0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-17 23:18:34 +00:00

Merge pull request #8612 from thinkyhead/bf2_planner_parity

[2.0.x] Fix some planner bugs
This commit is contained in:
Scott Lahteine 2017-11-30 17:58:53 -06:00 committed by GitHub
commit e3948d8582
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
2 changed files with 100 additions and 182 deletions

View file

@ -105,11 +105,10 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
// Initialized by settings.load() float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
@ -129,12 +128,11 @@ float Planner::min_feedrate_mm_s,
#if ABL_PLANAR #if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif #endif
#endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height, // Initialized by settings.load()
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) Planner::inverse_z_fade_height,
float Planner::z_fade_height, // Initialized by settings.load() Planner::last_fade_z;
Planner::inverse_z_fade_height, #endif
Planner::last_fade_z;
#endif #endif
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
@ -146,7 +144,7 @@ float Planner::min_feedrate_mm_s,
// private: // private:
long Planner::position[NUM_AXIS] = { 0 }; int32_t Planner::position[NUM_AXIS] = { 0 };
uint32_t Planner::cutoff_long; uint32_t Planner::cutoff_long;
@ -166,8 +164,7 @@ float Planner::previous_speed[NUM_AXIS],
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
float Planner::extruder_advance_k, // Initialized by settings.load() float Planner::extruder_advance_k, // Initialized by settings.load()
Planner::advance_ed_ratio, // Initialized by settings.load() Planner::advance_ed_ratio; // Initialized by settings.load()
Planner::position_float[NUM_AXIS] = { 0 };
#endif #endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -183,9 +180,6 @@ Planner::Planner() { init(); }
void Planner::init() { void Planner::init() {
block_buffer_head = block_buffer_tail = 0; block_buffer_head = block_buffer_tail = 0;
ZERO(position); ZERO(position);
#if ENABLED(LIN_ADVANCE)
ZERO(position_float);
#endif
ZERO(previous_speed); ZERO(previous_speed);
previous_nominal_speed = 0.0; previous_nominal_speed = 0.0;
#if ABL_PLANAR #if ABL_PLANAR
@ -571,30 +565,9 @@ void Planner::calculate_volumetric_multipliers() {
*/ */
void Planner::apply_leveling(float &rx, float &ry, float &rz) { void Planner::apply_leveling(float &rx, float &ry, float &rz) {
if (!planner.leveling_active) return; if (!leveling_active) return;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ABL_PLANAR
const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
if (!fade_scaling_factor) return;
#else
constexpr float fade_scaling_factor = 1.0;
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
rz += ubl.get_z_correction(rx, ry) * fade_scaling_factor;
#elif ENABLED(MESH_BED_LEVELING)
rz += mbl.get_z(rx, ry
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
);
#elif ABL_PLANAR
UNUSED(fade_scaling_factor);
float dx = rx - (X_TILT_FULCRUM), float dx = rx - (X_TILT_FULCRUM),
dy = ry - (Y_TILT_FULCRUM); dy = ry - (Y_TILT_FULCRUM);
@ -604,80 +577,79 @@ void Planner::calculate_volumetric_multipliers() {
rx = dx + X_TILT_FULCRUM; rx = dx + X_TILT_FULCRUM;
ry = dy + Y_TILT_FULCRUM; ry = dy + Y_TILT_FULCRUM;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #else
float tmp[XYZ] = { rx, ry, 0 }; #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
rz += bilinear_z_offset(tmp) * fade_scaling_factor; const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
if (!fade_scaling_factor) return;
#elif HAS_MESH
constexpr float fade_scaling_factor = 1.0;
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
const float raw[XYZ] = { rx, ry, 0 };
#endif
rz += (
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.get_z_correction(rx, ry) * fade_scaling_factor
#elif ENABLED(MESH_BED_LEVELING)
mbl.get_z(rx, ry
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
)
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_z_offset(raw) * fade_scaling_factor
#else
0
#endif
);
#endif #endif
} }
void Planner::unapply_leveling(float raw[XYZ]) { void Planner::unapply_leveling(float raw[XYZ]) {
if (!planner.leveling_active) return; if (!leveling_active) return;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ABL_PLANAR
if (z_fade_height && raw[Z_AXIS] >= z_fade_height) return;
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
const float z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]);
float z_raw = raw[Z_AXIS] - z_correct;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
// for P=physical_z, L=raw_z, M=mesh_z, H=fade_height,
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
// then L=P-M(1-L/H)
// so L=P-M+ML/H
// so L-ML/H=P-M
// so L(1-M/H)=P-M
// so L=(P-M)/(1-M/H) for L<H
if (planner.z_fade_height) {
if (z_raw >= planner.z_fade_height)
z_raw = raw[Z_AXIS];
else
z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
}
#endif // ENABLE_LEVELING_FADE_HEIGHT
raw[Z_AXIS] = z_raw;
#elif ENABLED(MESH_BED_LEVELING)
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS] - c)) / (z_fade_height - c);
#else
raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
#endif
#elif ABL_PLANAR
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
float dx = raw[X_AXIS] - (X_TILT_FULCRUM), float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM), dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
dz = raw[Z_AXIS];
apply_rotation_xyz(inverse, dx, dy, dz); apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
raw[X_AXIS] = dx + X_TILT_FULCRUM; raw[X_AXIS] = dx + X_TILT_FULCRUM;
raw[Y_AXIS] = dy + Y_TILT_FULCRUM; raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
raw[Z_AXIS] = dz;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #else
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = bilinear_z_offset(raw); const float fade_scaling_factor = fade_scaling_factor_for_z(raw[Z_AXIS]);
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c); if (!fade_scaling_factor) return;
#else #elif HAS_MESH
raw[Z_AXIS] -= bilinear_z_offset(raw); constexpr float fade_scaling_factor = 1.0;
#endif #endif
raw[Z_AXIS] -= (
#if ENABLED(AUTO_BED_LEVELING_UBL)
ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]) * fade_scaling_factor
#elif ENABLED(MESH_BED_LEVELING)
mbl.get_z(raw[X_AXIS], raw[Y_AXIS]
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
, fade_scaling_factor
#endif
)
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
bilinear_z_offset(raw) * fade_scaling_factor
#else
0
#endif
);
#endif #endif
} }
@ -714,13 +686,9 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
} }
#endif #endif
#if ENABLED(LIN_ADVANCE) const int32_t da = target[X_AXIS] - position[X_AXIS],
const float mm_D_float = SQRT(sq(a - position_float[X_AXIS]) + sq(b - position_float[Y_AXIS])); db = target[Y_AXIS] - position[Y_AXIS],
#endif dc = target[Z_AXIS] - position[Z_AXIS];
const long da = target[X_AXIS] - position[X_AXIS],
db = target[Y_AXIS] - position[Y_AXIS],
dc = target[Z_AXIS] - position[Z_AXIS];
/* /*
SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s); SERIAL_ECHOPAIR(" Planner FR:", fr_mm_s);
@ -745,19 +713,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
SERIAL_EOL(); SERIAL_EOL();
//*/ //*/
// DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied int32_t de = target[E_AXIS] - position[E_AXIS];
if (DEBUGGING(DRYRUN)) {
position[E_AXIS] = target[E_AXIS];
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
#endif
}
long de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(LIN_ADVANCE)
float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) { if (de) {
@ -765,10 +721,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (thermalManager.tooColdToExtrude(extruder)) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
@ -777,10 +729,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE)
position_float[E_AXIS] = e;
de_float = 0;
#endif
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
@ -1060,7 +1008,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif #endif
); );
} }
const float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate moves/second for this move. No divide by zero due to previous checks. // Calculate moves/second for this move. No divide by zero due to previous checks.
float inverse_mm_s = fr_mm_s * inverse_millimeters; float inverse_mm_s = fr_mm_s * inverse_millimeters;
@ -1384,31 +1332,28 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
previous_safe_speed = safe_speed; previous_safe_speed = safe_speed;
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
/**
// *
// Use LIN_ADVANCE for blocks if all these are true: * Use LIN_ADVANCE for blocks if all these are true:
// *
// esteps : We have E steps todo (a printing move) * esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS]) : This is a print move
// *
// block->steps[X_AXIS] || block->steps[Y_AXIS] : We have a movement in XY direction (i.e., not retract / prime). * extruder_advance_k : There is an advance factor set.
// *
// extruder_advance_k : There is an advance factor set. * esteps != block->step_event_count : A problem occurs if the move before a retract is too small.
// * In that case, the retract and move will be executed together.
// block->steps[E_AXIS] != block->step_event_count : A problem occurs if the move before a retract is too small. * This leads to too many advance steps due to a huge e_acceleration.
// In that case, the retract and move will be executed together. * The math is good, but we must avoid retract moves with advance!
// This leads to too many advance steps due to a huge e_acceleration. * de > 0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves)
// The math is good, but we must avoid retract moves with advance! */
// de_float > 0.0 : Extruder is running forward (e.g., for "Wipe while retracting" (Slic3r) or "Combing" (Cura) moves) block->use_advance_lead = esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS])
//
block->use_advance_lead = esteps
&& (block->steps[X_AXIS] || block->steps[Y_AXIS])
&& extruder_advance_k && extruder_advance_k
&& (uint32_t)esteps != block->step_event_count && (uint32_t)esteps != block->step_event_count
&& de_float > 0.0; && de > 0;
if (block->use_advance_lead) if (block->use_advance_lead)
block->abs_adv_steps_multiplier8 = LROUND( block->abs_adv_steps_multiplier8 = LROUND(
extruder_advance_k extruder_advance_k
* (UNEAR_ZERO(advance_ed_ratio) ? de_float / mm_D_float : advance_ed_ratio) // Use the fixed ratio, if set * (UNEAR_ZERO(advance_ed_ratio) ? de * steps_to_mm[E_AXIS_N] / HYPOT(da * steps_to_mm[X_AXIS], db * steps_to_mm[Y_AXIS]) : advance_ed_ratio) // Use the fixed ratio, if set
* (block->nominal_speed / (float)block->nominal_rate) * (block->nominal_speed / (float)block->nominal_rate)
* axis_steps_per_mm[E_AXIS_N] * 256.0 * axis_steps_per_mm[E_AXIS_N] * 256.0
); );
@ -1422,12 +1367,6 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
// Update the position (only when a move was queued) // Update the position (only when a move was queued)
COPY(position, target); COPY(position, target);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
recalculate(); recalculate();
@ -1449,16 +1388,10 @@ void Planner::_set_position_mm(const float &a, const float &b, const float &c, c
#else #else
#define _EINDEX E_AXIS #define _EINDEX E_AXIS
#endif #endif
const long na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]), const int32_t na = position[X_AXIS] = LROUND(a * axis_steps_per_mm[X_AXIS]),
nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]), nb = position[Y_AXIS] = LROUND(b * axis_steps_per_mm[Y_AXIS]),
nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]), nc = position[Z_AXIS] = LROUND(c * axis_steps_per_mm[Z_AXIS]),
ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]); ne = position[E_AXIS] = LROUND(e * axis_steps_per_mm[_EINDEX]);
#if ENABLED(LIN_ADVANCE)
position_float[X_AXIS] = a;
position_float[Y_AXIS] = b;
position_float[Z_AXIS] = c;
position_float[E_AXIS] = e;
#endif
stepper.set_position(na, nb, nc, ne); stepper.set_position(na, nb, nc, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
ZERO(previous_speed); ZERO(previous_speed);
@ -1483,16 +1416,8 @@ void Planner::set_position_mm_kinematic(const float position[NUM_AXIS]) {
* Sync from the stepper positions. (e.g., after an interrupted move) * Sync from the stepper positions. (e.g., after an interrupted move)
*/ */
void Planner::sync_from_steppers() { void Planner::sync_from_steppers() {
LOOP_XYZE(i) { LOOP_XYZE(i)
position[i] = stepper.position((AxisEnum)i); position[i] = stepper.position((AxisEnum)i);
#if ENABLED(LIN_ADVANCE)
position_float[i] = position[i] * steps_to_mm[i
#if ENABLED(DISTINCT_E_FACTORS)
+ (i == E_AXIS ? active_extruder : 0)
#endif
];
#endif
}
} }
/** /**
@ -1506,9 +1431,6 @@ void Planner::set_position_mm(const AxisEnum axis, const float &v) {
const uint8_t axis_index = axis; const uint8_t axis_index = axis;
#endif #endif
position[axis] = LROUND(v * axis_steps_per_mm[axis_index]); position[axis] = LROUND(v * axis_steps_per_mm[axis_index]);
#if ENABLED(LIN_ADVANCE)
position_float[axis] = v;
#endif
stepper.set_position(axis, v); stepper.set_position(axis, v);
previous_speed[axis] = 0.0; previous_speed[axis] = 0.0;
} }

View file

@ -144,7 +144,7 @@ class Planner {
static uint8_t last_extruder; // Respond to extruder change static uint8_t last_extruder; // Respond to extruder change
#endif #endif
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
@ -167,7 +167,7 @@ class Planner {
min_travel_feedrate_mm_s; min_travel_feedrate_mm_s;
#if HAS_LEVELING #if HAS_LEVELING
static bool leveling_active; // Flag that bed leveling is enabled static bool leveling_active; // Flag that bed leveling is enabled
#if ABL_PLANAR #if ABL_PLANAR
static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
#endif #endif
@ -186,7 +186,7 @@ class Planner {
* The current position of the tool in absolute steps * The current position of the tool in absolute steps
* Recalculated if any axis_steps_per_mm are changed by gcode * Recalculated if any axis_steps_per_mm are changed by gcode
*/ */
static long position[NUM_AXIS]; static int32_t position[NUM_AXIS];
/** /**
* Speed of previous path line segment * Speed of previous path line segment
@ -220,11 +220,7 @@ class Planner {
// Old direction bits. Used for speed calculations // Old direction bits. Used for speed calculations
static unsigned char old_direction_bits; static unsigned char old_direction_bits;
// Segment times (in µs). Used for speed calculations // Segment times (in µs). Used for speed calculations
static long axis_segment_time_us[2][3]; static uint32_t axis_segment_time_us[2][3];
#endif
#if ENABLED(LIN_ADVANCE)
static float position_float[NUM_AXIS];
#endif #endif
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -342,12 +338,12 @@ class Planner {
/** /**
* Planner::_buffer_line * Planner::_buffer_line
* *
* Add a new direct linear movement to the buffer. * Add a new linear movement to the buffer in axis units.
* *
* Leveling and kinematics should be applied ahead of this. * Leveling and kinematics should be applied ahead of calling this.
* *
* a,b,c,e - target position in mm or degrees * a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move (mm/s) * fr_mm_s - (target) speed of the move
* extruder - target extruder * extruder - target extruder
*/ */
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder); static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
@ -444,7 +440,7 @@ class Planner {
if (blocks_queued()) { if (blocks_queued()) {
block_t* block = &block_buffer[block_buffer_tail]; block_t* block = &block_buffer[block_buffer_tail];
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
#endif #endif
SBI(block->flag, BLOCK_BIT_BUSY); SBI(block->flag, BLOCK_BIT_BUSY);
return block; return block;