mirror of
https://github.com/MarlinFirmware/Marlin.git
synced 2024-11-23 20:18:52 +00:00
Move plan_arc next to prepare_move
This commit is contained in:
parent
5c5936508d
commit
e83eac312e
@ -1887,148 +1887,6 @@ inline void gcode_G0_G1() {
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Plan an arc in 2 dimensions
|
||||
*
|
||||
* The arc is approximated by generating many small linear segments.
|
||||
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
||||
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
||||
* larger segments will tend to be more efficient. Your slicer should have
|
||||
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
||||
*/
|
||||
void plan_arc(
|
||||
float target[NUM_AXIS], // Destination position
|
||||
float *offset, // Center of rotation relative to current_position
|
||||
uint8_t clockwise // Clockwise?
|
||||
) {
|
||||
|
||||
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
||||
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
|
||||
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
|
||||
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
||||
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
||||
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
||||
r_axis1 = -offset[Y_AXIS],
|
||||
rt_axis0 = target[X_AXIS] - center_axis0,
|
||||
rt_axis1 = target[Y_AXIS] - center_axis1;
|
||||
|
||||
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
||||
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
||||
if (angular_travel < 0) { angular_travel += RADIANS(360); }
|
||||
if (clockwise) { angular_travel -= RADIANS(360); }
|
||||
|
||||
// Make a circle if the angular rotation is 0
|
||||
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
|
||||
angular_travel += RADIANS(360);
|
||||
|
||||
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
||||
if (mm_of_travel < 0.001) { return; }
|
||||
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
|
||||
if (segments == 0) segments = 1;
|
||||
|
||||
float theta_per_segment = angular_travel/segments;
|
||||
float linear_per_segment = linear_travel/segments;
|
||||
float extruder_per_segment = extruder_travel/segments;
|
||||
|
||||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
||||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
||||
r_T = [cos(phi) -sin(phi);
|
||||
sin(phi) cos(phi] * r ;
|
||||
|
||||
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
||||
defined from the circle center to the initial position. Each line segment is formed by successive
|
||||
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
||||
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
||||
all double numbers are single precision on the Arduino. (True double precision will not have
|
||||
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
||||
tool precision in some cases. Therefore, arc path correction is implemented.
|
||||
|
||||
Small angle approximation may be used to reduce computation overhead further. This approximation
|
||||
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
||||
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
||||
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
||||
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
||||
issue for CNC machines with the single precision Arduino calculations.
|
||||
|
||||
This approximation also allows plan_arc to immediately insert a line segment into the planner
|
||||
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
||||
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
||||
This is important when there are successive arc motions.
|
||||
*/
|
||||
// Vector rotation matrix values
|
||||
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
||||
float sin_T = theta_per_segment;
|
||||
|
||||
float arc_target[NUM_AXIS];
|
||||
float sin_Ti;
|
||||
float cos_Ti;
|
||||
float r_axisi;
|
||||
uint16_t i;
|
||||
int8_t count = 0;
|
||||
|
||||
// Initialize the linear axis
|
||||
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
||||
|
||||
// Initialize the extruder axis
|
||||
arc_target[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
float feed_rate = feedrate*feedrate_multiplier/60/100.0;
|
||||
|
||||
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
||||
|
||||
if (count < N_ARC_CORRECTION) {
|
||||
// Apply vector rotation matrix to previous r_axis0 / 1
|
||||
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
||||
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
||||
r_axis1 = r_axisi;
|
||||
count++;
|
||||
}
|
||||
else {
|
||||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
||||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
||||
cos_Ti = cos(i*theta_per_segment);
|
||||
sin_Ti = sin(i*theta_per_segment);
|
||||
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
|
||||
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
|
||||
count = 0;
|
||||
}
|
||||
|
||||
// Update arc_target location
|
||||
arc_target[X_AXIS] = center_axis0 + r_axis0;
|
||||
arc_target[Y_AXIS] = center_axis1 + r_axis1;
|
||||
arc_target[Z_AXIS] += linear_per_segment;
|
||||
arc_target[E_AXIS] += extruder_per_segment;
|
||||
|
||||
clamp_to_software_endstops(arc_target);
|
||||
|
||||
#if defined(DELTA) || defined(SCARA)
|
||||
calculate_delta(arc_target);
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
adjust_delta(arc_target);
|
||||
#endif
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
||||
#else
|
||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Ensure last segment arrives at target location.
|
||||
#if defined(DELTA) || defined(SCARA)
|
||||
calculate_delta(target);
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
adjust_delta(target);
|
||||
#endif
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
||||
#else
|
||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
||||
#endif
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
||||
/**
|
||||
* G2: Clockwise Arc
|
||||
* G3: Counterclockwise Arc
|
||||
@ -6229,6 +6087,148 @@ void prepare_move() {
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
||||
/**
|
||||
* Plan an arc in 2 dimensions
|
||||
*
|
||||
* The arc is approximated by generating many small linear segments.
|
||||
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
||||
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
||||
* larger segments will tend to be more efficient. Your slicer should have
|
||||
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
||||
*/
|
||||
void plan_arc(
|
||||
float target[NUM_AXIS], // Destination position
|
||||
float *offset, // Center of rotation relative to current_position
|
||||
uint8_t clockwise // Clockwise?
|
||||
) {
|
||||
|
||||
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
||||
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
|
||||
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
|
||||
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
||||
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
||||
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
|
||||
r_axis1 = -offset[Y_AXIS],
|
||||
rt_axis0 = target[X_AXIS] - center_axis0,
|
||||
rt_axis1 = target[Y_AXIS] - center_axis1;
|
||||
|
||||
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
||||
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
|
||||
if (angular_travel < 0) { angular_travel += RADIANS(360); }
|
||||
if (clockwise) { angular_travel -= RADIANS(360); }
|
||||
|
||||
// Make a circle if the angular rotation is 0
|
||||
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
|
||||
angular_travel += RADIANS(360);
|
||||
|
||||
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
|
||||
if (mm_of_travel < 0.001) { return; }
|
||||
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
|
||||
if (segments == 0) segments = 1;
|
||||
|
||||
float theta_per_segment = angular_travel/segments;
|
||||
float linear_per_segment = linear_travel/segments;
|
||||
float extruder_per_segment = extruder_travel/segments;
|
||||
|
||||
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
||||
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
||||
r_T = [cos(phi) -sin(phi);
|
||||
sin(phi) cos(phi] * r ;
|
||||
|
||||
For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
||||
defined from the circle center to the initial position. Each line segment is formed by successive
|
||||
vector rotations. This requires only two cos() and sin() computations to form the rotation
|
||||
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
||||
all double numbers are single precision on the Arduino. (True double precision will not have
|
||||
round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
||||
tool precision in some cases. Therefore, arc path correction is implemented.
|
||||
|
||||
Small angle approximation may be used to reduce computation overhead further. This approximation
|
||||
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
||||
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
||||
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
||||
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
||||
issue for CNC machines with the single precision Arduino calculations.
|
||||
|
||||
This approximation also allows plan_arc to immediately insert a line segment into the planner
|
||||
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
||||
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
||||
This is important when there are successive arc motions.
|
||||
*/
|
||||
// Vector rotation matrix values
|
||||
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
|
||||
float sin_T = theta_per_segment;
|
||||
|
||||
float arc_target[NUM_AXIS];
|
||||
float sin_Ti;
|
||||
float cos_Ti;
|
||||
float r_axisi;
|
||||
uint16_t i;
|
||||
int8_t count = 0;
|
||||
|
||||
// Initialize the linear axis
|
||||
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
||||
|
||||
// Initialize the extruder axis
|
||||
arc_target[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
float feed_rate = feedrate*feedrate_multiplier/60/100.0;
|
||||
|
||||
for (i = 1; i < segments; i++) { // Increment (segments-1)
|
||||
|
||||
if (count < N_ARC_CORRECTION) {
|
||||
// Apply vector rotation matrix to previous r_axis0 / 1
|
||||
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
|
||||
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
|
||||
r_axis1 = r_axisi;
|
||||
count++;
|
||||
}
|
||||
else {
|
||||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
||||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
||||
cos_Ti = cos(i*theta_per_segment);
|
||||
sin_Ti = sin(i*theta_per_segment);
|
||||
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
|
||||
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
|
||||
count = 0;
|
||||
}
|
||||
|
||||
// Update arc_target location
|
||||
arc_target[X_AXIS] = center_axis0 + r_axis0;
|
||||
arc_target[Y_AXIS] = center_axis1 + r_axis1;
|
||||
arc_target[Z_AXIS] += linear_per_segment;
|
||||
arc_target[E_AXIS] += extruder_per_segment;
|
||||
|
||||
clamp_to_software_endstops(arc_target);
|
||||
|
||||
#if defined(DELTA) || defined(SCARA)
|
||||
calculate_delta(arc_target);
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
adjust_delta(arc_target);
|
||||
#endif
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
||||
#else
|
||||
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Ensure last segment arrives at target location.
|
||||
#if defined(DELTA) || defined(SCARA)
|
||||
calculate_delta(target);
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
adjust_delta(target);
|
||||
#endif
|
||||
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
||||
#else
|
||||
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
||||
#endif
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
||||
#if HAS_CONTROLLERFAN
|
||||
|
||||
void controllerFan() {
|
||||
|
Loading…
Reference in New Issue
Block a user