mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-17 23:18:34 +00:00
Implement delta auto-calibration and delta_height
This commit is contained in:
parent
03bda24d19
commit
8821963873
5 changed files with 438 additions and 20 deletions
|
@ -61,6 +61,7 @@
|
|||
* G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
|
||||
* G31 - Dock sled (Z_PROBE_SLED only)
|
||||
* G32 - Undock sled (Z_PROBE_SLED only)
|
||||
* G33 - Delta '4-point' auto calibration iteration
|
||||
* G38 - Probe target - similar to G28 except it uses the Z_MIN_PROBE for all three axes
|
||||
* G90 - Use Absolute Coordinates
|
||||
* G91 - Use Relative Coordinates
|
||||
|
@ -1443,7 +1444,7 @@ bool get_target_extruder_from_command(int code) {
|
|||
|
||||
#endif // NO_WORKSPACE_OFFSETS
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
/**
|
||||
* Change the home offset for an axis, update the current
|
||||
* position and the software endstops to retain the same
|
||||
|
@ -1457,7 +1458,7 @@ bool get_target_extruder_from_command(int code) {
|
|||
home_offset[axis] = v;
|
||||
update_software_endstops(axis);
|
||||
}
|
||||
#endif // NO_WORKSPACE_OFFSETS
|
||||
#endif // !NO_WORKSPACE_OFFSETS && !DELTA
|
||||
|
||||
/**
|
||||
* Set an axis' current position to its home position (after homing).
|
||||
|
@ -2299,7 +2300,7 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||
SERIAL_PROTOCOLPGM(" Y: ");
|
||||
SERIAL_PROTOCOL_F(y, 3);
|
||||
SERIAL_PROTOCOLPGM(" Z: ");
|
||||
SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
|
||||
SERIAL_PROTOCOL_F(measured_z, 3);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
|
@ -4901,8 +4902,366 @@ inline void gcode_G28() {
|
|||
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
/**
|
||||
* G33: Delta '4-point' auto calibration iteration
|
||||
*
|
||||
* Usage: G33 <Cn> <Vn>
|
||||
*
|
||||
* C (default) = Calibrate endstops, height and delta radius
|
||||
*
|
||||
* -2, 1-4: n x n probe points, default 3 x 3
|
||||
*
|
||||
* 1: probe center
|
||||
* set height only - useful when z_offset is changed
|
||||
* 2: probe center and towers
|
||||
* solve one '4 point' calibration
|
||||
* -2: probe center and opposite the towers
|
||||
* solve one '4 point' calibration
|
||||
* 3: probe 3 center points, towers and opposite-towers
|
||||
* averages between 2 '4 point' calibrations
|
||||
* 4: probe 4 center points, towers, opposite-towers and itermediate points
|
||||
* averages between 4 '4 point' calibrations
|
||||
*
|
||||
* V Verbose level (0-3, default 1)
|
||||
*
|
||||
* 0: Dry-run mode: no calibration
|
||||
* 1: Settings
|
||||
* 2: Setting + probe results
|
||||
* 3: Expert mode: setting + iteration factors (see Configuration_adv.h)
|
||||
* This prematurely stops the iteration process when factors are found
|
||||
*/
|
||||
inline void gcode_G33() {
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
set_bed_leveling_enabled(false);
|
||||
#endif
|
||||
|
||||
const int8_t pp = code_seen('C') ? code_value_int() : DELTA_CALIBRATION_DEFAULT_POINTS,
|
||||
probe_points = (WITHIN(pp, 1, 4) || pp == -2) ? pp : DELTA_CALIBRATION_DEFAULT_POINTS;
|
||||
|
||||
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
|
||||
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
#define _MAX_M33_V 3
|
||||
if (verbose_level == 3 && probe_points == 1) verbose_level--; // needs at least 4 points
|
||||
#else
|
||||
#define _MAX_M33_V 2
|
||||
if (verbose_level > 2)
|
||||
SERIAL_PROTOCOLLNPGM("Enable DELTA_CALIBRATE_EXPERT_MODE in Configuration_adv.h");
|
||||
#endif
|
||||
|
||||
if (!WITHIN(verbose_level, 0, _MAX_M33_V)) verbose_level = 1;
|
||||
|
||||
float zero_std_dev = verbose_level ? 999.0 : 0.0; // 0.0 in dry-run mode : forced end
|
||||
|
||||
gcode_G28();
|
||||
|
||||
float e_old[XYZ],
|
||||
dr_old = delta_radius,
|
||||
zh_old = home_offset[Z_AXIS];
|
||||
COPY(e_old,endstop_adj);
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
// expert variables
|
||||
float h_f_old = 1.00, r_f_old = 0.00,
|
||||
h_diff_min = 1.00, r_diff_max = 0.10;
|
||||
#endif
|
||||
|
||||
// print settings
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
||||
SERIAL_PROTOCOLPGM("Checking... AC");
|
||||
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
if (verbose_level == 3) SERIAL_PROTOCOLPGM(" (EXPERT)");
|
||||
#endif
|
||||
SERIAL_EOL;
|
||||
LCD_MESSAGEPGM("Checking... AC");
|
||||
|
||||
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
||||
if (abs(probe_points) > 1) {
|
||||
SERIAL_PROTOCOLPGM(" Ex:");
|
||||
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
|
||||
SERIAL_PROTOCOLPGM(" Ey:");
|
||||
if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
|
||||
SERIAL_PROTOCOLPGM(" Ez:");
|
||||
if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
|
||||
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
||||
}
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(Z_PROBE_SLED)
|
||||
DEPLOY_PROBE();
|
||||
#endif
|
||||
|
||||
float test_precision;
|
||||
int8_t iterations = 0;
|
||||
|
||||
do { // start iterations
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
|
||||
test_precision =
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
// Expert mode : forced end at std_dev < 0.1
|
||||
(verbose_level == 3 && zero_std_dev < 0.1) ? 0.0 :
|
||||
#endif
|
||||
zero_std_dev
|
||||
;
|
||||
|
||||
float z_at_pt[13] = { 0 };
|
||||
|
||||
iterations++;
|
||||
|
||||
// probe the points
|
||||
|
||||
int16_t center_points = 0;
|
||||
|
||||
if (probe_points != 3) {
|
||||
z_at_pt[0] += probe_pt(0.0, 0.0 , true, 1);
|
||||
center_points = 1;
|
||||
}
|
||||
|
||||
int16_t step_axis = 4;
|
||||
if (probe_points >= 3) {
|
||||
for (int8_t axis = 9; axis > 0; axis -= step_axis) { // uint8_t starts endless loop
|
||||
z_at_pt[0] += probe_pt(
|
||||
0.1 * cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
|
||||
0.1 * sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1);
|
||||
}
|
||||
center_points += 3;
|
||||
z_at_pt[0] /= center_points;
|
||||
}
|
||||
|
||||
float S1 = z_at_pt[0], S2 = sq(S1);
|
||||
|
||||
int16_t N = 1, start = (probe_points == -2) ? 3 : 1;
|
||||
step_axis = (abs(probe_points) == 2) ? 4 : (probe_points == 3) ? 2 : 1;
|
||||
|
||||
if (probe_points != 1) {
|
||||
for (uint8_t axis = start; axis < 13; axis += step_axis)
|
||||
z_at_pt[axis] += probe_pt(
|
||||
cos(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS),
|
||||
sin(RADIANS(180 + 30 * axis)) * (DELTA_CALIBRATION_RADIUS), true, 1
|
||||
);
|
||||
|
||||
if (probe_points == 4) step_axis = 2;
|
||||
}
|
||||
|
||||
for (uint8_t axis = start; axis < 13; axis += step_axis) {
|
||||
if (probe_points == 4)
|
||||
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
||||
|
||||
S1 += z_at_pt[axis];
|
||||
S2 += sq(z_at_pt[axis]);
|
||||
N++;
|
||||
}
|
||||
zero_std_dev = round(sqrt(S2 / N) * 1000.0) / 1000.0 + 0.00001; // deviation from zero plane
|
||||
|
||||
// Solve matrices
|
||||
|
||||
if (zero_std_dev < test_precision) {
|
||||
COPY(e_old, endstop_adj);
|
||||
dr_old = delta_radius;
|
||||
zh_old = home_offset[Z_AXIS];
|
||||
|
||||
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0;
|
||||
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
float h_f_new = 0.0, r_f_new = 0.0 , t_f_new = 0.0,
|
||||
h_diff = 0.00, r_diff = 0.00;
|
||||
#endif
|
||||
|
||||
#define ZP(N,I) ((N) * z_at_pt[I])
|
||||
#define Z1000(I) ZP(1.00, I)
|
||||
#define Z1050(I) ZP(H_FACTOR, I)
|
||||
#define Z0700(I) ZP((H_FACTOR) * 2.0 / 3.00, I)
|
||||
#define Z0350(I) ZP((H_FACTOR) / 3.00, I)
|
||||
#define Z0175(I) ZP((H_FACTOR) / 6.00, I)
|
||||
#define Z2250(I) ZP(R_FACTOR, I)
|
||||
#define Z0750(I) ZP((R_FACTOR) / 3.00, I)
|
||||
#define Z0375(I) ZP((R_FACTOR) / 6.00, I)
|
||||
|
||||
switch (probe_points) {
|
||||
case 1:
|
||||
LOOP_XYZ(i) e_delta[i] = Z1000(0);
|
||||
r_delta = 0.00;
|
||||
break;
|
||||
|
||||
case 2:
|
||||
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
|
||||
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
|
||||
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
|
||||
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
|
||||
break;
|
||||
|
||||
case -2:
|
||||
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
|
||||
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
|
||||
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
|
||||
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
|
||||
break;
|
||||
|
||||
default:
|
||||
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
|
||||
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
|
||||
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
|
||||
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
|
||||
break;
|
||||
}
|
||||
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
// Calculate h & r factors
|
||||
if (verbose_level == 3) {
|
||||
LOOP_XYZ(axis) h_f_new += e_delta[axis] / 3;
|
||||
r_f_new = r_delta;
|
||||
h_diff = (1.0 / H_FACTOR) * (h_f_old - h_f_new) / h_f_old;
|
||||
if (h_diff < h_diff_min && h_diff > 0.9) h_diff_min = h_diff;
|
||||
if (r_f_old != 0)
|
||||
r_diff = ( 0.0301 * sq(R_FACTOR) * R_FACTOR
|
||||
+ 0.311 * sq(R_FACTOR)
|
||||
+ 1.1493 * R_FACTOR
|
||||
+ 1.7952
|
||||
) * (r_f_old - r_f_new) / r_f_old;
|
||||
if (r_diff > r_diff_max && r_diff < 0.4444) r_diff_max = r_diff;
|
||||
SERIAL_EOL;
|
||||
|
||||
h_f_old = h_f_new;
|
||||
r_f_old = r_f_new;
|
||||
}
|
||||
#endif // DELTA_CALIBRATE_EXPERT_MODE
|
||||
|
||||
// Adjust delta_height and endstops by the max amount
|
||||
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
||||
delta_radius += r_delta;
|
||||
|
||||
const float z_temp = MAX3(endstop_adj[0], endstop_adj[1], endstop_adj[2]);
|
||||
home_offset[Z_AXIS] -= z_temp;
|
||||
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
|
||||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
else { // !iterate
|
||||
// step one back
|
||||
COPY(endstop_adj, e_old);
|
||||
delta_radius = dr_old;
|
||||
home_offset[Z_AXIS] = zh_old;
|
||||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
|
||||
// print report
|
||||
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
if (verbose_level == 3) {
|
||||
const float r_factor = 22.902 * sq(r_diff_max) * r_diff_max
|
||||
- 44.988 * sq(r_diff_max)
|
||||
+ 31.697 * r_diff_max
|
||||
- 9.4439;
|
||||
SERIAL_PROTOCOLPAIR("h_factor:", 1.0 / h_diff_min);
|
||||
SERIAL_PROTOCOLPAIR(" r_factor:", r_factor);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
if (verbose_level == 2) {
|
||||
SERIAL_PROTOCOLPGM(". c:");
|
||||
if (z_at_pt[0] > 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[0], 2);
|
||||
if (probe_points > 1) {
|
||||
SERIAL_PROTOCOLPGM(" x:");
|
||||
if (z_at_pt[1] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[1], 2);
|
||||
SERIAL_PROTOCOLPGM(" y:");
|
||||
if (z_at_pt[5] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[5], 2);
|
||||
SERIAL_PROTOCOLPGM(" z:");
|
||||
if (z_at_pt[9] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[9], 2);
|
||||
}
|
||||
if (probe_points > 0) SERIAL_EOL;
|
||||
if (probe_points > 2 || probe_points == -2) {
|
||||
if (probe_points > 2) SERIAL_PROTOCOLPGM(". ");
|
||||
SERIAL_PROTOCOLPGM(" yz:");
|
||||
if (z_at_pt[7] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[7], 2);
|
||||
SERIAL_PROTOCOLPGM(" zx:");
|
||||
if (z_at_pt[11] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[11], 2);
|
||||
SERIAL_PROTOCOLPGM(" xy:");
|
||||
if (z_at_pt[3] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(z_at_pt[3], 2);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
if (test_precision != 0.0) { // !forced end
|
||||
if (zero_std_dev >= test_precision) {
|
||||
SERIAL_PROTOCOLPGM("Calibration OK");
|
||||
SERIAL_PROTOCOLLNPGM(" rolling back 1");
|
||||
LCD_MESSAGEPGM("Calibration OK");
|
||||
SERIAL_EOL;
|
||||
}
|
||||
else { // !end iterations
|
||||
char mess[15] = "No convergence";
|
||||
if (iterations < 31)
|
||||
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
|
||||
SERIAL_PROTOCOL(mess);
|
||||
SERIAL_PROTOCOLPGM(" std dev:");
|
||||
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
||||
SERIAL_EOL;
|
||||
lcd_setstatus(mess);
|
||||
}
|
||||
SERIAL_PROTOCOLPAIR("Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
||||
if (abs(probe_points) > 1) {
|
||||
SERIAL_PROTOCOLPGM(" Ex:");
|
||||
if (endstop_adj[A_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[A_AXIS], 2);
|
||||
SERIAL_PROTOCOLPGM(" Ey:");
|
||||
if (endstop_adj[B_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[B_AXIS], 2);
|
||||
SERIAL_PROTOCOLPGM(" Ez:");
|
||||
if (endstop_adj[C_AXIS] >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(endstop_adj[C_AXIS], 2);
|
||||
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
||||
}
|
||||
SERIAL_EOL;
|
||||
if (zero_std_dev >= test_precision)
|
||||
SERIAL_PROTOCOLLNPGM("Save with M500");
|
||||
}
|
||||
else { // forced end
|
||||
#if ENABLED(DELTA_CALIBRATE_EXPERT_MODE)
|
||||
if (verbose_level == 3)
|
||||
SERIAL_PROTOCOLLNPGM("Copy to Configuration_adv.h");
|
||||
else
|
||||
#endif
|
||||
{
|
||||
SERIAL_PROTOCOLPGM("End DRY-RUN std dev:");
|
||||
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
stepper.synchronize();
|
||||
|
||||
gcode_G28();
|
||||
|
||||
} while (zero_std_dev < test_precision && iterations < 31);
|
||||
|
||||
#if ENABLED(Z_PROBE_SLED)
|
||||
RETRACT_PROBE();
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // DELTA_AUTO_CALIBRATION
|
||||
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
|
||||
static bool G38_run_probe() {
|
||||
|
@ -5631,7 +5990,7 @@ inline void gcode_M42() {
|
|||
|
||||
if (axis_unhomed_error(true, true, true)) return;
|
||||
|
||||
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
|
||||
const int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
|
||||
if (!WITHIN(verbose_level, 0, 4)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
|
||||
return;
|
||||
|
@ -7023,7 +7382,7 @@ inline void gcode_M205() {
|
|||
if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
|
||||
}
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
|
||||
/**
|
||||
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
||||
|
@ -7048,6 +7407,7 @@ inline void gcode_M205() {
|
|||
/**
|
||||
* M665: Set delta configurations
|
||||
*
|
||||
* H = diagonal rod // AC-version
|
||||
* L = diagonal rod
|
||||
* R = delta radius
|
||||
* S = segments per second
|
||||
|
@ -7056,6 +7416,12 @@ inline void gcode_M205() {
|
|||
* C = Gamma (Tower 3) diagonal rod trim
|
||||
*/
|
||||
inline void gcode_M665() {
|
||||
if (code_seen('H')) {
|
||||
home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
|
||||
current_position[Z_AXIS] += code_value_linear_units() - DELTA_HEIGHT - home_offset[Z_AXIS];
|
||||
home_offset[Z_AXIS] = code_value_linear_units() - DELTA_HEIGHT;
|
||||
update_software_endstops(Z_AXIS);
|
||||
}
|
||||
if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
|
||||
if (code_seen('R')) delta_radius = code_value_linear_units();
|
||||
if (code_seen('S')) delta_segments_per_second = code_value_float();
|
||||
|
@ -7914,7 +8280,7 @@ void quickstop_stepper() {
|
|||
|
||||
#endif
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
|
||||
/**
|
||||
* M428: Set home_offset based on the distance between the
|
||||
|
@ -9203,6 +9569,15 @@ void process_next_command() {
|
|||
break;
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
|
||||
case 33: // G33: Delta Auto Calibrate
|
||||
gcode_G33();
|
||||
break;
|
||||
|
||||
#endif // DELTA_AUTO_CALIBRATION
|
||||
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
|
@ -9520,7 +9895,7 @@ void process_next_command() {
|
|||
gcode_M205();
|
||||
break;
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
case 206: // M206: Set home offsets
|
||||
gcode_M206();
|
||||
break;
|
||||
|
@ -9688,7 +10063,7 @@ void process_next_command() {
|
|||
break;
|
||||
#endif
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
case 428: // M428: Apply current_position to home_offset
|
||||
gcode_M428();
|
||||
break;
|
||||
|
@ -11054,6 +11429,9 @@ void disable_all_steppers() {
|
|||
#if ENABLED(E3_IS_TMC2130)
|
||||
automatic_current_control(stepperE3);
|
||||
#endif
|
||||
#if ENABLED(E4_IS_TMC2130)
|
||||
automatic_current_control(stepperE4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -395,7 +395,7 @@
|
|||
* Delta Auto calibration
|
||||
*/
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION) && ENABLED(NO_WORKSPACE_OFFSETS)
|
||||
#error "To use DELTA_AUTO_CALIBRATION you must disable NO_WORKSPACE_OFFSETS."
|
||||
#error "DELTA_AUTO_CALIBRATION is incompatible with NO_WORKSPACE_OFFSETS."
|
||||
#endif
|
||||
|
||||
/**
|
||||
|
|
|
@ -300,9 +300,17 @@ void MarlinSettings::postprocess() {
|
|||
EEPROM_WRITE(planner.min_segment_time);
|
||||
EEPROM_WRITE(planner.max_jerk);
|
||||
#if ENABLED(NO_WORKSPACE_OFFSETS)
|
||||
float home_offset[XYZ] = { 0 };
|
||||
const float home_offset[XYZ] = { 0 };
|
||||
#endif
|
||||
#if ENABLED(DELTA)
|
||||
dummy = 0.0;
|
||||
EEPROM_WRITE(dummy);
|
||||
EEPROM_WRITE(dummy);
|
||||
dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
|
||||
EEPROM_WRITE(dummy);
|
||||
#else
|
||||
EEPROM_WRITE(home_offset);
|
||||
#endif
|
||||
|
||||
#if HOTENDS > 1
|
||||
// Skip hotend 0 which must be 0
|
||||
|
@ -488,7 +496,7 @@ void MarlinSettings::postprocess() {
|
|||
EEPROM_WRITE(dummy);
|
||||
}
|
||||
|
||||
// Save TCM2130 Configuration, and placeholder values
|
||||
// Save TMC2130 Configuration, and placeholder values
|
||||
uint16_t val;
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
|
@ -551,6 +559,12 @@ void MarlinSettings::postprocess() {
|
|||
val = 0;
|
||||
#endif
|
||||
EEPROM_WRITE(val);
|
||||
#if ENABLED(E4_IS_TMC2130)
|
||||
val = stepperE4.getCurrent();
|
||||
#else
|
||||
val = 0;
|
||||
#endif
|
||||
EEPROM_WRITE(val);
|
||||
#else
|
||||
val = 0;
|
||||
for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
|
||||
|
@ -644,6 +658,12 @@ void MarlinSettings::postprocess() {
|
|||
#endif
|
||||
EEPROM_READ(home_offset);
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
home_offset[X_AXIS] = 0.0;
|
||||
home_offset[Y_AXIS] = 0.0;
|
||||
home_offset[Z_AXIS] -= DELTA_HEIGHT;
|
||||
#endif
|
||||
|
||||
#if HOTENDS > 1
|
||||
// Skip hotend 0 which must be 0
|
||||
for (uint8_t e = 1; e < HOTENDS; e++)
|
||||
|
@ -1019,6 +1039,9 @@ void MarlinSettings::reset() {
|
|||
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
||||
COPY(delta_diagonal_rod_trim, drt);
|
||||
COPY(delta_tower_angle_trim, dta);
|
||||
#if ENABLED(DELTA)
|
||||
home_offset[Z_AXIS] = 0;
|
||||
#endif
|
||||
#elif ENABLED(Z_DUAL_ENDSTOPS)
|
||||
float z_endstop_adj =
|
||||
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
|
||||
|
@ -1231,7 +1254,7 @@ void MarlinSettings::reset() {
|
|||
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
|
||||
SERIAL_EOL;
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
CONFIG_ECHO_START;
|
||||
if (!forReplay) {
|
||||
SERIAL_ECHOLNPGM("Home offset (mm)");
|
||||
|
@ -1346,11 +1369,12 @@ void MarlinSettings::reset() {
|
|||
SERIAL_EOL;
|
||||
CONFIG_ECHO_START;
|
||||
if (!forReplay) {
|
||||
SERIAL_ECHOLNPGM("Delta settings: L=diagonal rod, R=radius, S=segments-per-second, ABC=diagonal rod trim, IJK=tower angle trim");
|
||||
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, H=height, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
|
||||
CONFIG_ECHO_START;
|
||||
}
|
||||
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
|
||||
SERIAL_ECHOPAIR(" R", delta_radius);
|
||||
SERIAL_ECHOPAIR(" H", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
|
||||
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim[A_AXIS]);
|
||||
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim[B_AXIS]);
|
||||
|
|
|
@ -498,6 +498,12 @@
|
|||
#ifndef MSG_DELTA_CALIBRATE_CENTER
|
||||
#define MSG_DELTA_CALIBRATE_CENTER _UxGT("Calibrate Center")
|
||||
#endif
|
||||
#ifndef MSG_DELTA_AUTO_CALIBRATE
|
||||
#define MSG_DELTA_AUTO_CALIBRATE _UxGT("Auto Calibration")
|
||||
#endif
|
||||
#ifndef MSG_DELTA_HEIGHT_CALIBRATE
|
||||
#define MSG_DELTA_HEIGHT_CALIBRATE _UxGT("Set Delta Height")
|
||||
#endif
|
||||
#ifndef MSG_INFO_MENU
|
||||
#define MSG_INFO_MENU _UxGT("About Printer")
|
||||
#endif
|
||||
|
|
|
@ -817,7 +817,7 @@ void kill_screen(const char* lcd_msg) {
|
|||
*
|
||||
*/
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
/**
|
||||
* Set the home offset based on the current_position
|
||||
*/
|
||||
|
@ -1672,7 +1672,7 @@ void kill_screen(const char* lcd_msg) {
|
|||
|
||||
#endif
|
||||
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS)
|
||||
#if DISABLED(NO_WORKSPACE_OFFSETS) && DISABLED(DELTA)
|
||||
//
|
||||
// Set Home Offsets
|
||||
//
|
||||
|
@ -1770,14 +1770,20 @@ void kill_screen(const char* lcd_msg) {
|
|||
lcd_goto_screen(_lcd_calibrate_homing);
|
||||
}
|
||||
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
#define _DELTA_TOWER_MOVE_RADIUS DELTA_CALIBRATION_RADIUS
|
||||
#else
|
||||
#define _DELTA_TOWER_MOVE_RADIUS DELTA_PRINTABLE_RADIUS
|
||||
#endif
|
||||
|
||||
// Move directly to the tower position with uninterpolated moves
|
||||
// If we used interpolated moves it would cause this to become re-entrant
|
||||
void _goto_tower_pos(const float &a) {
|
||||
current_position[Z_AXIS] = max(Z_HOMING_HEIGHT, Z_CLEARANCE_BETWEEN_PROBES) + (DELTA_PRINTABLE_RADIUS) / 5;
|
||||
line_to_current(Z_AXIS);
|
||||
|
||||
current_position[X_AXIS] = a < 0 ? X_HOME_POS : sin(a) * -(DELTA_PRINTABLE_RADIUS);
|
||||
current_position[Y_AXIS] = a < 0 ? Y_HOME_POS : cos(a) * (DELTA_PRINTABLE_RADIUS);
|
||||
current_position[X_AXIS] = a < 0 ? LOGICAL_X_POSITION(X_HOME_POS) : sin(a) * -(_DELTA_TOWER_MOVE_RADIUS);
|
||||
current_position[Y_AXIS] = a < 0 ? LOGICAL_Y_POSITION(Y_HOME_POS) : cos(a) * (_DELTA_TOWER_MOVE_RADIUS);
|
||||
line_to_current(Z_AXIS);
|
||||
|
||||
current_position[Z_AXIS] = 4.0;
|
||||
|
@ -1797,6 +1803,10 @@ void kill_screen(const char* lcd_msg) {
|
|||
void lcd_delta_calibrate_menu() {
|
||||
START_MENU();
|
||||
MENU_BACK(MSG_MAIN);
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
MENU_ITEM(gcode, MSG_DELTA_AUTO_CALIBRATE, PSTR("G33 C"));
|
||||
MENU_ITEM(gcode, MSG_DELTA_HEIGHT_CALIBRATE, PSTR("G33 C1"));
|
||||
#endif
|
||||
MENU_ITEM(submenu, MSG_AUTO_HOME, _lcd_delta_calibrate_home);
|
||||
if (axis_homed[Z_AXIS]) {
|
||||
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE_X, _goto_tower_x);
|
||||
|
|
Loading…
Reference in a new issue