mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2025-01-17 23:18:34 +00:00
Merge pull request #4387 from thinkyhead/rc_anhardt_more_4370
Update Z in a unified way in run_z_probe
This commit is contained in:
commit
c287846f46
4 changed files with 42 additions and 65 deletions
|
@ -564,7 +564,7 @@ void stop();
|
|||
void get_available_commands();
|
||||
void process_next_command();
|
||||
void prepare_move_to_destination();
|
||||
void set_current_from_steppers();
|
||||
void set_current_from_steppers_for_axis(AxisEnum axis);
|
||||
|
||||
#if ENABLED(ARC_SUPPORT)
|
||||
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
|
||||
|
@ -1524,8 +1524,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
|||
if (axis == X_AXIS || axis == Y_AXIS) {
|
||||
|
||||
float homeposition[3];
|
||||
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
|
||||
homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
||||
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
||||
|
||||
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
||||
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
||||
|
@ -2104,12 +2103,6 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||
return false;
|
||||
}
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
#define SET_Z_FROM_STEPPERS() set_current_from_steppers()
|
||||
#else
|
||||
#define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS)
|
||||
#endif
|
||||
|
||||
// Do a single Z probe and return with current_position[Z_AXIS]
|
||||
// at the height where the probe triggered.
|
||||
static float run_z_probe() {
|
||||
|
@ -2121,28 +2114,18 @@ static void clean_up_after_endstop_or_probe_move() {
|
|||
planner.bed_level_matrix.set_to_identity();
|
||||
#endif
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
float z_before = current_position[Z_AXIS], // Current Z
|
||||
z_mm = stepper.get_axis_position_mm(Z_AXIS); // Some tower's current position
|
||||
#endif
|
||||
|
||||
do_blocking_move_to_z(-(Z_MAX_LENGTH + 10), Z_PROBE_SPEED_FAST);
|
||||
endstops.hit_on_purpose();
|
||||
SET_Z_FROM_STEPPERS();
|
||||
set_current_from_steppers_for_axis(Z_AXIS);
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
// move up the retract distance
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), Z_PROBE_SPEED_FAST);
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
z_before = current_position[Z_AXIS];
|
||||
z_mm = stepper.get_axis_position_mm(Z_AXIS);
|
||||
#endif
|
||||
|
||||
// move back down slowly to find bed
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] - home_bump_mm(Z_AXIS) * 2, Z_PROBE_SPEED_SLOW);
|
||||
endstops.hit_on_purpose();
|
||||
SET_Z_FROM_STEPPERS();
|
||||
set_current_from_steppers_for_axis(Z_AXIS);
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
|
@ -2597,7 +2580,7 @@ static void homeaxis(AxisEnum axis) {
|
|||
* - Set the feedrate, if included
|
||||
*/
|
||||
void gcode_get_destination() {
|
||||
for (int i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
if (code_seen(axis_codes[i]))
|
||||
destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
||||
else
|
||||
|
@ -3900,7 +3883,7 @@ inline void gcode_G92() {
|
|||
if (!didE) stepper.synchronize();
|
||||
|
||||
bool didXYZ = false;
|
||||
for (int i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
float p = current_position[i],
|
||||
v = code_value_axis_units(i);
|
||||
|
@ -5147,7 +5130,7 @@ inline void gcode_M85() {
|
|||
* (Follows the same syntax as G92)
|
||||
*/
|
||||
inline void gcode_M92() {
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
if (i == E_AXIS) {
|
||||
float value = code_value_per_axis_unit(i);
|
||||
|
@ -5339,7 +5322,7 @@ inline void gcode_M200() {
|
|||
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||
*/
|
||||
inline void gcode_M201() {
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
|
||||
}
|
||||
|
@ -5350,7 +5333,7 @@ inline void gcode_M201() {
|
|||
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
inline void gcode_M202() {
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
|
||||
}
|
||||
}
|
||||
|
@ -5361,7 +5344,7 @@ inline void gcode_M201() {
|
|||
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
||||
*/
|
||||
inline void gcode_M203() {
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++)
|
||||
LOOP_XYZE(i)
|
||||
if (code_seen(axis_codes[i]))
|
||||
planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
|
||||
}
|
||||
|
@ -5421,7 +5404,7 @@ inline void gcode_M205() {
|
|||
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
||||
*/
|
||||
inline void gcode_M206() {
|
||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
|
||||
LOOP_XYZ(i)
|
||||
if (code_seen(axis_codes[i]))
|
||||
set_home_offset((AxisEnum)i, code_value_axis_units(i));
|
||||
|
||||
|
@ -5463,7 +5446,7 @@ inline void gcode_M206() {
|
|||
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
||||
}
|
||||
#endif
|
||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
||||
LOOP_XYZ(i) {
|
||||
if (code_seen(axis_codes[i])) {
|
||||
endstop_adj[i] = code_value_axis_units(i);
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
|
@ -5955,7 +5938,7 @@ inline void gcode_M303() {
|
|||
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
||||
*/
|
||||
inline void gcode_M365() {
|
||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
|
||||
LOOP_XYZ(i)
|
||||
if (code_seen(axis_codes[i]))
|
||||
axis_scaling[i] = code_value_float();
|
||||
}
|
||||
|
@ -6091,8 +6074,8 @@ void quickstop_stepper() {
|
|||
stepper.quick_stop();
|
||||
#if DISABLED(SCARA)
|
||||
stepper.synchronize();
|
||||
set_current_from_steppers();
|
||||
sync_plan_position(); // ...re-apply to planner position
|
||||
LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -6155,7 +6138,7 @@ void quickstop_stepper() {
|
|||
*/
|
||||
inline void gcode_M428() {
|
||||
bool err = false;
|
||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
||||
LOOP_XYZ(i) {
|
||||
if (axis_homed[i]) {
|
||||
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
|
||||
diff = current_position[i] - LOGICAL_POSITION(base, i);
|
||||
|
@ -6285,7 +6268,7 @@ inline void gcode_M503() {
|
|||
float lastpos[NUM_AXIS];
|
||||
|
||||
// Save current position of all axes
|
||||
for (uint8_t i = 0; i < NUM_AXIS; i++)
|
||||
LOOP_XYZE(i)
|
||||
lastpos[i] = destination[i] = current_position[i];
|
||||
|
||||
// Define runplan for move axes
|
||||
|
@ -6506,7 +6489,7 @@ inline void gcode_M503() {
|
|||
*/
|
||||
inline void gcode_M907() {
|
||||
#if HAS_DIGIPOTSS
|
||||
for (int i = 0; i < NUM_AXIS; i++)
|
||||
LOOP_XYZE(i)
|
||||
if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
|
||||
if (code_seen('B')) stepper.digipot_current(4, code_value_int());
|
||||
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
|
||||
|
@ -6522,7 +6505,7 @@ inline void gcode_M907() {
|
|||
#endif
|
||||
#if ENABLED(DIGIPOT_I2C)
|
||||
// this one uses actual amps in floating point
|
||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
|
||||
LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
|
||||
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
||||
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
|
||||
#endif
|
||||
|
@ -6531,7 +6514,7 @@ inline void gcode_M907() {
|
|||
float dac_percent = code_value_float();
|
||||
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
||||
}
|
||||
for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
|
||||
LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
|
||||
#endif
|
||||
}
|
||||
|
||||
|
@ -6570,7 +6553,7 @@ inline void gcode_M907() {
|
|||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
inline void gcode_M350() {
|
||||
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
|
||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
|
||||
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
|
||||
if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
|
||||
stepper.microstep_readings();
|
||||
}
|
||||
|
@ -6582,11 +6565,11 @@ inline void gcode_M907() {
|
|||
inline void gcode_M351() {
|
||||
if (code_seen('S')) switch (code_value_byte()) {
|
||||
case 1:
|
||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
|
||||
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
|
||||
if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
|
||||
break;
|
||||
case 2:
|
||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
|
||||
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
|
||||
if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
|
||||
break;
|
||||
}
|
||||
|
@ -7929,25 +7912,16 @@ void clamp_to_software_endstops(float target[3]) {
|
|||
|
||||
#endif // DELTA
|
||||
|
||||
void set_current_from_steppers() {
|
||||
void set_current_from_steppers_for_axis(AxisEnum axis) {
|
||||
#if ENABLED(DELTA)
|
||||
set_cartesian_from_steppers();
|
||||
current_position[X_AXIS] = cartesian_position[X_AXIS];
|
||||
current_position[Y_AXIS] = cartesian_position[Y_AXIS];
|
||||
current_position[Z_AXIS] = cartesian_position[Z_AXIS];
|
||||
current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
vector_3 pos = planner.adjusted_position(); // values directly from steppers...
|
||||
current_position[X_AXIS] = pos.x;
|
||||
current_position[Y_AXIS] = pos.y;
|
||||
current_position[Z_AXIS] = pos.z;
|
||||
vector_3 pos = planner.adjusted_position();
|
||||
current_position[axis] = LOGICAL_POSITION(axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z, axis);
|
||||
#else
|
||||
current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS); // CORE handled transparently
|
||||
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
|
||||
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
||||
current_position[axis] = LOGICAL_POSITION(stepper.get_axis_position_mm(axis), axis); // CORE handled transparently
|
||||
#endif
|
||||
|
||||
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
|
||||
current_position[i] += LOGICAL_POSITION(0, i);
|
||||
}
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
|
@ -8013,7 +7987,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
|||
|
||||
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
|
||||
float difference[NUM_AXIS];
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
|
||||
LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
|
||||
|
||||
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
||||
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
||||
|
@ -8031,7 +8005,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
|||
|
||||
float fraction = float(s) * inv_steps;
|
||||
|
||||
for (int8_t i = 0; i < NUM_AXIS; i++)
|
||||
LOOP_XYZE(i)
|
||||
target[i] = current_position[i] + difference[i] * fraction;
|
||||
|
||||
inverse_kinematics(target);
|
||||
|
|
|
@ -563,7 +563,7 @@ void Config_ResetDefault() {
|
|||
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
|
||||
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
||||
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
||||
for (uint8_t i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
planner.axis_steps_per_mm[i] = tmp1[i];
|
||||
planner.max_feedrate_mm_s[i] = tmp2[i];
|
||||
planner.max_acceleration_mm_per_s2[i] = tmp3[i];
|
||||
|
|
|
@ -45,6 +45,9 @@ enum AxisEnum {
|
|||
Z_HEAD = 5
|
||||
};
|
||||
|
||||
#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++)
|
||||
#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++)
|
||||
|
||||
typedef enum {
|
||||
LINEARUNIT_MM,
|
||||
LINEARUNIT_INCH
|
||||
|
|
|
@ -134,7 +134,7 @@ Planner::Planner() { init(); }
|
|||
void Planner::init() {
|
||||
block_buffer_head = block_buffer_tail = 0;
|
||||
memset(position, 0, sizeof(position)); // clear position
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
||||
previous_nominal_speed = 0.0;
|
||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||
bed_level_matrix.set_to_identity();
|
||||
|
@ -423,7 +423,7 @@ void Planner::check_axes_activity() {
|
|||
|
||||
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
||||
block = &block_buffer[b];
|
||||
for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
|
||||
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
|
||||
}
|
||||
}
|
||||
#if ENABLED(DISABLE_X)
|
||||
|
@ -893,7 +893,7 @@ void Planner::check_axes_activity() {
|
|||
// Calculate and limit speed in mm/sec for each axis
|
||||
float current_speed[NUM_AXIS];
|
||||
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||
for (int i = 0; i < NUM_AXIS; i++) {
|
||||
LOOP_XYZE(i) {
|
||||
current_speed[i] = delta_mm[i] * inverse_second;
|
||||
float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
|
||||
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
|
||||
|
@ -939,7 +939,7 @@ void Planner::check_axes_activity() {
|
|||
|
||||
// Correct the speed
|
||||
if (speed_factor < 1.0) {
|
||||
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
|
||||
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
||||
block->nominal_speed *= speed_factor;
|
||||
block->nominal_rate *= speed_factor;
|
||||
}
|
||||
|
@ -1051,7 +1051,7 @@ void Planner::check_axes_activity() {
|
|||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||
|
||||
// Update previous path unit_vector and nominal speed
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
|
||||
LOOP_XYZE(i) previous_speed[i] = current_speed[i];
|
||||
previous_nominal_speed = block->nominal_speed;
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
|
@ -1098,7 +1098,7 @@ void Planner::check_axes_activity() {
|
|||
block_buffer_head = next_buffer_head;
|
||||
|
||||
// Update position
|
||||
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
|
||||
LOOP_XYZE(i) position[i] = target[i];
|
||||
|
||||
recalculate();
|
||||
|
||||
|
@ -1155,7 +1155,7 @@ void Planner::check_axes_activity() {
|
|||
stepper.set_position(nx, ny, nz, ne);
|
||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||
|
||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -1168,7 +1168,7 @@ void Planner::set_e_position_mm(const float& e) {
|
|||
|
||||
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
||||
void Planner::reset_acceleration_rates() {
|
||||
for (int i = 0; i < NUM_AXIS; i++)
|
||||
LOOP_XYZE(i)
|
||||
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue