/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */
#ifndef MARLIN_H
#define MARLIN_H

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <inttypes.h>

#include <util/delay.h>
#include <avr/eeprom.h>
#include <avr/interrupt.h>

#include "MarlinConfig.h"

#ifdef DEBUG_GCODE_PARSER
  #include "parser.h"
#endif

#include "enum.h"
#include "types.h"
#include "fastio.h"
#include "utility.h"
#include "serial.h"

void idle(
  #if ENABLED(ADVANCED_PAUSE_FEATURE)
    bool no_stepper_sleep = false  // pass true to keep steppers from disabling on timeout
  #endif
);

void manage_inactivity(const bool ignore_stepper_queue=false);

extern const char axis_codes[XYZE];

#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  extern bool extruder_duplication_enabled;
#endif

#if HAS_X2_ENABLE
  #define  enable_X() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0)
  #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#elif HAS_X_ENABLE
  #define  enable_X() X_ENABLE_WRITE( X_ENABLE_ON)
  #define disable_X() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0)
#else
  #define  enable_X() NOOP
  #define disable_X() NOOP
#endif

#if HAS_Y2_ENABLE
  #define  enable_Y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0)
  #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#elif HAS_Y_ENABLE
  #define  enable_Y() Y_ENABLE_WRITE( Y_ENABLE_ON)
  #define disable_Y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0)
#else
  #define  enable_Y() NOOP
  #define disable_Y() NOOP
#endif

#if HAS_Z2_ENABLE
  #define  enable_Z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0)
  #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#elif HAS_Z_ENABLE
  #define  enable_Z() Z_ENABLE_WRITE( Z_ENABLE_ON)
  #define disable_Z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0)
#else
  #define  enable_Z() NOOP
  #define disable_Z() NOOP
#endif

#if ENABLED(MIXING_EXTRUDER)

  /**
   * Mixing steppers synchronize their enable (and direction) together
   */
  #if MIXING_STEPPERS > 3
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
  #elif MIXING_STEPPERS > 2
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
  #else
    #define  enable_E0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
    #define disable_E0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
  #endif
  #define  enable_E1() NOOP
  #define disable_E1() NOOP
  #define  enable_E2() NOOP
  #define disable_E2() NOOP
  #define  enable_E3() NOOP
  #define disable_E3() NOOP
  #define  enable_E4() NOOP
  #define disable_E4() NOOP

#else // !MIXING_EXTRUDER

  #if HAS_E0_ENABLE
    #define  enable_E0() E0_ENABLE_WRITE( E_ENABLE_ON)
    #define disable_E0() E0_ENABLE_WRITE(!E_ENABLE_ON)
  #else
    #define  enable_E0() NOOP
    #define disable_E0() NOOP
  #endif

  #if E_STEPPERS > 1 && HAS_E1_ENABLE
    #define  enable_E1() E1_ENABLE_WRITE( E_ENABLE_ON)
    #define disable_E1() E1_ENABLE_WRITE(!E_ENABLE_ON)
  #else
    #define  enable_E1() NOOP
    #define disable_E1() NOOP
  #endif

  #if E_STEPPERS > 2 && HAS_E2_ENABLE
    #define  enable_E2() E2_ENABLE_WRITE( E_ENABLE_ON)
    #define disable_E2() E2_ENABLE_WRITE(!E_ENABLE_ON)
  #else
    #define  enable_E2() NOOP
    #define disable_E2() NOOP
  #endif

  #if E_STEPPERS > 3 && HAS_E3_ENABLE
    #define  enable_E3() E3_ENABLE_WRITE( E_ENABLE_ON)
    #define disable_E3() E3_ENABLE_WRITE(!E_ENABLE_ON)
  #else
    #define  enable_E3() NOOP
    #define disable_E3() NOOP
  #endif

  #if E_STEPPERS > 4 && HAS_E4_ENABLE
    #define  enable_E4() E4_ENABLE_WRITE( E_ENABLE_ON)
    #define disable_E4() E4_ENABLE_WRITE(!E_ENABLE_ON)
  #else
    #define  enable_E4() NOOP
    #define disable_E4() NOOP
  #endif

#endif // !MIXING_EXTRUDER

#if ENABLED(G38_PROBE_TARGET)
  extern bool G38_move,        // flag to tell the interrupt handler that a G38 command is being run
              G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
#endif

void enable_all_steppers();
void disable_e_stepper(const uint8_t e);
void disable_e_steppers();
void disable_all_steppers();

void sync_plan_position();
void sync_plan_position_e();

#if IS_KINEMATIC
  void sync_plan_position_kinematic();
  #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
#else
  #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
#endif

void flush_and_request_resend();
void ok_to_send();

void kill(const char*);

void quickstop_stepper();

extern uint8_t marlin_debug_flags;
#define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F))

extern bool Running;
inline bool IsRunning() { return  Running; }
inline bool IsStopped() { return !Running; }

bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); // Add a single command to the end of the buffer. Return false on failure.
void enqueue_and_echo_commands_P(const char * const cmd);          // Set one or more commands to be prioritized over the next Serial/SD command.
void clear_command_queue();

#if ENABLED(M100_FREE_MEMORY_WATCHER) || ENABLED(POWER_LOSS_RECOVERY)
  extern char command_queue[BUFSIZE][MAX_CMD_SIZE];
#endif

#define HAS_LCD_QUEUE_NOW (ENABLED(MALYAN_LCD) || (ENABLED(ULTIPANEL) && (ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(PID_AUTOTUNE_MENU) || ENABLED(ADVANCED_PAUSE_FEATURE))))
#define HAS_QUEUE_NOW (ENABLED(SDSUPPORT) || HAS_LCD_QUEUE_NOW)
#if HAS_QUEUE_NOW
  // Return only when commands are actually enqueued
  void enqueue_and_echo_command_now(const char* cmd);
  #if HAS_LCD_QUEUE_NOW
    void enqueue_and_echo_commands_now_P(const char * const cmd);
  #endif
#endif

extern millis_t previous_move_ms;
inline void reset_stepper_timeout() { previous_move_ms = millis(); }

/**
 * Feedrate scaling and conversion
 */
extern float feedrate_mm_s;
extern int16_t feedrate_percentage;

#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01)

extern bool axis_relative_modes[];
extern bool axis_known_position[XYZ];
extern bool axis_homed[XYZ];
extern volatile bool wait_for_heatup;

#if HAS_RESUME_CONTINUE
  extern volatile bool wait_for_user;
#endif

#if HAS_AUTO_REPORTING || ENABLED(HOST_KEEPALIVE_FEATURE)
  extern bool suspend_auto_report;
#endif

extern float current_position[XYZE], destination[XYZE];

/**
 * Workspace offsets
 */
#if HAS_WORKSPACE_OFFSET
  #if HAS_HOME_OFFSET
    extern float home_offset[XYZ];
  #endif
  #if HAS_POSITION_SHIFT
    extern float position_shift[XYZ];
  #endif
  #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
    extern float workspace_offset[XYZ];
    #define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
  #elif HAS_HOME_OFFSET
    #define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
  #elif HAS_POSITION_SHIFT
    #define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
  #endif
  #define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
  #define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#else
  #define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
  #define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
#endif
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
#define RAW_X_POSITION(POS)     LOGICAL_TO_NATIVE(POS, X_AXIS)
#define RAW_Y_POSITION(POS)     LOGICAL_TO_NATIVE(POS, Y_AXIS)
#define RAW_Z_POSITION(POS)     LOGICAL_TO_NATIVE(POS, Z_AXIS)

// Hotend Offsets
#if HOTENDS > 1
  extern float hotend_offset[XYZ][HOTENDS];
#endif

// Software Endstops
extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ];

#if HAS_SOFTWARE_ENDSTOPS
  extern bool soft_endstops_enabled;
  void clamp_to_software_endstops(float target[XYZ]);
#else
  #define soft_endstops_enabled false
  #define clamp_to_software_endstops(x) NOOP
#endif

#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  void update_software_endstops(const AxisEnum axis);
#endif

#define MAX_COORDINATE_SYSTEMS 9
#if ENABLED(CNC_COORDINATE_SYSTEMS)
  extern float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  bool select_coordinate_system(const int8_t _new);
#endif

void report_current_position();

#if IS_KINEMATIC
  extern float delta[ABC];
  void inverse_kinematics(const float raw[XYZ]);
#endif

#if ENABLED(DELTA)
  extern float delta_height,
               delta_endstop_adj[ABC],
               delta_radius,
               delta_tower_angle_trim[ABC],
               delta_tower[ABC][2],
               delta_diagonal_rod,
               delta_calibration_radius,
               delta_diagonal_rod_2_tower[ABC],
               delta_segments_per_second,
               delta_clip_start_height;

  void recalc_delta_settings();
  float delta_safe_distance_from_top();

  #if ENABLED(DELTA_FAST_SQRT)
    float Q_rsqrt(const float number);
    #define _SQRT(n) (1.0f / Q_rsqrt(n))
  #else
    #define _SQRT(n) SQRT(n)
  #endif

  // Macro to obtain the Z position of an individual tower
  #define DELTA_Z(V,T) V[Z_AXIS] + _SQRT(   \
    delta_diagonal_rod_2_tower[T] - HYPOT2( \
        delta_tower[T][X_AXIS] - V[X_AXIS], \
        delta_tower[T][Y_AXIS] - V[Y_AXIS]  \
      )                                     \
    )

  #define DELTA_IK(V) do {        \
    delta[A_AXIS] = DELTA_Z(V, A_AXIS); \
    delta[B_AXIS] = DELTA_Z(V, B_AXIS); \
    delta[C_AXIS] = DELTA_Z(V, C_AXIS); \
  }while(0)

#elif IS_SCARA
  void forward_kinematics_SCARA(const float &a, const float &b);
#endif

#if ENABLED(G26_MESH_VALIDATION)
  extern bool g26_debug_flag;
#elif ENABLED(AUTO_BED_LEVELING_UBL)
  constexpr bool g26_debug_flag = false;
#endif

#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  #define _GET_MESH_X(I) (bilinear_start[X_AXIS] + (I) * bilinear_grid_spacing[X_AXIS])
  #define _GET_MESH_Y(J) (bilinear_start[Y_AXIS] + (J) * bilinear_grid_spacing[Y_AXIS])
#elif ENABLED(AUTO_BED_LEVELING_UBL)
  #define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
  #define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
#elif ENABLED(MESH_BED_LEVELING)
  #define _GET_MESH_X(I) mbl.index_to_xpos[I]
  #define _GET_MESH_Y(J) mbl.index_to_ypos[J]
#endif

#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  extern int bilinear_grid_spacing[2], bilinear_start[2];
  extern float bilinear_grid_factor[2],
               z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  float bilinear_z_offset(const float raw[XYZ]);
#endif

#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  typedef float (*element_2d_fn)(const uint8_t, const uint8_t);
  void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, const element_2d_fn fn);
#endif

#if ENABLED(AUTO_BED_LEVELING_UBL)
  typedef struct { double A, B, D; } linear_fit;
  linear_fit* lsf_linear_fit(double x[], double y[], double z[], const int);
#endif

#if HAS_LEVELING
  bool leveling_is_valid();
  void set_bed_leveling_enabled(const bool enable=true);
  void reset_bed_level();
#endif

#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  void set_z_fade_height(const float zfh, const bool do_report=true);
#endif

#if HAS_BED_PROBE
  extern float zprobe_zoffset;
  bool set_probe_deployed(const bool deploy);
  #ifdef Z_AFTER_PROBING
    void move_z_after_probing();
  #endif
  enum ProbePtRaise : unsigned char {
    PROBE_PT_NONE,  // No raise or stow after run_z_probe
    PROBE_PT_STOW,  // Do a complete stow after run_z_probe
    PROBE_PT_RAISE, // Raise to "between" clearance after run_z_probe
    PROBE_PT_BIG_RAISE  // Raise to big clearance after run_z_probe
  };
  float probe_pt(const float &rx, const float &ry, const ProbePtRaise raise_after=PROBE_PT_NONE, const uint8_t verbose_level=0, const bool probe_relative=true);
  #define DEPLOY_PROBE() set_probe_deployed(true)
  #define STOW_PROBE() set_probe_deployed(false)
#else
  #define DEPLOY_PROBE()
  #define STOW_PROBE()
#endif

#if ENABLED(HOST_KEEPALIVE_FEATURE)
  extern MarlinBusyState busy_state;
  #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
#else
  #define KEEPALIVE_STATE(n) NOOP
#endif

#if FAN_COUNT > 0
  extern int16_t fanSpeeds[FAN_COUNT];
  #if ENABLED(EXTRA_FAN_SPEED)
    extern int16_t old_fanSpeeds[FAN_COUNT],
                   new_fanSpeeds[FAN_COUNT];
  #endif
  #if ENABLED(PROBING_FANS_OFF)
    extern bool fans_paused;
    extern int16_t paused_fanSpeeds[FAN_COUNT];
  #endif
#endif

#if ENABLED(USE_CONTROLLER_FAN)
  extern int controllerFanSpeed;
#endif

#if ENABLED(BARICUDA)
  extern uint8_t baricuda_valve_pressure, baricuda_e_to_p_pressure;
#endif

#if ENABLED(FILAMENT_WIDTH_SENSOR)
  extern bool filament_sensor;         // Flag that filament sensor readings should control extrusion
  extern float filament_width_nominal, // Theoretical filament diameter i.e., 3.00 or 1.75
               filament_width_meas;    // Measured filament diameter
  extern uint8_t meas_delay_cm;        // Delay distance
  extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1],  // Ring buffer to delay measurement
                filwidth_delay_index[2]; // Ring buffer indexes. Used by planner, temperature, and main code
#endif

#if ENABLED(ADVANCED_PAUSE_FEATURE)
  extern int8_t did_pause_print;
  extern AdvancedPauseMenuResponse advanced_pause_menu_response;
  extern float filament_change_unload_length[EXTRUDERS],
               filament_change_load_length[EXTRUDERS];
#endif

#if HAS_POWER_SWITCH
  extern bool powersupply_on;
  #define PSU_PIN_ON()  do{ OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); powersupply_on = true; }while(0)
  #define PSU_PIN_OFF() do{ OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); powersupply_on = false; }while(0)
#endif

// Handling multiple extruders pins
extern uint8_t active_extruder;

#if ENABLED(MIXING_EXTRUDER)
  extern float mixing_factor[MIXING_STEPPERS];
#endif

inline void set_current_from_destination() { COPY(current_position, destination); }
inline void set_destination_from_current() { COPY(destination, current_position); }
void prepare_move_to_destination();

/**
 * Blocking movement and shorthand functions
 */
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0.0);
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0.0);

#if ENABLED(ARC_SUPPORT)
  void plan_arc(const float(&cart)[XYZE], const float(&offset)[2], const bool clockwise);
#endif

#define HAS_AXIS_UNHOMED_ERR (                                                     \
         ENABLED(Z_PROBE_ALLEN_KEY)                                                \
      || ENABLED(Z_PROBE_SLED)                                                     \
      || HAS_PROBING_PROCEDURE                                                     \
      || HOTENDS > 1                                                               \
      || ENABLED(NOZZLE_CLEAN_FEATURE)                                             \
      || ENABLED(NOZZLE_PARK_FEATURE)                                              \
      || (ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(HOME_BEFORE_FILAMENT_CHANGE)) \
      || HAS_M206_COMMAND                                                          \
    ) || ENABLED(NO_MOTION_BEFORE_HOMING)

#if HAS_AXIS_UNHOMED_ERR
  bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
#endif

/**
 * position_is_reachable family of functions
 */

#if IS_KINEMATIC // (DELTA or SCARA)

  #if IS_SCARA
    extern const float L1, L2;
  #endif

  // Return true if the given point is within the printable area
  inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
    #if ENABLED(DELTA)
      return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
    #elif IS_SCARA
      const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
      return (
        R2 <= sq(L1 + L2) - inset
        #if MIDDLE_DEAD_ZONE_R > 0
          && R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
        #endif
      );
    #endif
  }

  #if HAS_BED_PROBE
    // Return true if the both nozzle and the probe can reach the given point.
    // Note: This won't work on SCARA since the probe offset rotates with the arm.
    inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
      return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
             && position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
    }
  #endif

#else // CARTESIAN

   // Return true if the given position is within the machine bounds.
  inline bool position_is_reachable(const float &rx, const float &ry) {
    // Add 0.001 margin to deal with float imprecision
    return WITHIN(rx, X_MIN_POS - 0.001, X_MAX_POS + 0.001)
        && WITHIN(ry, Y_MIN_POS - 0.001, Y_MAX_POS + 0.001);
  }

  #if HAS_BED_PROBE
    /**
     * Return whether the given position is within the bed, and whether the nozzle
     * can reach the position required to put the probe at the given position.
     *
     * Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
     *          nozzle must be be able to reach +10,-10.
     */
    inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
      return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
          && WITHIN(rx, MIN_PROBE_X - 0.001, MAX_PROBE_X + 0.001)
          && WITHIN(ry, MIN_PROBE_Y - 0.001, MAX_PROBE_Y + 0.001);
    }
  #endif

#endif // CARTESIAN

#if !HAS_BED_PROBE
  FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
#endif

#endif // MARLIN_H