Make stepper shutdown after inactivity dependent on a new set of
#defines.
DISABLE_INACTIV_X
DISABLE_INACTIV_Y
DISABLE_INACTIV_Z
DISABLE_INACTIV_E
And make exemplaric Configuration.
Names can be discussed.
This makes the disabling of the steppers independent from the DISABLE_?
settings witch shut down the steppers immediately.
- `SD_DETECT_PIN` replaces `SDCARDDETECT`
- `SD_DETECT_INVERTED` replaces `SDCARDDETECTINVERTED`
- Revise the description of `SD_DETECT_INVERTED`
- Add a note about the override of `SD_DETECT_INVERTED` in
`Conditionals.h`
As suggested in #2521
- Move `ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED` because `SDSUPPORT` is
also required.
- Add a note that endstops must be enabled for the feature to have any
effect
- Make thermal protection for all hotends and/or bed into simple
switches
- Now enable `WATCH_TEMP_PERIOD` when `THERMAL_PROTECTION_HOTENDS` is
enabled
- Move detailed thermal parameters to `Configuration_adv.h`
- Add sanity checks to warn about old configurations
- Change `WATCH_TEMP_PERIOD` to seconds instead of milliseconds
- Add “Level Bed” menu item for auto bed leveling
- Hide the option if homing has not been done yet
- Arrange the Prepare submenu more logically (?)
- Add documentation comments, some white-space
- Apply some coding standards here and there
- Move old encoder multiplier debug option to `ultralcd.cpp`
This addresses comments in #1956 and #1079. In particular, this is useful
when both endstops are stationary on a CoreXY system, and the Y axis needs
to be homed before the X so the flags are aligned.
With these changes the output of `M503 S0` is all you need to restore
the EEPROM. Building on this it is straightforward to save and restore
the EEPROM state using the SD card or external GCode file.
- Added `M145` to set “heatup states” for the LCD menu
- Added `M420` to toggle Mesh Bed Leveling
- Added `M421` to set a single Mesh coordinate
- Extended `Config_PrintSettings` with added M codes
- Cleaned up some comments here and there
Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z
steppers - Let's call them Z stepper and Z2 stepper.
That way the machine is capable to align the bed during home, since both
Z steppers are homed.
There is also an implementation of M666 (software endstops adjustment)
to this feature.
After Z homing, this adjustment is applied to just one of the steppers
in order to align the bed.
One just need to home the Z axis and measure the distance difference
between both Z axis and apply the math: Z adjust = Z - Z2.
If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it
is.. think about it) and the Z adjust would be positive.
Play a little bit with small adjustments (0.5mm) and check the
behaviour.
The M119 (endstops report) will start reporting the Z2 Endstop as well.
- Add `Conditionals.h` with calculated configuration values
- Add `SanityCheck.h` with checks for configuration errors
- Remove equivalent code from all configurations
- Move error checks from some sources to `SanityCheck.h` also
- Fix initialization of count_direction in stepper.cpp
Small changes (and formatting to confuse the diff’er) which first
allows DOGLCD and LCD_PROGRESS_BAR to be enabled in tandem, then a
#warning (rather than error) that the extra progress bar / message
options don’t apply to graphical displays at this time. This leaves
open perhaps combining the progress bar and message area in some future
(or forked custom) graphical LCD display arrangement (at which time the
relevant variables may be moved into ultralcd.cpp with externs in
ultralcd.h). I also added a conditional error that the progress bar and
the filament display may not work well together.
- Fixed issue when BAL area probing is shorter than it should be for
grid probing
- Warning when BAL activated with Delta Kinematics
- Fix XY_TRAVEL_SPEED when homing Z axis
Tosh stepper drivers need to be driven slower, so the stepper code
was interleaved to separate the pin HIGH from the pin LOW. This adds
enough instructions to make it work, without needing nops.
FW retraction is extended onto swap retraction invoked by 'G10 S1'.
Bookkeeping of the retract state of all extruders allows for having one
extruder fw standard retracted while another extruder is swap retracted.
An LCD menu item for the swap retract and recover length was added.
Firmware retraction now stores the retract and recover speeds in mm/s
instead of mm/min. This makes it match the units of the maximum
feedrate, and fixes problems with modifying the value via LCD control
panel. From gcode, the values are still taken in mm/min to match the
units of G1 and similar, and they are converted to mm/s before they are
stored.
I also lowered the default retract feedrate to make it less likely to
cause problems for geared extruders when the user hasn’t bothered to
set a reasonable maximum feedrate, though users should be setting both
of these values to suit their hardware.
Add digipot i2c control for MCP4451
Allow M907 to set i2c digipot currents in amps
Fix Makefile to allow Azteeg motherboards
Fix Makefile to allow Wire libraries only
Add beeper pin for Azteeg X3 Pro
if you try to enable Z_DUAL_STEPPER_DRIVERS the error "You cannot have dual drivers for both Y and Z" shows even if you don't have defined Y_DUAL_STEPPER_DRIVERS and don't let you compile the firmware
to solve this problem i change this line:
#ifdef Z_DUAL_STEPPER_DRIVERS && Y_DUAL_STEPPER_DRIVERS
to:
#if defined (Z_DUAL_STEPPER_DRIVERS) && defined (Y_DUAL_STEPPER_DRIVERS)
now the error only show if you define both Z_DUAL_STEPPER_DRIVERS and Y_DUAL_STEPPER_DRIVERS
If "SHOW_TEMP_ADC_VALUES" is defined in Configuration_adv.h, the M105
command will present, after tradicional temperatures, the ADC value read
from temp sensors. This is great for adjusting thermistor tables with
thermocouple.
From Pronterface you can see the ADC value and compare with a
thermocouple reading.. then you just need to create your own thermistor
table.
Since this merge doesnt change the original information, it doesnt mess
with PC software parsing (tested under Pronterface and Repetier-Host).
This is _not_ automatically the cronological, since deleting a file will free
the filesystem descriptor for it, which then will be used by the next file copied on it.
Since this makes the auto0.g file very inaccessible, I put the option back, to have it in the prepare menu.
this should satisfy https://github.com/ErikZalm/Marlin/pull/373
as a reminder, auto0.g will be executed every time after a boot with sd card present and file present.
thereafter, if there is a file auto1.g this will be done. Thats IMHO the best place to put settings, and prepare heating.
I also execute again after each (now again via the prepare menu) before starting a new print/ after a failed one.
It for me 100% replaces any start.gcode form the slicers.
also, removed some trouble for compilation with corexy.
I think that babystepping is only possible in z for a delta tower.
not sure if it would be usefull to step individual motors on a delta, i don't own one
It is a realtime control over the head position via the LCD menu system that works _while_ printing.
Using it, one can e.g. tune the z-position in realtime, while printing the first layer.
Also, lost steps can be manually added/removed, but thats not the prime feature.
Stuff is placed into the Tune->Babystep *
It is not possible to have realtime control via gcode sending due to the buffering, so I did not include a gcode yet. However, it could be added, but it movements will not be realtime then.
Historically, a very similar thing was implemented for the "Kaamermaker" project, while Joris was babysitting his offspring, hence the name.
say goodby to fuddling around with the z-axis.
Enables two stepper drivers to be used for the Y axis (useful for
Shapeoko style machines)
Each Y driver can be stepped in either the same way or in opposite
directions, accounting for different hardware setups (leadscrew vs. belt
driven)
Enables two stepper drivers to be used for the Y axis (useful for
Shapeoko style machines)
Each Y driver can be stepped either the same way or in opposite
directions, accounting for different hardware setups (leadscrew vs. belt
driven)
[default off for now]
syntax: M600 X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
if enabled, after a M600, the printer will retract by E, lift by Z, move to XY, retract even more filament.
Oh, and it will display "remove filament" and beep like crazy.
You are then supposed to insert a new filament (other color, e.g.) and click the display to continue.
After having the nozzle cleaned manually, aided by the disabled e-steppers.
After clicking, the printer will then go back the whole shebang, and continue printing with a fancy new color.
Add a feature to run the cooling fan at full speed for a small period
(default 100ms) when first starting the fan. Some fans wont reliably
start spinning at low power, and many fans have issue with the PWM at
low power. However, once the fan starts spinning it can reliably be
set to a wide range of PWM values.
fixes#246
Added statements to set the limit switch positions to the maximum travel if homing in the positive direction as well as bed center at (0,0) if defined.
Relocated code based on feedback.
One array was too short. This had nothing to do with long filenames, other than if they were 12 characters exactly, which could only happen if the extension and the text before were filled completely