diff --git a/Marlin/ultralcd.cpp b/Marlin/ultralcd.cpp index dcfcb350b8..83ce9d2fe4 100644 --- a/Marlin/ultralcd.cpp +++ b/Marlin/ultralcd.cpp @@ -460,6 +460,13 @@ uint16_t max_display_update_time = 0; #define manual_move_e_index 0 #endif + #if IS_KINEMATIC + bool processing_manual_move = false; + float manual_move_offset = 0.0; + #else + constexpr bool processing_manual_move = false; + #endif + #if PIN_EXISTS(SD_DETECT) uint8_t lcd_sd_status; #endif @@ -2732,14 +2739,60 @@ void kill_screen(const char* lcd_msg) { #endif // DELTA_CALIBRATION_MENU + #if IS_KINEMATIC + extern float feedrate_mm_s; + extern float destination[XYZE]; + void set_destination_to_current(); + void prepare_move_to_destination(); + #endif + /** * If the most recent manual move hasn't been fed to the planner yet, * and the planner can accept one, send immediately */ inline void manage_manual_move() { + + if (processing_manual_move) return; + if (manual_move_axis != (int8_t)NO_AXIS && ELAPSED(millis(), manual_move_start_time) && !planner.is_full()) { - planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); - manual_move_axis = (int8_t)NO_AXIS; + + #if IS_KINEMATIC + + const float old_feedrate = feedrate_mm_s; + feedrate_mm_s = MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]); + + #if EXTRUDERS > 1 + const int8_t old_extruder = active_extruder; + active_extruder = manual_move_e_index; + #endif + + // Set movement on a single axis + set_destination_to_current(); + destination[manual_move_axis] += manual_move_offset; + + // Reset for the next move + manual_move_offset = 0.0; + manual_move_axis = (int8_t)NO_AXIS; + + // DELTA and SCARA machines use segmented moves, which could fill the planner during the call to + // move_to_destination. This will cause idle() to be called, which can then call this function while the + // previous invocation is being blocked. Modifications to manual_move_offset shouldn't be made while + // processing_manual_move is true or the planner will get out of sync. + processing_manual_move = true; + prepare_move_to_destination(); // will call set_current_to_destination + processing_manual_move = false; + + feedrate_mm_s = old_feedrate; + #if EXTRUDERS > 1 + active_extruder = old_extruder; + #endif + + #else + + planner.buffer_line_kinematic(current_position, MMM_TO_MMS(manual_feedrate_mm_m[manual_move_axis]), manual_move_e_index); + manual_move_axis = (int8_t)NO_AXIS; + + #endif } } @@ -2771,9 +2824,10 @@ void kill_screen(const char* lcd_msg) { void _lcd_move_xyz(const char* name, AxisEnum axis) { if (lcd_clicked) { return lcd_goto_previous_menu(); } ENCODER_DIRECTION_NORMAL(); - if (encoderPosition) { + if (encoderPosition && !processing_manual_move) { refresh_cmd_timeout(); + // Start with no limits to movement float min = current_position[axis] - 1000, max = current_position[axis] + 1000; @@ -2789,29 +2843,43 @@ void kill_screen(const char* lcd_msg) { } #endif - // Get the new position - current_position[axis] += float((int32_t)encoderPosition) * move_menu_scale; - // Delta limits XY based on the current offset from center // This assumes the center is 0,0 #if ENABLED(DELTA) if (axis != Z_AXIS) { - max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis])); + max = SQRT(sq((float)(DELTA_PRINTABLE_RADIUS)) - sq(current_position[Y_AXIS - axis])); // (Y_AXIS - axis) == the other axis min = -max; } #endif - // Limit only when trying to move towards the limit - if ((int32_t)encoderPosition < 0) NOLESS(current_position[axis], min); - if ((int32_t)encoderPosition > 0) NOMORE(current_position[axis], max); + // Get the new position + const float diff = float((int32_t)encoderPosition) * move_menu_scale; + #if IS_KINEMATIC + manual_move_offset += diff; + // Limit only when trying to move towards the limit + if ((int32_t)encoderPosition < 0) NOLESS(manual_move_offset, min - current_position[axis]); + if ((int32_t)encoderPosition > 0) NOMORE(manual_move_offset, max - current_position[axis]); + #else + current_position[axis] += diff; + // Limit only when trying to move towards the limit + if ((int32_t)encoderPosition < 0) NOLESS(current_position[axis], min); + if ((int32_t)encoderPosition > 0) NOMORE(current_position[axis], max); + #endif + + encoderPosition = 0; manual_move_to_current(axis); - encoderPosition = 0; lcdDrawUpdate = LCDVIEW_REDRAW_NOW; } - if (lcdDrawUpdate) - lcd_implementation_drawedit(name, move_menu_scale >= 0.1 ? ftostr41sign(current_position[axis]) : ftostr43sign(current_position[axis])); + if (lcdDrawUpdate) { + const float pos = current_position[axis] + #if IS_KINEMATIC + + manual_move_offset + #endif + ; + lcd_implementation_drawedit(name, move_menu_scale >= 0.1 ? ftostr41sign(pos) : ftostr43sign(pos)); + } } void lcd_move_x() { _lcd_move_xyz(PSTR(MSG_MOVE_X), X_AXIS); } void lcd_move_y() { _lcd_move_xyz(PSTR(MSG_MOVE_Y), Y_AXIS); } @@ -2824,16 +2892,23 @@ void kill_screen(const char* lcd_msg) { if (lcd_clicked) { return lcd_goto_previous_menu(); } ENCODER_DIRECTION_NORMAL(); if (encoderPosition) { - current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale; - encoderPosition = 0; - manual_move_to_current(E_AXIS - #if E_MANUAL > 1 - , eindex + if (!processing_manual_move) { + const float diff = float((int32_t)encoderPosition) * move_menu_scale; + #if IS_KINEMATIC + manual_move_offset += diff; + #else + current_position[E_AXIS] += diff; #endif - ); - lcdDrawUpdate = LCDVIEW_REDRAW_NOW; + manual_move_to_current(E_AXIS + #if E_MANUAL > 1 + , eindex + #endif + ); + lcdDrawUpdate = LCDVIEW_REDRAW_NOW; + } + encoderPosition = 0; } - if (lcdDrawUpdate) { + if (lcdDrawUpdate && !processing_manual_move) { PGM_P pos_label; #if E_MANUAL == 1 pos_label = PSTR(MSG_MOVE_E); @@ -2852,7 +2927,11 @@ void kill_screen(const char* lcd_msg) { #endif // E_MANUAL > 2 } #endif // E_MANUAL > 1 - lcd_implementation_drawedit(pos_label, ftostr41sign(current_position[E_AXIS])); + lcd_implementation_drawedit(pos_label, ftostr41sign(current_position[E_AXIS] + #if IS_KINEMATIC + + manual_move_offset + #endif + )); } }