0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-17 23:18:34 +00:00

PWM fixes, slow down fan update

include LPC1768 syntax for M42

couple more pin_t changes

consistency

change M42 to R, P format

Revert "change M42 to R, P format"

This reverts commit 01f12f579ec9ccc1bb9126e68d2c86449e9b7edf.
This commit is contained in:
Bob-the-Kuhn 2017-11-15 19:01:52 -06:00 committed by Scott Lahteine
parent 60adc6ff02
commit c14000775b
7 changed files with 371 additions and 364 deletions

View file

@ -29,38 +29,49 @@
/**
* This is a hybrid system.
*
* The PWM1 module is used to directly control the Servo 0, 1 & 3 pins. This keeps
* The PWM1 module is used to directly control the Servo 0, 1 & 3 pins and D9 & D10 pins. This keeps
* the pulse width jitter to under a microsecond.
*
* For all other pins the PWM1 module is used to generate interrupts. The ISR
* routine does the actual setting/clearing of pins. The upside is that any pin can
* have a PWM channel assigned to it. The downside is that there is more pulse width
* jitter. The jitter depends on what else is happening in the system and what ISRs
* prempt the PWM ISR. Writing to the SD card can add 20 microseconds to the pulse
* width.
* pre-empt the PWM ISR.
*/
/**
* The data structures are setup to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 2.2 - 3.7 microseconds.
* The data structures are set up to minimize the computation done by the ISR which
* minimizes ISR execution time. Execution times are 2-4µs except when updating to
* a new value when they are 19µs.
*
* Two tables are used. active_table is used by the ISR. Changes to the table are
* are done by copying the active_table into the work_table, updating the work_table
* and then swapping the two tables. Swapping is done by manipulating pointers.
* Two tables are used. One table contains the data used by the ISR to update/control
* the PWM pins. The other is used as an aid when rebuilding the ISR table.
*
* Immediately after the swap the ISR uses the work_table until the start of the
* next 20mS cycle. During this transition the "work_table" is actually the table
* that was being used before the swap. The "active_table" contains the data that
* will start being used at the start of the next 20mS period. This keeps the pins
* well behaved during the transition.
* The LPC1768_PWM_attach_pin routine disables the ISR and then adds the new info to
* ISR table. It can update the table directly because none of its changes affect
* what the ISR does.
*
* The ISR's priority is set to the maximum otherwise other ISRs can cause considerable
* jitter in the PWM high time.
* LPC1768_PWM_detach_pin routine disables the ISR, disables the pin immediately if
* it's a directly controlled pin and updates the helper table. It then flags the
* ISR that the ISR table needs to be rebuilt.
*
* LPC1768_PWM_write routine disables the ISR and updates the helper table. It then
* flags the ISR that the ISR table needs to be rebuilt.
*
* The ISR's priority is set to less than the stepper ISR otherwise it could cause jitter
* in the step pulses.
*
* See the end of this file for details on the hardware/firmware interaction
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
// #include <math.h>
// #include <stdio.h>
// #include <stdlib.h>
#include <lpc17xx_pinsel.h>
#include "LPC1768_PWM.h"
#include "arduino.h"
@ -68,48 +79,68 @@
#define NUM_PWMS 6
typedef struct { // holds all data needed to control/init one of the PWM channels
uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
pin_t pin;
uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER
volatile uint32_t* set_register;
volatile uint32_t* clr_register;
uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
uint32_t microseconds; // value written to MR register
uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
bool PWM_flag; // 0 - USED BY sERVO, 1 - USED BY ANALOGWRITE
uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
uint8_t assigned_MR; // Which MR (1-6) is used by this logical channel
uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
uint8_t sequence; // 0: available slot, 1 - 6: PWM channel assigned to that slot
pin_t pin;
uint16_t PWM_mask; // MASK TO CHECK/WRITE THE IR REGISTER
volatile uint32_t* set_register;
volatile uint32_t* clr_register;
uint32_t write_mask; // USED BY SET/CLEAR COMMANDS
uint32_t microseconds; // value written to MR register
uint32_t min; // lower value limit checked by WRITE routine before writing to the MR register
uint32_t max; // upper value limit checked by WRITE routine before writing to the MR register
bool PWM_flag; // 0 - USED BY hardware PWM, 1 - USED BY ANALOGWRITE
uint8_t servo_index; // 0 - MAX_SERVO -1 : servo index, 0xFF : PWM channel
bool active_flag; // THIS TABLE ENTRY IS ACTIVELY TOGGLING A PIN
uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
volatile uint32_t* PINSEL_reg; // PINSEL register
uint32_t PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control
} PWM_map;
#define MICRO_MAX 0xffffffff
#define MICRO_MAX 0xFFFFFFFF
#define PWM_MAP_INIT_ROW {0, P_NC, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0}
#define PWM_MAP_INIT {PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
PWM_MAP_INIT_ROW,\
#define PWM_MAP_INIT_ROW { 0, 0x7FFF, 0, 0, 0, 0, MICRO_MAX, 0, 0, 0, 0, 0, 0, 0, 0 }
#define PWM_MAP_INIT { PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \
PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, PWM_MAP_INIT_ROW, \
};
PWM_map PWM1_map_A[NUM_PWMS] = PWM_MAP_INIT;
PWM_map PWM1_map_B[NUM_PWMS] = PWM_MAP_INIT;
PWM_map ISR_table[NUM_PWMS] = PWM_MAP_INIT;
PWM_map *active_table = PWM1_map_A;
PWM_map *work_table = PWM1_map_B;
PWM_map *ISR_table;
#define IR_BIT(p) ((p) >= 0 && (p) <= 3 ? (p) : p + 4 )
#define PIN_IS_INVERTED(p) 0 // placeholder in case inverting PWM output is offered
#define IR_BIT(p) (p >= 0 && p <= 3 ? p : p + 4 )
#define COPY_ACTIVE_TABLE for (uint8_t i = 0; i < 6 ; i++) work_table[i] = active_table[i]
#define PIN_IS_INVERTED(p) 0 // place holder in case inverting PWM output is offered
#define P1_18_PWM_channel 1 // servo 3
#define P1_20_PWM_channel 2 // servo 0
#define P1_21_PWM_channel 3 // servo 1
#define P2_4_PWM_channel 5 // D9
#define P2_5_PWM_channel 6 // D10
// used to keep track of which Match Registers have been used and if they will be used by the
// PWM1 module to directly control the pin or will be used to generate an interrupt
typedef struct { // status of PWM1 channel
uint8_t map_used; // 0 - this MR register not used/assigned
uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM
pin_t map_PWM_PIN; // pin for this PwM1 controlled pin / port
volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel
uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
// 0 - don't switch to PWM1 direct control
volatile uint32_t* PINSEL_reg; // PINSEL register
uint32_t PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control
} MR_map;
MR_map map_MR[NUM_PWMS];
void LPC1768_PWM_update_map_MR(void) {
map_MR[0] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_18_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0, 0 };
map_MR[1] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_20_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0, 0 };
map_MR[2] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P1_21_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0, 0 };
map_MR[3] = { 0, 0, P_NC, &LPC_PWM1->MR4, 0, 0, 0 };
map_MR[4] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_4_PWM_channel) ? 1 : 0), P2_4, &LPC_PWM1->MR5, 0, 0, 0 };
map_MR[5] = { 0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + P2_5_PWM_channel) ? 1 : 0), P2_5, &LPC_PWM1->MR6, 0, 0, 0 };
}
/**
* Prescale register and MR0 register values
@ -144,218 +175,83 @@ PWM_map *ISR_table;
*
*/
bool ISR_table_update = false; // flag to tell the ISR that the tables need to be updated & swapped
void LPC1768_PWM_init(void) {
#define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable
#define SBIT_CNTRST 1 // reset counters to known state
#define SBIT_PWMEN 3 // 1 - PWM, 0 - timer
#define SBIT_PWMMR0R 1
#define PCPWM1 6
#define SBIT_CNTEN 0 // PWM1 counter & pre-scaler enable/disable
#define SBIT_CNTRST 1 // reset counters to known state
#define SBIT_PWMEN 3 // 1 - PWM, 0 - timer
#define SBIT_PWMMR0R 1
#define PCPWM1 6
#define PCLK_PWM1 12
LPC_SC->PCONP |= (1 << PCPWM1); // enable PWM1 controller (enabled on power up)
SBI(LPC_SC->PCONP, PCPWM1); // Enable PWM1 controller (enabled on power up)
LPC_SC->PCLKSEL0 &= ~(0x3 << PCLK_PWM1);
LPC_SC->PCLKSEL0 |= (LPC_PWM1_PCLKSEL0 << PCLK_PWM1);
LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS
// MR0 must be set before TCR enables the PWM
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST)| _BV(SBIT_PWMEN);; // enable counters, reset counters, set mode to PWM
LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // take counters out of reset
LPC_PWM1->PR = LPC_PWM1_PR;
LPC_PWM1->MCR = (_BV(SBIT_PWMMR0R) | _BV(0)); // Reset TC if it matches MR0, disable all interrupts except for MR0
LPC_PWM1->CTCR = 0; // disable counter mode (enable PWM mode)
LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
// Set all PWMs to single edge
LPC_PWM1->PCR = 0; // single edge mode for all channels, PWM1 control of outputs off
LPC_PWM1->MR0 = LPC_PWM1_MR0; // TC resets every 19,999 + 1 cycles - sets PWM cycle(Ton+Toff) to 20 mS
// MR0 must be set before TCR enables the PWM
LPC_PWM1->TCR = _BV(SBIT_CNTEN) | _BV(SBIT_CNTRST) | _BV(SBIT_PWMEN); // Enable counters, reset counters, set mode to PWM
LPC_PWM1->TCR &= ~(_BV(SBIT_CNTRST)); // Take counters out of reset
LPC_PWM1->PR = LPC_PWM1_PR;
LPC_PWM1->MCR = _BV(SBIT_PWMMR0R) | _BV(0); // Reset TC if it matches MR0, disable all interrupts except for MR0
LPC_PWM1->CTCR = 0; // Disable counter mode (enable PWM mode)
LPC_PWM1->LER = 0x07F; // Set the latch Enable Bits to load the new Match Values for MR0 - MR6
LPC_PWM1->PCR = 0; // Single edge mode for all channels, PWM1 control of outputs off
NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler
// NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // normal priority for PWM module
NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // minimizes jitter due to higher priority ISRs
NVIC_EnableIRQ(PWM1_IRQn); // Enable interrupt handler
NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 10, 0)); // Normal priority for PWM module
//NVIC_SetPriority(PWM1_IRQn, NVIC_EncodePriority(0, 0, 0)); // Minimizes jitter due to higher priority ISRs
}
bool PWM_table_swap = false; // flag to tell the ISR that the tables have been swapped
bool PWM_MR0_wait = false; // flag to ensure don't delay MR0 interrupt
bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min /* = 1 */, uint32_t max /* = (LPC_PWM1_MR0 - MR0_MARGIN) */, uint8_t servo_index /* = 0xff */) {
while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
COPY_ACTIVE_TABLE; // copy active table into work table
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF)); // Sometimes the upper byte is garbled
NVIC_DisableIRQ(PWM1_IRQn); // make it safe to update the active table
// OK to update the active table because the
// ISR doesn't use any of the changed items
uint8_t slot = 0;
for (uint8_t i = 0; i < NUM_PWMS ; i++) // see if already in table
if (work_table[i].pin == pin) return 1;
if (ISR_table[i].pin == pin) {
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
for (uint8_t i = 1; (i < NUM_PWMS + 1) && !slot; i++) // find empty slot
if ( !(work_table[i - 1].set_register)) slot = i; // any item that can't be zero when active or just attached is OK
if ( !(ISR_table[i - 1].set_register)) { slot = i; break; } // any item that can't be zero when active or just attached is OK
if (!slot) return 0;
slot--; // turn it into array index
work_table[slot].pin = pin; // init slot
work_table[slot].PWM_mask = 0; // real value set by PWM_write
work_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
work_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
work_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin));
work_table[slot].microseconds = MICRO_MAX;
work_table[slot].min = min;
work_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
work_table[slot].servo_index = servo_index;
work_table[slot].active_flag = false;
ISR_table[slot].pin = pin; // init slot
ISR_table[slot].PWM_mask = 0; // real value set by PWM_write
ISR_table[slot].set_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET;
ISR_table[slot].clr_register = PIN_IS_INVERTED(pin) ? &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOCLR;
ISR_table[slot].write_mask = LPC_PIN(LPC1768_PIN_PIN(pin));
ISR_table[slot].microseconds = MICRO_MAX;
ISR_table[slot].min = min;
ISR_table[slot].max = MIN(max, LPC_PWM1_MR0 - MR0_MARGIN);
ISR_table[slot].servo_index = servo_index;
ISR_table[slot].active_flag = false;
//swap tables
PWM_MR0_wait = true;
while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
NVIC_DisableIRQ(PWM1_IRQn);
PWM_map *pointer_swap = active_table;
active_table = work_table;
work_table = pointer_swap;
PWM_table_swap = true; // tell the ISR that the tables have been swapped
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
#define pin_11_PWM_channel 2
#define pin_6_PWM_channel 3
#define pin_4_PWM_channel 1
// used to keep track of which Match Registers have been used and if they will be used by the
// PWM1 module to directly control the pin or will be used to generate an interrupt
typedef struct { // status of PWM1 channel
uint8_t map_used; // 0 - this MR register not used/assigned
uint8_t map_PWM_INT; // 0 - available for interrupts, 1 - in use by PWM
pin_t map_PWM_PIN; // pin for this PwM1 controlled pin / port
volatile uint32_t* MR_register; // address of the MR register for this PWM1 channel
uint32_t PCR_bit; // PCR register bit to enable PWM1 control of this pin
uint32_t PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control
} MR_map;
MR_map map_MR[NUM_PWMS];
void LPC1768_PWM_update_map_MR(void) {
map_MR[0] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_4_PWM_channel) ? 1 : 0), P1_18, &LPC_PWM1->MR1, 0, 0};
map_MR[1] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_11_PWM_channel) ? 1 : 0), P1_20, &LPC_PWM1->MR2, 0, 0};
map_MR[2] = {0, (uint8_t) (LPC_PWM1->PCR & _BV(8 + pin_6_PWM_channel) ? 1 : 0), P1_21, &LPC_PWM1->MR3, 0, 0};
map_MR[3] = {0, 0, P_NC, &LPC_PWM1->MR4, 0, 0};
map_MR[4] = {0, 0, P_NC, &LPC_PWM1->MR5, 0, 0};
map_MR[5] = {0, 0, P_NC, &LPC_PWM1->MR6, 0, 0};
}
uint32_t LPC1768_PWM_interrupt_mask = 1;
void LPC1768_PWM_update(void) {
for (uint8_t i = NUM_PWMS; --i;) { // (bubble) sort table by microseconds
bool didSwap = false;
PWM_map temp;
for (uint16_t j = 0; j < i; ++j) {
if (work_table[j].microseconds > work_table[j + 1].microseconds) {
temp = work_table[j + 1];
work_table[j + 1] = work_table[j];
work_table[j] = temp;
didSwap = true;
}
}
if (!didSwap) break;
}
LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask
for (uint8_t i = 0; i < NUM_PWMS; i++) {
if (work_table[i].active_flag == true) {
work_table[i].sequence = i + 1;
// first see if there is a PWM1 controlled pin for this entry
bool found = false;
for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
if ( (map_MR[j].map_PWM_PIN == work_table[i].pin) && map_MR[j].map_PWM_INT ) {
*map_MR[j].MR_register = work_table[i].microseconds; // found one of the PWM pins
work_table[i].PWM_mask = 0;
work_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin
work_table[i].PINSEL3_bits = map_MR[j].PINSEL3_bits; // PINSEL3 register bits to set pin mode to PWM1 control} MR_map;
map_MR[j].map_used = 2;
work_table[i].assigned_MR = j +1; // only used to help in debugging
found = true;
}
}
// didn't find a PWM1 pin so get an interrupt
for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
*map_MR[k].MR_register = work_table[i].microseconds; // found one for an interrupt pin
map_MR[k].map_used = 1;
LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt
work_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt
work_table[i].assigned_MR = k +1; // only used to help in debugging
found = true;
}
}
}
else
work_table[i].sequence = 0;
}
LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt
// swap tables
PWM_MR0_wait = true;
while (PWM_MR0_wait) delay(5); //wait until MR0 interrupt has happend so don't delay it.
NVIC_DisableIRQ(PWM1_IRQn);
LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
PWM_map *pointer_swap = active_table;
active_table = work_table;
work_table = pointer_swap;
PWM_table_swap = true; // tell the ISR that the tables have been swapped
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
}
bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
COPY_ACTIVE_TABLE; // copy active table into work table
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
if (work_table[i].pin == pin) slot = i;
if (slot == 0xFF) return false; // return error if pin not found
LPC1768_PWM_update_map_MR();
switch(pin) {
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
map_MR[pin_11_PWM_channel - 1].PCR_bit = _BV(8 + pin_11_PWM_channel); // enable PWM1 module control of this pin
map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0x2 << 8; // ISR must do this AFTER setting PCR
break;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
map_MR[pin_6_PWM_channel - 1].PCR_bit = _BV(8 + pin_6_PWM_channel); // enable PWM1 module control of this pin
map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0x2 << 10; // ISR must do this AFTER setting PCR
break;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
map_MR[pin_4_PWM_channel - 1].PCR_bit = _BV(8 + pin_4_PWM_channel); // enable PWM1 module control of this pin
map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 1; // 0 - available for interrupts, 1 - in use by PWM
map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0x2 << 4; // ISR must do this AFTER setting PCR
break;
default: // ISR pins
pinMode(pin, OUTPUT); // set pin to output but don't write anything in case it's already in use
break;
}
work_table[slot].microseconds = MAX(MIN(value, work_table[slot].max), work_table[slot].min);
work_table[slot].active_flag = true;
LPC1768_PWM_update();
return 1;
}
bool LPC1768_PWM_detach_pin(pin_t pin) {
while (PWM_table_swap) delay(5); // don't do anything until the previous change has been implemented by the ISR
COPY_ACTIVE_TABLE; // copy active table into work table
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
NVIC_EnableIRQ(PWM1_IRQn); // ?? fixes compiler problem?? ISR won't start
// unless put in an extra "enable"
NVIC_DisableIRQ(PWM1_IRQn);
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
if (work_table[i].pin == pin) slot = i;
if (ISR_table[i].pin == pin) { slot = i; break; }
if (slot == 0xFF) return false; // return error if pin not found
LPC1768_PWM_update_map_MR();
@ -363,98 +259,238 @@ bool LPC1768_PWM_detach_pin(pin_t pin) {
// OK to make these changes before the MR0 interrupt
switch(pin) {
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
LPC_PWM1->PCR &= ~(_BV(8 + pin_11_PWM_channel)); // disable PWM1 module control of this pin
map_MR[pin_11_PWM_channel - 1].PCR_bit = 0;
LPC_PWM1->PCR &= ~(_BV(8 + P1_20_PWM_channel)); // disable PWM1 module control of this pin
map_MR[P1_20_PWM_channel - 1].PCR_bit = 0;
LPC_PINCON->PINSEL3 &= ~(0x3 << 8); // return pin to general purpose I/O
map_MR[pin_11_PWM_channel - 1].PINSEL3_bits = 0;
map_MR[pin_11_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0;
map_MR[P1_20_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
break;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
LPC_PWM1->PCR &= ~(_BV(8 + pin_6_PWM_channel)); // disable PWM1 module control of this pin
map_MR[pin_6_PWM_channel - 1].PCR_bit = 0;
LPC_PWM1->PCR &= ~(_BV(8 + P1_21_PWM_channel)); // disable PWM1 module control of this pin
map_MR[P1_21_PWM_channel - 1].PCR_bit = 0;
LPC_PINCON->PINSEL3 &= ~(0x3 << 10); // return pin to general purpose I/O
map_MR[pin_6_PWM_channel - 1].PINSEL3_bits = 0;
map_MR[pin_6_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0;
map_MR[P1_21_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
break;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
LPC_PWM1->PCR &= ~(_BV(8 + pin_4_PWM_channel)); // disable PWM1 module control of this pin
map_MR[pin_4_PWM_channel - 1].PCR_bit = 0;
LPC_PWM1->PCR &= ~(_BV(8 + P1_18_PWM_channel)); // disable PWM1 module control of this pin
map_MR[P1_18_PWM_channel - 1].PCR_bit = 0;
LPC_PINCON->PINSEL3 &= ~(0x3 << 4); // return pin to general purpose I/O
map_MR[pin_4_PWM_channel - 1].PINSEL3_bits = 0;
map_MR[pin_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0;
map_MR[P1_18_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
break;
case P2_4: // D9 FET, PWM1 channel 5 (Pin 9 P2_4 PWM1.5)
LPC_PWM1->PCR &= ~(_BV(8 + P2_4_PWM_channel)); // disable PWM1 module control of this pin
map_MR[P2_4_PWM_channel - 1].PCR_bit = 0;
LPC_PINCON->PINSEL4 &= ~(0x3 << 10); // return pin to general purpose I/O
map_MR[P2_4_PWM_channel - 1].PINSEL_bits = 0;
map_MR[P2_4_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
break;
case P2_5: // D10 FET, PWM1 channel 6 (Pin 10 P2_5 PWM1.6)
LPC_PWM1->PCR &= ~(_BV(8 + P2_5_PWM_channel)); // disable PWM1 module control of this pin
map_MR[P2_5_PWM_channel - 1].PCR_bit = 0;
LPC_PINCON->PINSEL4 &= ~(0x3 << 4); // return pin to general purpose I/O
map_MR[P2_5_PWM_channel - 1].PINSEL_bits = 0;
map_MR[P2_5_PWM_channel - 1].map_PWM_INT = 0; // 0 - available for interrupts, 1 - in use by PWM
break;
default:
break;
}
pinMode(pin, INPUT);
ISR_table[slot] = PWM_MAP_INIT_ROW;
work_table[slot] = PWM_MAP_INIT_ROW;
LPC1768_PWM_update();
ISR_table_update = true;
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
bool LPC1768_PWM_write(pin_t pin, uint32_t value) {
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
NVIC_DisableIRQ(PWM1_IRQn);
uint8_t slot = 0xFF;
for (uint8_t i = 0; i < NUM_PWMS; i++) // find slot
if (ISR_table[i].pin == pin) { slot = i; break; }
if (slot == 0xFF) return false; // return error if pin not found
LPC1768_PWM_update_map_MR();
switch(pin) {
case P1_20: // Servo 0, PWM1 channel 2 (Pin 11 P1.20 PWM1.2)
map_MR[P1_20_PWM_channel - 1].PCR_bit = _BV(8 + P1_20_PWM_channel); // enable PWM1 module control of this pin
map_MR[P1_20_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
map_MR[P1_20_PWM_channel - 1].PINSEL_bits = 0x2 << 8; // ISR must do this AFTER setting PCR
break;
case P1_21: // Servo 1, PWM1 channel 3 (Pin 6 P1.21 PWM1.3)
map_MR[P1_21_PWM_channel - 1].PCR_bit = _BV(8 + P1_21_PWM_channel); // enable PWM1 module control of this pin
map_MR[P1_21_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
map_MR[P1_21_PWM_channel - 1].PINSEL_bits = 0x2 << 10; // ISR must do this AFTER setting PCR
break;
case P1_18: // Servo 3, PWM1 channel 1 (Pin 4 P1.18 PWM1.1)
map_MR[P1_18_PWM_channel - 1].PCR_bit = _BV(8 + P1_18_PWM_channel); // enable PWM1 module control of this pin
map_MR[P1_18_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL3;
map_MR[P1_18_PWM_channel - 1].PINSEL_bits = 0x2 << 4; // ISR must do this AFTER setting PCR
break;
case P2_4: // D9 FET, PWM1 channel 5 (Pin 9 P2_4 PWM1.5)
map_MR[P2_4_PWM_channel - 1].PCR_bit = _BV(8 + P2_4_PWM_channel); // enable PWM1 module control of this pin
map_MR[P2_4_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4;
map_MR[P2_4_PWM_channel - 1].PINSEL_bits = 0x1 << 8; // ISR must do this AFTER setting PCR
break;
case P2_5: // D10 FET, PWM1 channel 6 (Pin 10 P2_5 PWM1.6)
map_MR[P2_5_PWM_channel - 1].PCR_bit = _BV(8 + P2_5_PWM_channel); // enable PWM1 module control of this pin
map_MR[P2_5_PWM_channel - 1].PINSEL_reg = &LPC_PINCON->PINSEL4;
map_MR[P2_5_PWM_channel - 1].PINSEL_bits = 0x1 << 10; // ISR must do this AFTER setting PCR
break;
default: // ISR pins
pinMode(pin, OUTPUT); // set pin to output
break;
}
ISR_table[slot].microseconds = MAX(MIN(value, ISR_table[slot].max), ISR_table[slot].min);
ISR_table[slot].active_flag = 1;
ISR_table_update = true;
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return 1;
}
uint32_t LPC1768_PWM_interrupt_mask = 1;
void LPC1768_PWM_update(void) { // only called by the ISR
LPC1768_PWM_interrupt_mask = 0; // set match registers to new values, build IRQ mask
// first setup directly controlled PWM pin slots
bool found;
for (uint8_t i = 0; i < NUM_PWMS; i++) {
ISR_table[i].PCR_bit = 0; // clear entries
ISR_table[i].PINSEL_reg = 0;
ISR_table[i].PINSEL_bits = 0;
ISR_table[i].PWM_flag = 1; // mark slot as interrupt mode until find differently
if (ISR_table[i].active_flag) {
ISR_table[i].sequence = i + 1;
// first see if there is a PWM1 controlled pin for this entry
found = false;
for (uint8_t j = 0; (j < NUM_PWMS) && !found; j++) {
if ( (map_MR[j].map_PWM_PIN == ISR_table[i].pin)) {
map_MR[j].map_PWM_INT = 1; // flag that it's already setup for direct control
ISR_table[i].PWM_mask = 0;
ISR_table[i].PCR_bit = map_MR[j].PCR_bit; // PCR register bit to enable PWM1 control of this pin
ISR_table[i].PINSEL_reg = map_MR[j].PINSEL_reg; // PINSEL register address to set pin mode to PWM1 control} MR_map;
ISR_table[i].PINSEL_bits = map_MR[j].PINSEL_bits; // PINSEL register bits to set pin mode to PWM1 control} MR_map;
map_MR[j].map_used = 2;
ISR_table[i].PWM_flag = 0;
*map_MR[j].MR_register = ISR_table[i].microseconds;
found = true;
}
}
}
else
ISR_table[i].sequence = 0;
}
// next fill in interrupt slots
for (uint8_t i = 0; i < NUM_PWMS; i++) {
if (ISR_table[i].active_flag && ISR_table[i].PWM_flag) {
// setup interrupt slot
found = false;
for (uint8_t k = 0; (k < NUM_PWMS) && !found; k++) {
if ( !(map_MR[k].map_PWM_INT || map_MR[k].map_used)) {
*map_MR[k].MR_register = ISR_table[i].microseconds; // found one for an interrupt pin
map_MR[k].map_used = 1;
LPC1768_PWM_interrupt_mask |= _BV(3 * (k + 1)); // set bit in the MCR to enable this MR to generate an interrupt
ISR_table[i].set_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET;
ISR_table[i].clr_register = PIN_IS_INVERTED(ISR_table[i].pin) ? &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOSET : &LPC_GPIO(LPC1768_PIN_PORT(ISR_table[i].pin))->FIOCLR;
ISR_table[i].write_mask = LPC_PIN(LPC1768_PIN_PIN(ISR_table[i].pin));
ISR_table[i].PWM_mask = _BV(IR_BIT(k + 1)); // bit in the IR that will go active when this MR generates an interrupt
ISR_table[i].PWM_flag = 1;
found = true;
}
}
}
}
LPC1768_PWM_interrupt_mask |= (uint32_t) _BV(0); // add in MR0 interrupt
LPC_PWM1->LER = 0x07E; // Set the latch Enable Bits to load the new Match Values for MR1 - MR6
}
bool useable_hardware_PWM(pin_t pin) {
COPY_ACTIVE_TABLE; // copy active table into work table
pin = GET_PIN_MAP_PIN(GET_PIN_MAP_INDEX(pin & 0xFF));
NVIC_DisableIRQ(PWM1_IRQn);
bool return_flag = false;
for (uint8_t i = 0; i < NUM_PWMS; i++) // see if it's already setup
if (work_table[i].pin == pin && work_table[i].sequence) return true;
if (ISR_table[i].pin == pin && ISR_table[i].sequence) return_flag = true;
for (uint8_t i = 0; i < NUM_PWMS; i++) // see if there is an empty slot
if (!work_table[i].sequence) return true;
return false; // only get here if neither the above are true
if (!ISR_table[i].sequence) return_flag = true;
NVIC_EnableIRQ(PWM1_IRQn); // re-enable PWM interrupts
return return_flag;
}
////////////////////////////////////////////////////////////////////////////////
#define HAL_PWM_LPC1768_ISR extern "C" void PWM1_IRQHandler(void)
// Both loops could be terminated when the last active channel is found but that would
// result in variations ISR run time which results in variations in pulse width
/**
* Changes to PINSEL3, PCR and MCR are only done during the MR0 interrupt otherwise
* Changes to PINSEL, PCR and MCR are only done during the MR0 interrupt otherwise
* the wrong pin may be toggled or even have the system hang.
*/
HAL_PWM_LPC1768_ISR {
if (PWM_table_swap) ISR_table = work_table; // use old table if a swap was just done
else ISR_table = active_table;
if (LPC_PWM1->IR & 0x1) { // MR0 interrupt
ISR_table = active_table; // MR0 means new values could have been loaded so set everything
if (PWM_table_swap) LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
if (LPC_PWM1->IR & 0x1) { // MR0 interrupt
if (ISR_table_update) { // new values have been loaded so set everything
LPC1768_PWM_update(); // update & swap table
LPC_PWM1->MCR = LPC1768_PWM_interrupt_mask; // enable new PWM individual channel interrupts
}
for (uint8_t i = 0; i < NUM_PWMS; i++) {
if(ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) ||
(ISR_table[i].pin == P1_21) ||
(ISR_table[i].pin == P1_18)))
if (ISR_table[i].active_flag && !((ISR_table[i].pin == P1_20) ||
(ISR_table[i].pin == P1_21) ||
(ISR_table[i].pin == P1_18) ||
(ISR_table[i].pin == P2_4) ||
(ISR_table[i].pin == P2_5))
) {
*ISR_table[i].set_register = ISR_table[i].write_mask; // set pins for all enabled interrupt channels active
if (PWM_table_swap && ISR_table[i].PCR_bit) {
LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin
LPC_PINCON->PINSEL3 |= ISR_table[i].PINSEL3_bits; // set pin mode to PWM1 control - must be done after PCR
}
if (ISR_table_update && ISR_table[i].PCR_bit) {
LPC_PWM1->PCR |= ISR_table[i].PCR_bit; // enable PWM1 module control of this pin
*ISR_table[i].PINSEL_reg |= ISR_table[i].PINSEL_bits; // set pin mode to PWM1 control - must be done after PCR
}
}
PWM_table_swap = false;
PWM_MR0_wait = false;
ISR_table_update = false;
LPC_PWM1->IR = 0x01; // clear the MR0 interrupt flag bit
}
else {
for (uint8_t i = 0; i < NUM_PWMS ; i++)
if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask) ){
for (uint8_t i = 0; i < NUM_PWMS; i++)
if (ISR_table[i].active_flag && (LPC_PWM1->IR & ISR_table[i].PWM_mask)) {
LPC_PWM1->IR = ISR_table[i].PWM_mask; // clear the interrupt flag bits for expected interrupts
*ISR_table[i].clr_register = ISR_table[i].write_mask; // set channel to inactive
}
}
LPC_PWM1->IR = 0x70F; // guarantees all interrupt flags are cleared which, if there is an unexpected
// PWM interrupt, will keep the ISR from hanging which will crash the controller
return;
// PWM interrupt, will keep the ISR from hanging which will crash the controller
}
#endif
/////////////////////////////////////////////////////////////////
@ -466,44 +502,26 @@ return;
* interrupt. The only exception is detaching pins. It doesn't matter when they go
* tristate.
*
* The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled or
* delayed.
* The LPC1768_PWM_init routine kicks off the MR0 interrupt. This interrupt is never disabled. It
* can be delayed by higher priority interrupts. Actions on directly controlled pins are not delayed
* by other interrupts
*
* The PWM_table_swap flag is set when the firmware has swapped in an updated table. It is
* cleared by the ISR during the MR0 interrupt as it completes the swap and accompanying updates.
* It serves two purposes:
* 1) Tells the ISR that the tables have been swapped
* 2) Keeps the firmware from starting a new update until the previous one has been completed.
*
* The PWM_MR0_wait flag is set when the firmware is ready to swap in an updated table and cleared by
* the ISR during the MR0 interrupt. It is used to avoid delaying the MR0 interrupt when swapping in
* an updated table. This avoids glitches in pulse width and/or repetition rate.
* The ISR_table_update flag is set when the ISR table needs to be rebuilt. It is
* cleared by the ISR during the MR0 interrupt after it rebuilds the ISR table.
*
* The sequence of events during a write to a PWM channel is:
* 1) Waits until PWM_table_swap flag is false before starting
* 2) Copies the active table into the work table
* 3) Updates the work table
* NOTES - MR1-MR6 are updated at this time. The updates aren't put into use until the first
* 1) Attach routine puts the pin number in the ISR table but doesn't mark it active.
* 2) Write routine marks the pin as active, updates the helper table and flags the ISR that the
* ISR table needs to be rebuilt.
* 3) On the MR0 interrupt the ISR:
* a. Rebuilds the ISR table if needed.
* MR1-MR6 are updated at this time. The updates aren't put into use until the first
* MR0 after the LER register has been written. The LER register is written during the
* table swap process.
* - The MCR mask is created at this time. It is not used until the ISR writes the MCR
* during the MR0 interrupt in the table swap process.
* 4) Sets the PWM_MR0_wait flag
* 5) ISR clears the PWM_MR0_wait flag during the next MR0 interrupt
* 6) Once the PWM_MR0_wait flag is cleared then the firmware:
* disables the ISR interrupt
* swaps the pointers to the tables
* writes to the LER register
* sets the PWM_table_swap flag active
* re-enables the ISR
* 7) On the next interrupt the ISR changes its pointer to the work table which is now the old,
* unmodified, active table.
* 8) On the next MR0 interrupt the ISR:
* switches over to the active table
* clears the PWM_table_swap and PWM_MR0_wait flags
* updates the MCR register with the possibly new interrupt sources/assignments
* writes to the PCR register to enable the direct control of the Servo 0, 1 & 3 pins by the PWM1 module
* sets the PINSEL3 register to function/mode 0x2 for the Servo 0, 1 & 3 pins
* NOTE - PCR must be set before PINSEL
* sets the pins controlled by the ISR to their active states
* table rebuild process. The result is new timing takes 20-40 mS to be implemented.
* b. Sets the interrupt controlled pin(s) to their active state
* c. Writes to the PCR register to enable the directly controlled pins
* d. Sets the PINSEL register to the function/mode for the directly controlled pins
*
* 4) For each interrupt controlled pin there is another ISR call. During this call the pin is set
* to its inactive state. The call is initiated when a MR1-MR6 reg times out.
*/

View file

@ -69,9 +69,7 @@
#define MR0_MARGIN 200 // if channel value too close to MR0 the system locks up
void LPC1768_PWM_init(void);
bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min = 1, uint32_t max = (LPC_PWM1_MR0 - MR0_MARGIN), uint8_t servo_index = 0xff);
void LPC1768_PWM_update_map_MR(void);
void LPC1768_PWM_update(void);
bool LPC1768_PWM_attach_pin(pin_t pin, uint32_t min=1, uint32_t max=(LPC_PWM1_MR0 - (MR0_MARGIN)), uint8_t servo_index=0xFF);
bool LPC1768_PWM_write(pin_t pin, uint32_t value);
bool LPC1768_PWM_detach_pin(pin_t pin);
bool useable_hardware_PWM(pin_t pin);

View file

@ -39,7 +39,7 @@
#include "arduino.h"
#include "pinmapping.h"
bool useable_hardware_PWM(uint8_t pin);
bool useable_hardware_PWM(pin_t pin);
#define USEABLE_HARDWARE_PWM(pin) useable_hardware_PWM(pin)
#define LPC_PORT_OFFSET (0x0020)

View file

@ -522,7 +522,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
tmc2130_checkOverTemp();
#endif
planner.check_axes_activity();
// Limit check_axes_activity frequency to 10Hz
static millis_t next_check_axes_ms = 0;
if (ELAPSED(ms, next_check_axes_ms)) {
planner.check_axes_activity();
next_check_axes_ms = ms + 100UL;
}
}
/**

View file

@ -28,6 +28,11 @@
* M42: Change pin status via GCode
*
* P<pin> Pin number (LED if omitted)
* For LPC1768 use M42 P1.20 S255 if wanting to set P1_20 to logic 1
* NOTE - Repetier Host truncates trailing zeros on a decimal when
* sending commands so typing M42 P1.20 S255 results in
* M42 P1.2 S255 being sent. Pronterface doesn't have this issue.
*
* S<byte> Pin status from 0 - 255
*/
void GcodeSuite::M42() {

View file

@ -1271,57 +1271,38 @@ void Temperature::init() {
#if ENABLED(FAST_PWM_FAN)
void Temperature::setPwmFrequency(const uint8_t pin, int val) {
val &= 0x07;
switch (digitalPinToTimer(pin)) {
#ifdef TCCR0A
#if !AVR_AT90USB1286_FAMILY
case TIMER0A:
void Temperature::setPwmFrequency(const pin_t pin, int val) {
#ifdef ARDUINO
val &= 0x07;
switch (digitalPinToTimer(pin)) {
#ifdef TCCR0A
#if !AVR_AT90USB1286_FAMILY
case TIMER0A:
#endif
case TIMER0B: //_SET_CS(0, val);
break;
#endif
case TIMER0B:
//_SET_CS(0, val);
break;
#endif
#ifdef TCCR1A
case TIMER1A:
case TIMER1B:
//_SET_CS(1, val);
break;
#endif
#ifdef TCCR2
case TIMER2:
case TIMER2:
_SET_CS(2, val);
break;
#endif
#ifdef TCCR2A
case TIMER2A:
case TIMER2B:
_SET_CS(2, val);
break;
#endif
#ifdef TCCR3A
case TIMER3A:
case TIMER3B:
case TIMER3C:
_SET_CS(3, val);
break;
#endif
#ifdef TCCR4A
case TIMER4A:
case TIMER4B:
case TIMER4C:
_SET_CS(4, val);
break;
#endif
#ifdef TCCR5A
case TIMER5A:
case TIMER5B:
case TIMER5C:
_SET_CS(5, val);
break;
#endif
}
#ifdef TCCR1A
case TIMER1A: case TIMER1B: //_SET_CS(1, val);
break;
#endif
#ifdef TCCR2
case TIMER2: case TIMER2: _SET_CS(2, val); break;
#endif
#ifdef TCCR2A
case TIMER2A: case TIMER2B: _SET_CS(2, val); break;
#endif
#ifdef TCCR3A
case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
#endif
#ifdef TCCR4A
case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
#endif
#ifdef TCCR5A
case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
#endif
}
#endif
}
#endif // FAST_PWM_FAN
@ -1332,7 +1313,7 @@ void Temperature::init() {
* their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109)
*/
void Temperature::start_watching_heater(uint8_t e) {
void Temperature::start_watching_heater(const uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif

View file

@ -361,14 +361,14 @@ class Temperature {
static int16_t degTargetBed() { return target_temperature_bed; }
#if WATCH_HOTENDS
static void start_watching_heater(uint8_t e = 0);
static void start_watching_heater(const uint8_t e = 0);
#endif
#if WATCH_THE_BED
static void start_watching_bed();
#endif
static void setTargetHotend(const int16_t celsius, uint8_t e) {
static void setTargetHotend(const int16_t celsius, const uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif