0
0
Fork 0
mirror of https://github.com/MarlinFirmware/Marlin.git synced 2025-01-17 23:18:34 +00:00

Improvements for MarlinMesh.scad

This commit is contained in:
Scott Lahteine 2020-02-29 04:27:04 -06:00
parent 1d609d2bbd
commit f7d663c7db

View file

@ -10,17 +10,13 @@
* *
\**************************************/
//$t = 0.15; // comment out during animation
$t = 0.15; // comment out during animation!
X = 0; Y = 1;
L = 0; R = 1; F = 2; B = 3;
//
// Mesh info and points
// Sample Mesh - Replace with your own
//
mesh_width = 200; // X Size in mm of the probed area
mesh_height = 200; // Y Size...
zprobe_offset = 0; // Added to the points
NAN = 0; // Z to use for un-measured points
measured_z = [
[ -1.20, -1.13, -1.09, -1.03, -1.19 ],
[ -1.16, -1.25, -1.27, -1.25, -1.08 ],
@ -29,6 +25,28 @@ measured_z = [
[ -1.13, -0.99, -1.03, -1.06, -1.32 ]
];
//
// An offset to add to all points in the mesh
//
zadjust = 0;
//
// Mesh characteristics
//
bed_size = [ 200, 200 ];
mesh_inset = [ 10, 10, 10, 10 ]; // L, F, R, B
mesh_bounds = [
[ mesh_inset[L], mesh_inset[F] ],
[ bed_size[X] - mesh_inset[R], bed_size[Y] - mesh_inset[B] ]
];
mesh_size = mesh_bounds[1] - mesh_bounds[0];
// NOTE: Marlin meshes already subtract the probe offset
NAN = 0; // Z to use for un-measured points
//
// Geometry
//
@ -45,6 +63,7 @@ alternation = 2; // direction change modulus (try it)
show_plane = true;
show_labels = true;
show_coords = true;
arrow_length = 5;
label_font_lg = "Arial";
@ -62,8 +81,8 @@ mean_value = (big_z + lil_z) / 2.0;
mesh_points_y = len(measured_z);
mesh_points_x = len(measured_z[0]);
xspace = mesh_width / (mesh_points_x - 1);
yspace = mesh_height / (mesh_points_y - 1);
xspace = mesh_size[X] / (mesh_points_x - 1);
yspace = mesh_size[Y] / (mesh_points_y - 1);
// At $t=0 and $t=1 scale will be 100%
z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min_z_scale) * 2;
@ -72,6 +91,8 @@ z_scale_factor = min_z_scale + (($t > 0.5) ? 1.0 - $t : $t) * (max_z_scale - min
// Min and max recursive functions for 1D and 2D arrays
// Return the smallest or largest value in the array
//
function some_1D(b,i) = (i<len(b)-1) ? (b[i] && some_1D(b,i+1)) : b[i] != 0;
function some_2D(a,j) = (j<len(a)-1) ? some_2D(a,j+1) : some_1D(a[j], 0);
function min_1D(b,i) = (i<len(b)-1) ? min(b[i], min_1D(b,i+1)) : b[i];
function min_2D(a,j) = (j<len(a)-1) ? min_2D(a,j+1) : min_1D(a[j], 0);
function max_1D(b,i) = (i<len(b)-1) ? max(b[i], max_1D(b,i+1)) : b[i];
@ -98,36 +119,59 @@ function pos(x,y,z) = [x * xspace, y * yspace, z_scale_factor * (z - mean_value)
//
module point_markers(show_home=true) {
// Mark the home position 0,0
color([0,0,0,0.25]) translate([1,1]) cylinder(r=1, h=z_scale_factor, center=true);
if (show_home)
translate([1,1]) color([0,0,0,0.25])
cylinder(r=1, h=z_scale_factor, center=true);
for (x=[0:mesh_points_x-1], y=[0:mesh_points_y-1]) {
z = measured_z[y][x];
z = measured_z[y][x] - zadjust;
down = z < mean_value;
translate(pos(x, y, z)) {
// Label each point with the Z
if (show_labels) {
v = z - mean_value;
color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
translate([0,0,down?-10:10]) {
xyz = pos(x, y, z);
translate([ xyz[0], xyz[1] ]) {
// Show the XY as well as the Z!
if (show_coords) {
color("black")
translate([0,0,0.5]) {
$fn=8;
rotate([90,0])
text(str(z), 6, label_font_lg, halign="center", valign="center");
translate([0,0,down?-6:6]) rotate([90,0])
text(str(down ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
rotate([0,0]) {
posx = floor(mesh_bounds[0][X] + x * xspace);
posy = floor(mesh_bounds[0][Y] + y * yspace);
text(str(posx, ",", posy), 2, label_font_sm, halign="center", valign="center");
}
}
}
// Show an arrow pointing up or down
rotate([0, down ? 180 : 0]) translate([0,0,-1])
cylinder(
r1=0.5,
r2=0.1,
h=arrow_length, $fn=12, center=1
);
translate([ 0, 0, xyz[2] ]) {
// Label each point with the Z
v = z - mean_value;
if (show_labels) {
color(abs(v) < 0.1 ? [0,0.5,0] : [0.25,0,0])
translate([0,0,down?-10:10]) {
$fn=8;
rotate([90,0])
text(str(z), 6, label_font_lg, halign="center", valign="center");
if (v)
translate([0,0,down?-6:6]) rotate([90,0])
text(str(down || !v ? "" : "+", v), 3, label_font_sm, halign="center", valign="center");
}
}
// Show an arrow pointing up or down
if (v) {
rotate([0, down ? 180 : 0]) translate([0,0,-1])
cylinder(
r1=0.5,
r2=0.1,
h=arrow_length, $fn=12, center=1
);
}
else
color([1,0,1,0.4]) sphere(r=1.0, $fn=20, center=1);
}
}
}
}
@ -161,7 +205,7 @@ module tesselated_square(s, alt=false) {
* The simplest mesh display
*/
module simple_mesh(show_plane=show_plane) {
if (show_plane) color(plane_color) cube([mesh_width, mesh_height, thickness]);
if (show_plane) color(plane_color) cube([mesh_size[X], mesh_size[Y], thickness]);
color(mesh_color)
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2])
tesselated_square(grid_square(x, y));
@ -171,30 +215,34 @@ module simple_mesh(show_plane=show_plane) {
* Subdivide the mesh into smaller squares.
*/
module bilinear_mesh(show_plane=show_plane,tesselation=tesselation) {
if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_width+10, mesh_height+10, thickness]);
tesselation = tesselation % 4;
color(mesh_color)
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
square = grid_square(x, y);
if (tesselation < 1) {
tesselated_square(square,(x%alternation)-(y%alternation));
}
else {
subdiv_4 = subdivided_square(square);
if (tesselation < 2) {
for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
if (show_plane) color(plane_color) translate([-5,-5]) cube([mesh_size[X]+10, mesh_size[Y]+10, thickness]);
if (some_2D(measured_z, 0)) {
tesselation = tesselation % 4;
color(mesh_color)
for (x=[0:mesh_points_x-2], y=[0:mesh_points_y-2]) {
square = grid_square(x, y);
if (tesselation < 1) {
tesselated_square(square,(x%alternation)-(y%alternation));
}
else {
for (i=[0:3]) {
subdiv_16 = subdivided_square(subdiv_4[i]);
if (tesselation < 3) {
for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
}
else {
for (j=[0:3]) {
subdiv_64 = subdivided_square(subdiv_16[j]);
if (tesselation < 4) {
for (k=[0:3]) tesselated_square(subdiv_64[k]);
subdiv_4 = subdivided_square(square);
if (tesselation < 2) {
for (i=[0:3]) tesselated_square(subdiv_4[i],i%alternation);
}
else {
for (i=[0:3]) {
subdiv_16 = subdivided_square(subdiv_4[i]);
if (tesselation < 3) {
for (j=[0:3]) tesselated_square(subdiv_16[j],j%alternation);
}
else {
for (j=[0:3]) {
subdiv_64 = subdivided_square(subdiv_16[j]);
if (tesselation < 4) {
for (k=[0:3]) tesselated_square(subdiv_64[k]);
}
}
}
}
@ -249,7 +297,7 @@ function subdivided_square(a) = [
//================================================ Run the plan
translate([-mesh_width / 2, -mesh_height / 2]) {
translate([-mesh_size[X] / 2, -mesh_size[Y] / 2]) {
$fn = 12;
point_markers();
bilinear_mesh();