diff --git a/Marlin/src/module/planner.cpp b/Marlin/src/module/planner.cpp
index e911b6f28b8..f673b656a35 100644
--- a/Marlin/src/module/planner.cpp
+++ b/Marlin/src/module/planner.cpp
@@ -154,7 +154,7 @@ float Planner::e_factor[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0f); // The flow perc
 
 #if DISABLED(NO_VOLUMETRICS)
   float Planner::filament_size[EXTRUDERS],          // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
-        Planner::volumetric_area_nominal = CIRCLE_AREA((float(DEFAULT_NOMINAL_FILAMENT_DIA)) * 0.5f), // Nominal cross-sectional area
+        Planner::volumetric_area_nominal = CIRCLE_AREA(float(DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5f), // Nominal cross-sectional area
         Planner::volumetric_multiplier[EXTRUDERS];  // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
 #endif
 
@@ -2546,12 +2546,12 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
   #endif
   position[A_AXIS] = LROUND(a * axis_steps_per_mm[A_AXIS]);
   position[B_AXIS] = LROUND(b * axis_steps_per_mm[B_AXIS]);
-  #if !IS_KINEMATIC && ENABLED(AUTO_BED_LEVELING_UBL)
-    if (leveling_active)
-      position[C_AXIS] = LROUND((c + ubl.get_z_correction(a, b)) * axis_steps_per_mm[Z_AXIS]);
-    else
-  #endif
-  position[C_AXIS] = LROUND(c * axis_steps_per_mm[C_AXIS]);
+  position[C_AXIS] = LROUND(axis_steps_per_mm[C_AXIS] * (c +
+    #if !IS_KINEMATIC && ENABLED(AUTO_BED_LEVELING_UBL)
+      leveling_active ? ubl.get_z_correction(a, b) :
+    #endif
+    0
+  ));
   position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
   #if HAS_POSITION_FLOAT
     position_float[A_AXIS] = a;
@@ -2593,19 +2593,17 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
   #else
     const uint8_t axis_index = axis;
   #endif
-  #if ENABLED(AUTO_BED_LEVELING_UBL)
-    if (axis == Z_AXIS && leveling_active)
-      position[axis] = LROUND((v + ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS])) * axis_steps_per_mm[axis_index]);
-    else
-  #endif
-  position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
+  position[axis] = LROUND(axis_steps_per_mm[axis_index] * (v +
+    #if ENABLED(AUTO_BED_LEVELING_UBL)
+      axis == Z_AXIS && leveling_active ? ubl.get_z_correction(current_position[X_AXIS], current_position[Y_AXIS]) :
+    #endif
+    0
+  ));
   #if HAS_POSITION_FLOAT
     position_float[axis] = v;
   #endif
-  if (has_blocks_queued()) {
-    //previous_speed[axis] = 0.0;
+  if (has_blocks_queued())
     buffer_sync_block();
-  }
   else
     stepper.set_position(axis, position[axis]);
 }