AXIS; i++) {
|
||||
difference[i] = destination[i] - current_position[i];
|
||||
}
|
||||
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
|
||||
sq(difference[Y_AXIS]) +
|
||||
sq(difference[Z_AXIS]));
|
||||
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
|
||||
if (cartesian_mm < 0.000001) { return; }
|
||||
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
|
||||
int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
|
||||
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
||||
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
||||
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
||||
for (int s = 1; s <= steps; s++) {
|
||||
float fraction = float(s) / float(steps);
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
destination[i] = current_position[i] + difference[i] * fraction;
|
||||
}
|
||||
calculate_delta(destination);
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
|
||||
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
|
||||
active_extruder);
|
||||
}
|
||||
#else
|
||||
// Do not use feedmultiply for E or Z only moves
|
||||
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
|
||||
|
@ -2063,6 +2127,7 @@ void prepare_move()
|
|||
else {
|
||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
|
||||
}
|
||||
#endif
|
||||
for(int8_t i=0; i < NUM_AXIS; i++) {
|
||||
current_position[i] = destination[i];
|
||||
}
|
||||
|
@ -2305,4 +2370,5 @@ bool setTargetedHotend(int code){
|
|||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue