0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-19 08:08:25 +00:00

🐛 Avoid step rate overflow (#25541)

This commit is contained in:
tombrazier 2023-03-19 21:25:14 +00:00 committed by Scott Lahteine
parent fd36e69bd2
commit ca77850cbb

View file

@ -2098,9 +2098,15 @@ hal_timer_t Stepper::calc_timer_interval(uint32_t step_rate) {
#else
// AVR is able to keep up at 30khz Stepping ISR rate.
constexpr uint32_t min_step_rate = (F_CPU) / 500000U; // i.e., 32 or 40
if (step_rate >= 0x0800) { // higher step rate
// AVR is able to keep up at around 65kHz Stepping ISR rate at most.
// So values for step_rate > 65535 might as well be truncated.
// Handle it as quickly as possible. i.e., assume highest byte is zero
// because non-zero would represent a step rate far beyond AVR capabilities.
if (uint8_t(step_rate >> 16))
return uint32_t(STEPPER_TIMER_RATE) / 0x10000;
const uintptr_t table_address = uintptr_t(&speed_lookuptable_fast[uint8_t(step_rate >> 8)]);
const uint16_t base = uint16_t(pgm_read_word(table_address));
const uint8_t gain = uint8_t(pgm_read_byte(table_address + 2));
@ -2112,10 +2118,8 @@ hal_timer_t Stepper::calc_timer_interval(uint32_t step_rate) {
return uint16_t(pgm_read_word(table_address))
- ((uint16_t(pgm_read_word(table_address + 2)) * uint8_t(step_rate & 0x0007)) >> 3);
}
else {
step_rate = 0;
return uint16_t(pgm_read_word(uintptr_t(speed_lookuptable_slow)));
}
return uint16_t(pgm_read_word(uintptr_t(speed_lookuptable_slow)));
#endif // !CPU_32_BIT
}
@ -2250,7 +2254,7 @@ hal_timer_t Stepper::block_phase_isr() {
#if ENABLED(LIN_ADVANCE)
if (la_active) {
const uint32_t la_step_rate = la_advance_steps < current_block->max_adv_steps ? current_block->la_advance_rate : 0;
la_interval = calc_timer_interval(acc_step_rate + la_step_rate) << current_block->la_scaling;
la_interval = calc_timer_interval((acc_step_rate + la_step_rate) >> current_block->la_scaling);
}
#endif
@ -2322,7 +2326,7 @@ hal_timer_t Stepper::block_phase_isr() {
const uint32_t la_step_rate = la_advance_steps > current_block->final_adv_steps ? current_block->la_advance_rate : 0;
if (la_step_rate != step_rate) {
bool reverse_e = la_step_rate > step_rate;
la_interval = calc_timer_interval(reverse_e ? la_step_rate - step_rate : step_rate - la_step_rate) << current_block->la_scaling;
la_interval = calc_timer_interval((reverse_e ? la_step_rate - step_rate : step_rate - la_step_rate) >> current_block->la_scaling);
if (reverse_e != motor_direction(E_AXIS)) {
TBI(last_direction_bits, E_AXIS);
@ -2380,7 +2384,7 @@ hal_timer_t Stepper::block_phase_isr() {
#if ENABLED(LIN_ADVANCE)
if (la_active)
la_interval = calc_timer_interval(current_block->nominal_rate) << current_block->la_scaling;
la_interval = calc_timer_interval(current_block->nominal_rate >> current_block->la_scaling);
#endif
}
@ -2702,7 +2706,7 @@ hal_timer_t Stepper::block_phase_isr() {
#if ENABLED(LIN_ADVANCE)
if (la_active) {
const uint32_t la_step_rate = la_advance_steps < current_block->max_adv_steps ? current_block->la_advance_rate : 0;
la_interval = calc_timer_interval(current_block->initial_rate + la_step_rate) << current_block->la_scaling;
la_interval = calc_timer_interval((current_block->initial_rate + la_step_rate) >> current_block->la_scaling);
}
#endif
}