0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-19 08:08:25 +00:00

Kinematic clamp_to_software_endstops

This commit is contained in:
Scott Lahteine 2017-10-30 14:13:13 -05:00
parent 8b7c1e9cec
commit 893092ff7f

View file

@ -472,11 +472,14 @@ float filament_size[EXTRUDERS], volumetric_multiplier[EXTRUDERS];
#endif
// Software Endstops are based on the configured limits.
#if HAS_SOFTWARE_ENDSTOPS
bool soft_endstops_enabled = true;
#endif
float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
#if HAS_SOFTWARE_ENDSTOPS
bool soft_endstops_enabled = true;
#if IS_KINEMATIC
float soft_endstop_radius, soft_endstop_radius_2;
#endif
#endif
#if FAN_COUNT > 0
int16_t fanSpeeds[FAN_COUNT] = { 0 };
@ -1464,8 +1467,17 @@ bool get_target_extruder_from_command(const uint16_t code) {
#endif
#if ENABLED(DELTA)
if (axis == Z_AXIS)
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
switch(axis) {
case X_AXIS:
case Y_AXIS:
// Get a minimum radius for clamping
soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
soft_endstop_radius_2 = sq(soft_endstop_radius);
break;
case Z_AXIS:
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
default: break;
}
#endif
}
@ -12045,33 +12057,38 @@ void ok_to_send() {
#if HAS_SOFTWARE_ENDSTOPS
/**
* Constrain the given coordinates to the software endstops.
*/
/**
* Constrain the given coordinates to the software endstops.
*
* NOTE: This will only apply to Z on DELTA and SCARA. XY is
* constrained to a circle on these kinematic systems.
* For DELTA/SCARA the XY constraint is based on the smallest
* radius within the set software endstops.
*/
void clamp_to_software_endstops(float target[XYZ]) {
if (!soft_endstops_enabled) return;
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
#if IS_KINEMATIC
const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
if (dist_2 > soft_endstop_radius_2) {
const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
target[X_AXIS] *= ratio;
target[Y_AXIS] *= ratio;
}
#else
#if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
#endif
#endif
#if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
#endif
#if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
#endif