1
0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2024-11-30 07:17:59 +00:00

Added Y_DUAL_STEPPER_DRIVERS

Enables two stepper drivers to be used for the Y axis (useful for
Shapeoko style machines)
Each Y driver can be stepped either the same way or in opposite
directions, accounting for different hardware setups (leadscrew vs. belt
driven)
This commit is contained in:
Richard Miles 2013-09-17 19:02:00 +01:00
parent 2015989f84
commit 7ee275b620
3 changed files with 326 additions and 145 deletions

View File

@ -18,12 +18,6 @@
//#define WATCH_TEMP_PERIOD 40000 //40 seconds //#define WATCH_TEMP_PERIOD 40000 //40 seconds
//#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds //#define WATCH_TEMP_INCREASE 10 //Heat up at least 10 degree in 20 seconds
// Wait for Cooldown
// This defines if the M109 call should not block if it is cooling down.
// example: From a current temp of 220, you set M109 S200.
// if CooldownNoWait is defined M109 will not wait for the cooldown to finish
#define CooldownNoWait true
#ifdef PIDTEMP #ifdef PIDTEMP
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
// if Kc is choosen well, the additional required power due to increased melting should be compensated. // if Kc is choosen well, the additional required power due to increased melting should be compensated.
@ -152,6 +146,68 @@
#define EXTRUDERS 1 #define EXTRUDERS 1
#endif #endif
// Same again but for Y Axis.
#define Y_DUAL_STEPPER_DRIVERS
// Define if the two Y drives need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#ifdef Y_DUAL_STEPPER_DRIVERS
#undef EXTRUDERS
#define EXTRUDERS 1
#endif
#ifdef Z_DUAL_STEPPER_DRIVERS && Y_DUAL_STEPPER_DRIVERS
#error "You cannot have dual drivers for both Y and Z"
#endif
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds.
//#define DUAL_X_CARRIAGE
#ifdef DUAL_X_CARRIAGE
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the EXTRUDER_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// Pins for second x-carriage stepper driver (defined here to avoid further complicating pins.h)
#define X2_ENABLE_PIN 29
#define X2_STEP_PIN 25
#define X2_DIR_PIN 23
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0: Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1: Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2: Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE 0
// As the x-carriages are independent we can now account for any relative Z offset
#define EXTRUDER1_Z_OFFSET 0.0 // z offset relative to extruder 0
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again: //homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_RETRACT_MM 5 #define X_HOME_RETRACT_MM 5
#define Y_HOME_RETRACT_MM 5 #define Y_HOME_RETRACT_MM 5
@ -174,6 +230,11 @@
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0 #define DEFAULT_MINTRAVELFEEDRATE 0.0
// Feedrates for manual moves along X, Y, Z, E from panel
#ifdef ULTIPANEL
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // set the speeds for manual moves (mm/min)
#endif
// minimum time in microseconds that a movement needs to take if the buffer is emptied. // minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000 #define DEFAULT_MINSEGMENTTIME 20000

View File

@ -51,22 +51,22 @@
#define MYSERIAL MSerial #define MYSERIAL MSerial
#endif #endif
#define SERIAL_PROTOCOL(x) MYSERIAL.print(x); #define SERIAL_PROTOCOL(x) (MYSERIAL.print(x))
#define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y); #define SERIAL_PROTOCOL_F(x,y) (MYSERIAL.print(x,y))
#define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)); #define SERIAL_PROTOCOLPGM(x) (serialprintPGM(PSTR(x)))
#define SERIAL_PROTOCOLLN(x) {MYSERIAL.print(x);MYSERIAL.write('\n');} #define SERIAL_PROTOCOLLN(x) (MYSERIAL.print(x),MYSERIAL.write('\n'))
#define SERIAL_PROTOCOLLNPGM(x) {serialprintPGM(PSTR(x));MYSERIAL.write('\n');} #define SERIAL_PROTOCOLLNPGM(x) (serialprintPGM(PSTR(x)),MYSERIAL.write('\n'))
const char errormagic[] PROGMEM ="Error:"; const char errormagic[] PROGMEM ="Error:";
const char echomagic[] PROGMEM ="echo:"; const char echomagic[] PROGMEM ="echo:";
#define SERIAL_ERROR_START serialprintPGM(errormagic); #define SERIAL_ERROR_START (serialprintPGM(errormagic))
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
#define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x)
#define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHO_START serialprintPGM(echomagic); #define SERIAL_ECHO_START (serialprintPGM(echomagic))
#define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x)
#define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x)
#define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x)
@ -96,7 +96,11 @@ void process_commands();
void manage_inactivity(); void manage_inactivity();
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 #if defined(DUAL_X_CARRIAGE) && defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1 \
&& defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
#define enable_x() do { WRITE(X_ENABLE_PIN, X_ENABLE_ON); WRITE(X2_ENABLE_PIN, X_ENABLE_ON); } while (0)
#define disable_x() do { WRITE(X_ENABLE_PIN,!X_ENABLE_ON); WRITE(X2_ENABLE_PIN,!X_ENABLE_ON); } while (0)
#elif defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
#define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON) #define enable_x() WRITE(X_ENABLE_PIN, X_ENABLE_ON)
#define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON) #define disable_x() WRITE(X_ENABLE_PIN,!X_ENABLE_ON)
#else #else
@ -105,8 +109,13 @@ void manage_inactivity();
#endif #endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON) #ifdef Y_DUAL_STEPPER_DRIVERS
#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON) #define enable_y() { WRITE(Y_ENABLE_PIN, Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, Y_ENABLE_ON); }
#define disable_y() { WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON); WRITE(Y2_ENABLE_PIN, !Y_ENABLE_ON); }
#else
#define enable_y() WRITE(Y_ENABLE_PIN, Y_ENABLE_ON)
#define disable_y() WRITE(Y_ENABLE_PIN,!Y_ENABLE_ON)
#endif
#else #else
#define enable_y() ; #define enable_y() ;
#define disable_y() ; #define disable_y() ;
@ -159,6 +168,7 @@ void ClearToSend();
void get_coordinates(); void get_coordinates();
#ifdef DELTA #ifdef DELTA
void calculate_delta(float cartesian[3]); void calculate_delta(float cartesian[3]);
extern float delta[3];
#endif #endif
void prepare_move(); void prepare_move();
void kill(); void kill();

View File

@ -48,8 +48,8 @@ block_t *current_block; // A pointer to the block currently being traced
// Variables used by The Stepper Driver Interrupt // Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output static unsigned char out_bits; // The next stepping-bits to be output
static long counter_x, // Counter variables for the bresenham line tracer static long counter_x, // Counter variables for the bresenham line tracer
counter_y, counter_y,
counter_z, counter_z,
counter_e; counter_e;
volatile static unsigned long step_events_completed; // The number of step events executed in the current block volatile static unsigned long step_events_completed; // The number of step events executed in the current block
#ifdef ADVANCE #ifdef ADVANCE
@ -224,27 +224,27 @@ void enable_endstops(bool check)
// | BLOCK 1 | BLOCK 2 | d // | BLOCK 1 | BLOCK 2 | d
// //
// time -----> // time ----->
// //
// The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
// first block->accelerate_until step_events_completed, then keeps going at constant speed until // first block->accelerate_until step_events_completed, then keeps going at constant speed until
// step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
// The slope of acceleration is calculated with the leib ramp alghorithm. // The slope of acceleration is calculated with the leib ramp alghorithm.
void st_wake_up() { void st_wake_up() {
// TCNT1 = 0; // TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
void step_wait(){ void step_wait(){
for(int8_t i=0; i < 6; i++){ for(int8_t i=0; i < 6; i++){
} }
} }
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer; unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
step_rate = (step_rate >> 2)&0x3fff; step_rate = (step_rate >> 2)&0x3fff;
step_loops = 4; step_loops = 4;
@ -255,11 +255,11 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
} }
else { else {
step_loops = 1; step_loops = 1;
} }
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000); if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
step_rate -= (F_CPU/500000); // Correct for minimal speed step_rate -= (F_CPU/500000); // Correct for minimal speed
if(step_rate >= (8*256)){ // higher step rate if(step_rate >= (8*256)){ // higher step rate
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0]; unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
unsigned char tmp_step_rate = (step_rate & 0x00ff); unsigned char tmp_step_rate = (step_rate & 0x00ff);
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2); unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
@ -276,7 +276,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
return timer; return timer;
} }
// Initializes the trapezoid generator from the current block. Called whenever a new // Initializes the trapezoid generator from the current block. Called whenever a new
// block begins. // block begins.
FORCE_INLINE void trapezoid_generator_reset() { FORCE_INLINE void trapezoid_generator_reset() {
#ifdef ADVANCE #ifdef ADVANCE
@ -284,7 +284,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
final_advance = current_block->final_advance; final_advance = current_block->final_advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
#endif #endif
deceleration_time = 0; deceleration_time = 0;
// step_rate to timer interval // step_rate to timer interval
@ -294,7 +294,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
acc_step_rate = current_block->initial_rate; acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time; OCR1A = acceleration_time;
// SERIAL_ECHO_START; // SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :"); // SERIAL_ECHOPGM("advance :");
// SERIAL_ECHO(current_block->advance/256.0); // SERIAL_ECHO(current_block->advance/256.0);
@ -304,13 +304,13 @@ FORCE_INLINE void trapezoid_generator_reset() {
// SERIAL_ECHO(current_block->initial_advance/256.0); // SERIAL_ECHO(current_block->initial_advance/256.0);
// SERIAL_ECHOPGM("final advance :"); // SERIAL_ECHOPGM("final advance :");
// SERIAL_ECHOLN(current_block->final_advance/256.0); // SERIAL_ECHOLN(current_block->final_advance/256.0);
} }
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) ISR(TIMER1_COMPA_vect)
{ {
// If there is no current block, attempt to pop one from the buffer // If there is no current block, attempt to pop one from the buffer
if (current_block == NULL) { if (current_block == NULL) {
// Anything in the buffer? // Anything in the buffer?
@ -322,24 +322,24 @@ ISR(TIMER1_COMPA_vect)
counter_y = counter_x; counter_y = counter_x;
counter_z = counter_x; counter_z = counter_x;
counter_e = counter_x; counter_e = counter_x;
step_events_completed = 0; step_events_completed = 0;
#ifdef Z_LATE_ENABLE #ifdef Z_LATE_ENABLE
if(current_block->steps_z > 0) { if(current_block->steps_z > 0) {
enable_z(); enable_z();
OCR1A = 2000; //1ms wait OCR1A = 2000; //1ms wait
return; return;
} }
#endif #endif
// #ifdef ADVANCE // #ifdef ADVANCE
// e_steps[current_block->active_extruder] = 0; // e_steps[current_block->active_extruder] = 0;
// #endif // #endif
} }
else { else {
OCR1A=2000; // 1kHz. OCR1A=2000; // 1kHz.
} }
} }
if (current_block != NULL) { if (current_block != NULL) {
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
@ -348,22 +348,58 @@ ISR(TIMER1_COMPA_vect)
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY) // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
if((out_bits & (1<<X_AXIS))!=0){ if((out_bits & (1<<X_AXIS))!=0){
WRITE(X_DIR_PIN, INVERT_X_DIR); #ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(X2_DIR_PIN, INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
WRITE(X2_DIR_PIN, INVERT_X_DIR);
else
WRITE(X_DIR_PIN, INVERT_X_DIR);
}
#else
WRITE(X_DIR_PIN, INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1; count_direction[X_AXIS]=-1;
} }
else{ else{
WRITE(X_DIR_PIN, !INVERT_X_DIR); #ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
}
else{
if (current_block->active_extruder != 0)
WRITE(X2_DIR_PIN, !INVERT_X_DIR);
else
WRITE(X_DIR_PIN, !INVERT_X_DIR);
}
#else
WRITE(X_DIR_PIN, !INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1; count_direction[X_AXIS]=1;
} }
if((out_bits & (1<<Y_AXIS))!=0){ if((out_bits & (1<<Y_AXIS))!=0){
WRITE(Y_DIR_PIN, INVERT_Y_DIR); WRITE(Y_DIR_PIN, INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=-1; count_direction[Y_AXIS]=-1;
} }
else{ else{
WRITE(Y_DIR_PIN, !INVERT_Y_DIR); WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
#endif
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
} }
// Set direction en check limit switches // Set direction en check limit switches
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
@ -372,29 +408,43 @@ ISR(TIMER1_COMPA_vect)
#endif #endif
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #ifdef DUAL_X_CARRIAGE
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING); // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
endstop_x_hit=true; #endif
step_events_completed = current_block->step_event_count; {
} #if defined(X_MIN_PIN) && X_MIN_PIN > -1
old_x_min_endstop = x_min_endstop; bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
#endif if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
}
} }
} }
else { // +direction else { // +direction
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #ifdef DUAL_X_CARRIAGE
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING); // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
endstop_x_hit=true; #endif
step_events_completed = current_block->step_event_count; {
} #if defined(X_MAX_PIN) && X_MAX_PIN > -1
old_x_max_endstop = x_max_endstop; bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
#endif if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_max_endstop = x_max_endstop;
#endif
}
} }
} }
@ -406,7 +456,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING); bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
@ -420,7 +470,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING); bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
@ -434,15 +484,15 @@ ISR(TIMER1_COMPA_vect)
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR); WRITE(Z_DIR_PIN,INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,INVERT_Z_DIR); WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
#endif #endif
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS]=-1;
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING); bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) { if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true; endstop_z_hit=true;
@ -455,7 +505,7 @@ ISR(TIMER1_COMPA_vect)
else { // +direction else { // +direction
WRITE(Z_DIR_PIN,!INVERT_Z_DIR); WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_DIR_PIN,!INVERT_Z_DIR); WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
#endif #endif
@ -463,7 +513,7 @@ ISR(TIMER1_COMPA_vect)
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING); bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) { if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS]; endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true; endstop_z_hit=true;
@ -484,10 +534,10 @@ ISR(TIMER1_COMPA_vect)
count_direction[E_AXIS]=1; count_direction[E_AXIS]=1;
} }
#endif //!ADVANCE #endif //!ADVANCE
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
#ifndef AT90USB #ifndef AT90USB
MSerial.checkRx(); // Check for serial chars. MSerial.checkRx(); // Check for serial chars.
#endif #endif
@ -502,38 +552,73 @@ ISR(TIMER1_COMPA_vect)
else { else {
e_steps[current_block->active_extruder]++; e_steps[current_block->active_extruder]++;
} }
} }
#endif //ADVANCE #endif //ADVANCE
counter_x += current_block->steps_x; counter_x += current_block->steps_x;
if (counter_x > 0) { if (counter_x > 0) {
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
else
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
}
#else
WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN); WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
#endif
counter_x -= current_block->step_event_count; counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS]; count_position[X_AXIS]+=count_direction[X_AXIS];
#ifdef DUAL_X_CARRIAGE
if (extruder_duplication_enabled){
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
}
else {
if (current_block->active_extruder != 0)
WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
else
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
}
#else
WRITE(X_STEP_PIN, INVERT_X_STEP_PIN); WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
#endif
} }
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if (counter_y > 0) { if (counter_y > 0) {
WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN); WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS]; #ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
#endif
counter_y -= current_block->step_event_count;
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN); WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
#ifdef Y_DUAL_STEPPER_DRIVERS
WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
#endif
} }
counter_z += current_block->steps_z; counter_z += current_block->steps_z;
if (counter_z > 0) { if (counter_z > 0) {
WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN); WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN); WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
#endif #endif
counter_z -= current_block->step_event_count; counter_z -= current_block->step_event_count;
count_position[Z_AXIS]+=count_direction[Z_AXIS]; count_position[Z_AXIS]+=count_direction[Z_AXIS];
WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN); WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
#ifdef Z_DUAL_STEPPER_DRIVERS #ifdef Z_DUAL_STEPPER_DRIVERS
WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN); WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
#endif #endif
} }
@ -547,17 +632,17 @@ ISR(TIMER1_COMPA_vect)
WRITE_E_STEP(INVERT_E_STEP_PIN); WRITE_E_STEP(INVERT_E_STEP_PIN);
} }
#endif //!ADVANCE #endif //!ADVANCE
step_events_completed += 1; step_events_completed += 1;
if(step_events_completed >= current_block->step_event_count) break; if(step_events_completed >= current_block->step_event_count) break;
} }
// Calculare new timer value // Calculare new timer value
unsigned short timer; unsigned short timer;
unsigned short step_rate; unsigned short step_rate;
if (step_events_completed <= (unsigned long int)current_block->accelerate_until) { if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
acc_step_rate += current_block->initial_rate; acc_step_rate += current_block->initial_rate;
// upper limit // upper limit
if(acc_step_rate > current_block->nominal_rate) if(acc_step_rate > current_block->nominal_rate)
acc_step_rate = current_block->nominal_rate; acc_step_rate = current_block->nominal_rate;
@ -573,13 +658,13 @@ ISR(TIMER1_COMPA_vect)
//if(advance > current_block->advance) advance = current_block->advance; //if(advance > current_block->advance) advance = current_block->advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
#endif #endif
} }
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) { else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
if(step_rate > acc_step_rate) { // Check step_rate stays positive if(step_rate > acc_step_rate) { // Check step_rate stays positive
step_rate = current_block->final_rate; step_rate = current_block->final_rate;
} }
@ -602,7 +687,7 @@ ISR(TIMER1_COMPA_vect)
if(advance < final_advance) advance = final_advance; if(advance < final_advance) advance = final_advance;
// Do E steps + advance steps // Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance); e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8; old_advance = advance >>8;
#endif //ADVANCE #endif //ADVANCE
} }
else { else {
@ -611,12 +696,12 @@ ISR(TIMER1_COMPA_vect)
step_loops = step_loops_nominal; step_loops = step_loops_nominal;
} }
// If current block is finished, reset pointer // If current block is finished, reset pointer
if (step_events_completed >= current_block->step_event_count) { if (step_events_completed >= current_block->step_event_count) {
current_block = NULL; current_block = NULL;
plan_discard_current_block(); plan_discard_current_block();
} }
} }
} }
#ifdef ADVANCE #ifdef ADVANCE
@ -635,7 +720,7 @@ ISR(TIMER1_COMPA_vect)
WRITE(E0_DIR_PIN, INVERT_E0_DIR); WRITE(E0_DIR_PIN, INVERT_E0_DIR);
e_steps[0]++; e_steps[0]++;
WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN); WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
} }
else if (e_steps[0] > 0) { else if (e_steps[0] > 0) {
WRITE(E0_DIR_PIN, !INVERT_E0_DIR); WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
e_steps[0]--; e_steps[0]--;
@ -649,7 +734,7 @@ ISR(TIMER1_COMPA_vect)
WRITE(E1_DIR_PIN, INVERT_E1_DIR); WRITE(E1_DIR_PIN, INVERT_E1_DIR);
e_steps[1]++; e_steps[1]++;
WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN); WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
} }
else if (e_steps[1] > 0) { else if (e_steps[1] > 0) {
WRITE(E1_DIR_PIN, !INVERT_E1_DIR); WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
e_steps[1]--; e_steps[1]--;
@ -664,7 +749,7 @@ ISR(TIMER1_COMPA_vect)
WRITE(E2_DIR_PIN, INVERT_E2_DIR); WRITE(E2_DIR_PIN, INVERT_E2_DIR);
e_steps[2]++; e_steps[2]++;
WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN); WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
} }
else if (e_steps[2] > 0) { else if (e_steps[2] > 0) {
WRITE(E2_DIR_PIN, !INVERT_E2_DIR); WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
e_steps[2]--; e_steps[2]--;
@ -680,22 +765,29 @@ void st_init()
{ {
digipot_init(); //Initialize Digipot Motor Current digipot_init(); //Initialize Digipot Motor Current
microstep_init(); //Initialize Microstepping Pins microstep_init(); //Initialize Microstepping Pins
//Initialize Dir Pins //Initialize Dir Pins
#if defined(X_DIR_PIN) && X_DIR_PIN > -1 #if defined(X_DIR_PIN) && X_DIR_PIN > -1
SET_OUTPUT(X_DIR_PIN); SET_OUTPUT(X_DIR_PIN);
#endif #endif
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1 #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN); SET_OUTPUT(X2_DIR_PIN);
#endif #endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1 #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
SET_OUTPUT(Y_DIR_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
SET_OUTPUT(Y2_DIR_PIN);
#endif
#endif
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
SET_OUTPUT(Z_DIR_PIN); SET_OUTPUT(Z_DIR_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
SET_OUTPUT(Z2_DIR_PIN); SET_OUTPUT(Z2_DIR_PIN);
#endif #endif
#endif #endif
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1 #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
SET_OUTPUT(E0_DIR_PIN); SET_OUTPUT(E0_DIR_PIN);
#endif #endif
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1) #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
@ -711,14 +803,23 @@ void st_init()
SET_OUTPUT(X_ENABLE_PIN); SET_OUTPUT(X_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH); if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
#endif #endif
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
SET_OUTPUT(X2_ENABLE_PIN);
if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
#endif
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1 #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
SET_OUTPUT(Y_ENABLE_PIN); SET_OUTPUT(Y_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH); if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
SET_OUTPUT(Y2_ENABLE_PIN);
if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
#endif
#endif #endif
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1 #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
SET_OUTPUT(Z_ENABLE_PIN); SET_OUTPUT(Z_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH); if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
SET_OUTPUT(Z2_ENABLE_PIN); SET_OUTPUT(Z2_ENABLE_PIN);
if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH); if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
@ -738,62 +839,71 @@ void st_init()
#endif #endif
//endstops and pullups //endstops and pullups
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN > -1
SET_INPUT(X_MIN_PIN); SET_INPUT(X_MIN_PIN);
#ifdef ENDSTOPPULLUP_XMIN #ifdef ENDSTOPPULLUP_XMIN
WRITE(X_MIN_PIN,HIGH); WRITE(X_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
SET_INPUT(Y_MIN_PIN); SET_INPUT(Y_MIN_PIN);
#ifdef ENDSTOPPULLUP_YMIN #ifdef ENDSTOPPULLUP_YMIN
WRITE(Y_MIN_PIN,HIGH); WRITE(Y_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1 #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
SET_INPUT(Z_MIN_PIN); SET_INPUT(Z_MIN_PIN);
#ifdef ENDSTOPPULLUP_ZMIN #ifdef ENDSTOPPULLUP_ZMIN
WRITE(Z_MIN_PIN,HIGH); WRITE(Z_MIN_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN > -1
SET_INPUT(X_MAX_PIN); SET_INPUT(X_MAX_PIN);
#ifdef ENDSTOPPULLUP_XMAX #ifdef ENDSTOPPULLUP_XMAX
WRITE(X_MAX_PIN,HIGH); WRITE(X_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
SET_INPUT(Y_MAX_PIN); SET_INPUT(Y_MAX_PIN);
#ifdef ENDSTOPPULLUP_YMAX #ifdef ENDSTOPPULLUP_YMAX
WRITE(Y_MAX_PIN,HIGH); WRITE(Y_MAX_PIN,HIGH);
#endif #endif
#endif #endif
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1 #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
SET_INPUT(Z_MAX_PIN); SET_INPUT(Z_MAX_PIN);
#ifdef ENDSTOPPULLUP_ZMAX #ifdef ENDSTOPPULLUP_ZMAX
WRITE(Z_MAX_PIN,HIGH); WRITE(Z_MAX_PIN,HIGH);
#endif #endif
#endif #endif
//Initialize Step Pins //Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1) #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN); SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN); WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
disable_x(); disable_x();
#endif #endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1) #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN); SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN); WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif
disable_y(); disable_y();
#endif #endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1) #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN); SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN); WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1) #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
@ -801,33 +911,33 @@ void st_init()
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN); WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif #endif
disable_z(); disable_z();
#endif #endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1) #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN); SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN); WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0(); disable_e0();
#endif #endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1) #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN); SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN); WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1(); disable_e1();
#endif #endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1) #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN); SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN); WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2(); disable_e2();
#endif #endif
// waveform generation = 0100 = CTC // waveform generation = 0100 = CTC
TCCR1B &= ~(1<<WGM13); TCCR1B &= ~(1<<WGM13);
TCCR1B |= (1<<WGM12); TCCR1B |= (1<<WGM12);
TCCR1A &= ~(1<<WGM11); TCCR1A &= ~(1<<WGM11);
TCCR1A &= ~(1<<WGM10); TCCR1A &= ~(1<<WGM10);
// output mode = 00 (disconnected) // output mode = 00 (disconnected)
TCCR1A &= ~(3<<COM1A0); TCCR1A &= ~(3<<COM1A0);
TCCR1A &= ~(3<<COM1B0); TCCR1A &= ~(3<<COM1B0);
// Set the timer pre-scaler // Set the timer pre-scaler
// Generally we use a divider of 8, resulting in a 2MHz timer // Generally we use a divider of 8, resulting in a 2MHz timer
// frequency on a 16MHz MCU. If you are going to change this, be // frequency on a 16MHz MCU. If you are going to change this, be
@ -837,19 +947,19 @@ void st_init()
OCR1A = 0x4000; OCR1A = 0x4000;
TCNT1 = 0; TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#ifdef ADVANCE #ifdef ADVANCE
#if defined(TCCR0A) && defined(WGM01) #if defined(TCCR0A) && defined(WGM01)
TCCR0A &= ~(1<<WGM01); TCCR0A &= ~(1<<WGM01);
TCCR0A &= ~(1<<WGM00); TCCR0A &= ~(1<<WGM00);
#endif #endif
e_steps[0] = 0; e_steps[0] = 0;
e_steps[1] = 0; e_steps[1] = 0;
e_steps[2] = 0; e_steps[2] = 0;
TIMSK0 |= (1<<OCIE0A); TIMSK0 |= (1<<OCIE0A);
#endif //ADVANCE #endif //ADVANCE
enable_endstops(true); // Start with endstops active. After homing they can be disabled enable_endstops(true); // Start with endstops active. After homing they can be disabled
sei(); sei();
} }
@ -893,13 +1003,13 @@ long st_get_position(uint8_t axis)
void finishAndDisableSteppers() void finishAndDisableSteppers()
{ {
st_synchronize(); st_synchronize();
disable_x(); disable_x();
disable_y(); disable_y();
disable_z(); disable_z();
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
} }
void quickStop() void quickStop()
@ -926,10 +1036,10 @@ void digipot_init() //Initialize Digipot Motor Current
{ {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
SPI.begin(); SPI.begin();
pinMode(DIGIPOTSS_PIN, OUTPUT); pinMode(DIGIPOTSS_PIN, OUTPUT);
for(int i=0;i<=4;i++) for(int i=0;i<=4;i++)
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
digipot_current(i,digipot_motor_current[i]); digipot_current(i,digipot_motor_current[i]);
#endif #endif