/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . * */ /** * endstops.cpp - A singleton object to manage endstops */ #include "Marlin.h" #include "cardreader.h" #include "endstops.h" #include "temperature.h" #include "stepper.h" #include "ultralcd.h" #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #include "endstop_interrupts.h" #endif Endstops endstops; // public: bool Endstops::enabled, Endstops::enabled_globally; // Initialized by settings.load() volatile uint8_t Endstops::hit_state; Endstops::esbits_t Endstops::live_state = 0; #if ENABLED(ENDSTOP_NOISE_FILTER) Endstops::esbits_t Endstops::validated_live_state; uint8_t Endstops::endstop_poll_count; #endif #if HAS_BED_PROBE volatile bool Endstops::z_probe_enabled = false; #endif // Initialized by settings.load() #if ENABLED(X_DUAL_ENDSTOPS) float Endstops::x_endstop_adj; #endif #if ENABLED(Y_DUAL_ENDSTOPS) float Endstops::y_endstop_adj; #endif #if ENABLED(Z_DUAL_ENDSTOPS) float Endstops::z_endstop_adj; #endif /** * Class and Instance Methods */ void Endstops::init() { #if HAS_X_MIN #if ENABLED(ENDSTOPPULLUP_XMIN) SET_INPUT_PULLUP(X_MIN_PIN); #else SET_INPUT(X_MIN_PIN); #endif #endif #if HAS_X2_MIN #if ENABLED(ENDSTOPPULLUP_XMIN) SET_INPUT_PULLUP(X2_MIN_PIN); #else SET_INPUT(X2_MIN_PIN); #endif #endif #if HAS_Y_MIN #if ENABLED(ENDSTOPPULLUP_YMIN) SET_INPUT_PULLUP(Y_MIN_PIN); #else SET_INPUT(Y_MIN_PIN); #endif #endif #if HAS_Y2_MIN #if ENABLED(ENDSTOPPULLUP_YMIN) SET_INPUT_PULLUP(Y2_MIN_PIN); #else SET_INPUT(Y2_MIN_PIN); #endif #endif #if HAS_Z_MIN #if ENABLED(ENDSTOPPULLUP_ZMIN) SET_INPUT_PULLUP(Z_MIN_PIN); #else SET_INPUT(Z_MIN_PIN); #endif #endif #if HAS_Z2_MIN #if ENABLED(ENDSTOPPULLUP_ZMIN) SET_INPUT_PULLUP(Z2_MIN_PIN); #else SET_INPUT(Z2_MIN_PIN); #endif #endif #if HAS_X_MAX #if ENABLED(ENDSTOPPULLUP_XMAX) SET_INPUT_PULLUP(X_MAX_PIN); #else SET_INPUT(X_MAX_PIN); #endif #endif #if HAS_X2_MAX #if ENABLED(ENDSTOPPULLUP_XMAX) SET_INPUT_PULLUP(X2_MAX_PIN); #else SET_INPUT(X2_MAX_PIN); #endif #endif #if HAS_Y_MAX #if ENABLED(ENDSTOPPULLUP_YMAX) SET_INPUT_PULLUP(Y_MAX_PIN); #else SET_INPUT(Y_MAX_PIN); #endif #endif #if HAS_Y2_MAX #if ENABLED(ENDSTOPPULLUP_YMAX) SET_INPUT_PULLUP(Y2_MAX_PIN); #else SET_INPUT(Y2_MAX_PIN); #endif #endif #if HAS_Z_MAX #if ENABLED(ENDSTOPPULLUP_ZMAX) SET_INPUT_PULLUP(Z_MAX_PIN); #else SET_INPUT(Z_MAX_PIN); #endif #endif #if HAS_Z2_MAX #if ENABLED(ENDSTOPPULLUP_ZMAX) SET_INPUT_PULLUP(Z2_MAX_PIN); #else SET_INPUT(Z2_MAX_PIN); #endif #endif #if ENABLED(Z_MIN_PROBE_ENDSTOP) #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE) SET_INPUT_PULLUP(Z_MIN_PROBE_PIN); #else SET_INPUT(Z_MIN_PROBE_PIN); #endif #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) setup_endstop_interrupts(); #endif // Enable endstops enable_globally( #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) true #else false #endif ); } // Endstops::init // Called at ~1KHz from Temperature ISR: Poll endstop state if required void Endstops::poll() { #if ENABLED(PINS_DEBUGGING) run_monitor(); // report changes in endstop status #endif #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) && ENABLED(ENDSTOP_NOISE_FILTER) if (endstop_poll_count) update(); #elif DISABLED(ENDSTOP_INTERRUPTS_FEATURE) || ENABLED(ENDSTOP_NOISE_FILTER) update(); #endif } void Endstops::enable_globally(const bool onoff) { enabled_globally = enabled = onoff; #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) update(); #endif } // Enable / disable endstop checking void Endstops::enable(const bool onoff) { enabled = onoff; #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) update(); #endif } // Disable / Enable endstops based on ENSTOPS_ONLY_FOR_HOMING and global enable void Endstops::not_homing() { enabled = enabled_globally; #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) update(); #endif } #if ENABLED(VALIDATE_HOMING_ENDSTOPS) // If the last move failed to trigger an endstop, call kill void Endstops::validate_homing_move() { if (trigger_state()) hit_on_purpose(); else kill(PSTR(MSG_ERR_HOMING_FAILED)); } #endif // Enable / disable endstop z-probe checking #if HAS_BED_PROBE void Endstops::enable_z_probe(const bool onoff) { z_probe_enabled = onoff; #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) update(); #endif } #endif #if ENABLED(PINS_DEBUGGING) void Endstops::run_monitor() { if (!monitor_flag) return; static uint8_t monitor_count = 16; // offset this check from the others monitor_count += _BV(1); // 15 Hz monitor_count &= 0x7F; if (!monitor_count) monitor(); // report changes in endstop status } #endif void Endstops::event_handler() { static uint8_t prev_hit_state; // = 0 if (hit_state && hit_state != prev_hit_state) { #if ENABLED(ULTRA_LCD) char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' '; #define _SET_STOP_CHAR(A,C) (chr## A = C) #else #define _SET_STOP_CHAR(A,C) ; #endif #define _ENDSTOP_HIT_ECHO(A,C) do{ \ SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", planner.triggered_position_mm(_AXIS(A))); \ _SET_STOP_CHAR(A,C); }while(0) #define _ENDSTOP_HIT_TEST(A,C) \ if (TEST(hit_state, A ##_MIN) || TEST(hit_state, A ##_MAX)) \ _ENDSTOP_HIT_ECHO(A,C) #define ENDSTOP_HIT_TEST_X() _ENDSTOP_HIT_TEST(X,'X') #define ENDSTOP_HIT_TEST_Y() _ENDSTOP_HIT_TEST(Y,'Y') #define ENDSTOP_HIT_TEST_Z() _ENDSTOP_HIT_TEST(Z,'Z') SERIAL_ECHO_START(); SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); ENDSTOP_HIT_TEST_X(); ENDSTOP_HIT_TEST_Y(); ENDSTOP_HIT_TEST_Z(); #if ENABLED(Z_MIN_PROBE_ENDSTOP) #define P_AXIS Z_AXIS if (TEST(hit_state, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P'); #endif SERIAL_EOL(); #if ENABLED(ULTRA_LCD) lcd_status_printf_P(0, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP); #endif #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) if (planner.abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickstop_stepper(); thermalManager.disable_all_heaters(); // switch off all heaters. } #endif } prev_hit_state = hit_state; } // Endstops::report_state static void print_es_state(const bool is_hit, const char * const label=NULL) { if (label) serialprintPGM(label); SERIAL_PROTOCOLPGM(": "); serialprintPGM(is_hit ? PSTR(MSG_ENDSTOP_HIT) : PSTR(MSG_ENDSTOP_OPEN)); SERIAL_EOL(); } void _O2 Endstops::M119() { #if ENABLED(BLTOUCH) extern void _bltouch_set_SW_mode(); _bltouch_set_SW_mode(); #endif SERIAL_PROTOCOLLNPGM(MSG_M119_REPORT); #define ES_REPORT(S) print_es_state(READ(S##_PIN) != S##_ENDSTOP_INVERTING, PSTR(MSG_##S)) #if HAS_X_MIN ES_REPORT(X_MIN); #endif #if HAS_X2_MIN ES_REPORT(X2_MIN); #endif #if HAS_X_MAX ES_REPORT(X_MAX); #endif #if HAS_X2_MAX ES_REPORT(X2_MAX); #endif #if HAS_Y_MIN ES_REPORT(Y_MIN); #endif #if HAS_Y2_MIN ES_REPORT(Y2_MIN); #endif #if HAS_Y_MAX ES_REPORT(Y_MAX); #endif #if HAS_Y2_MAX ES_REPORT(Y2_MAX); #endif #if HAS_Z_MIN ES_REPORT(Z_MIN); #endif #if HAS_Z2_MIN ES_REPORT(Z2_MIN); #endif #if HAS_Z_MAX ES_REPORT(Z_MAX); #endif #if HAS_Z2_MAX ES_REPORT(Z2_MAX); #endif #if ENABLED(Z_MIN_PROBE_ENDSTOP) print_es_state(READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING, PSTR(MSG_Z_PROBE)); #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) #if NUM_RUNOUT_SENSORS == 1 print_es_state(READ(FIL_RUNOUT_PIN) != FIL_RUNOUT_INVERTING, PSTR(MSG_FILAMENT_RUNOUT_SENSOR)); #else for (uint8_t i = 1; i <= NUM_RUNOUT_SENSORS; i++) { pin_t pin; switch (i) { default: continue; case 1: pin = FIL_RUNOUT_PIN; break; case 2: pin = FIL_RUNOUT2_PIN; break; #if NUM_RUNOUT_SENSORS > 2 case 3: pin = FIL_RUNOUT3_PIN; break; #if NUM_RUNOUT_SENSORS > 3 case 4: pin = FIL_RUNOUT4_PIN; break; #if NUM_RUNOUT_SENSORS > 4 case 5: pin = FIL_RUNOUT5_PIN; break; #endif #endif #endif } SERIAL_PROTOCOLPGM(MSG_FILAMENT_RUNOUT_SENSOR); if (i > 1) { SERIAL_CHAR(' '); SERIAL_CHAR('0' + i); } print_es_state(digitalRead(pin) != FIL_RUNOUT_INVERTING); } #endif #endif #if ENABLED(BLTOUCH) extern void _bltouch_reset_SW_mode(); _bltouch_reset_SW_mode(); #endif } // Endstops::M119 // The following routines are called from an ISR context. It could be the temperature ISR, the // endstop ISR or the Stepper ISR. #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING // Check endstops - Could be called from Temperature ISR! void Endstops::update() { #if DISABLED(ENDSTOP_NOISE_FILTER) if (!abort_enabled()) return; #endif #define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT_TO(live_state, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) #define COPY_LIVE_STATE(SRC_BIT, DST_BIT) SET_BIT_TO(live_state, DST_BIT, TEST(live_state, SRC_BIT)) #if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ) // If G38 command is active check Z_MIN_PROBE for ALL movement if (G38_move) UPDATE_ENDSTOP_BIT(Z, MIN_PROBE); #endif // With Dual X, endstops are only checked in the homing direction for the active extruder #if ENABLED(DUAL_X_CARRIAGE) #define E0_ACTIVE stepper.movement_extruder() == 0 #define X_MIN_TEST ((X_HOME_DIR < 0 && E0_ACTIVE) || (X2_HOME_DIR < 0 && !E0_ACTIVE)) #define X_MAX_TEST ((X_HOME_DIR > 0 && E0_ACTIVE) || (X2_HOME_DIR > 0 && !E0_ACTIVE)) #else #define X_MIN_TEST true #define X_MAX_TEST true #endif // Use HEAD for core axes, AXIS for others #if CORE_IS_XY || CORE_IS_XZ #define X_AXIS_HEAD X_HEAD #else #define X_AXIS_HEAD X_AXIS #endif #if CORE_IS_XY || CORE_IS_YZ #define Y_AXIS_HEAD Y_HEAD #else #define Y_AXIS_HEAD Y_AXIS #endif #if CORE_IS_XZ || CORE_IS_YZ #define Z_AXIS_HEAD Z_HEAD #else #define Z_AXIS_HEAD Z_AXIS #endif /** * Check and update endstops */ #if HAS_X_MIN #if ENABLED(X_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(X, MIN); #if HAS_X2_MIN UPDATE_ENDSTOP_BIT(X2, MIN); #else COPY_LIVE_STATE(X_MIN, X2_MIN); #endif #else UPDATE_ENDSTOP_BIT(X, MIN); #endif #endif #if HAS_X_MAX #if ENABLED(X_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(X, MAX); #if HAS_X2_MAX UPDATE_ENDSTOP_BIT(X2, MAX); #else COPY_LIVE_STATE(X_MAX, X2_MAX); #endif #else UPDATE_ENDSTOP_BIT(X, MAX); #endif #endif #if HAS_Y_MIN #if ENABLED(Y_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Y, MIN); #if HAS_Y2_MIN UPDATE_ENDSTOP_BIT(Y2, MIN); #else COPY_LIVE_STATE(Y_MIN, Y2_MIN); #endif #else UPDATE_ENDSTOP_BIT(Y, MIN); #endif #endif #if HAS_Y_MAX #if ENABLED(Y_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Y, MAX); #if HAS_Y2_MAX UPDATE_ENDSTOP_BIT(Y2, MAX); #else COPY_LIVE_STATE(Y_MAX, Y2_MAX); #endif #else UPDATE_ENDSTOP_BIT(Y, MAX); #endif #endif #if HAS_Z_MIN #if ENABLED(Z_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Z, MIN); #if HAS_Z2_MIN UPDATE_ENDSTOP_BIT(Z2, MIN); #else COPY_LIVE_STATE(Z_MIN, Z2_MIN); #endif #elif ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) UPDATE_ENDSTOP_BIT(Z, MIN); #elif Z_HOME_DIR < 0 UPDATE_ENDSTOP_BIT(Z, MIN); #endif #endif // When closing the gap check the enabled probe #if ENABLED(Z_MIN_PROBE_ENDSTOP) UPDATE_ENDSTOP_BIT(Z, MIN_PROBE); #endif #if HAS_Z_MAX // Check both Z dual endstops #if ENABLED(Z_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Z, MAX); #if HAS_Z2_MAX UPDATE_ENDSTOP_BIT(Z2, MAX); #else COPY_LIVE_STATE(Z_MAX, Z2_MAX); #endif #elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN // If this pin isn't the bed probe it's the Z endstop UPDATE_ENDSTOP_BIT(Z, MAX); #endif #endif #if ENABLED(ENDSTOP_NOISE_FILTER) /** * Filtering out noise on endstops requires a delayed decision. Let's assume, due to noise, * that 50% of endstop signal samples are good and 50% are bad (assuming normal distribution * of random noise). Then the first sample has a 50% chance to be good or bad. The 2nd sample * also has a 50% chance to be good or bad. The chances of 2 samples both being bad becomes * 50% of 50%, or 25%. That was the previous implementation of Marlin endstop handling. It * reduces chances of bad readings in half, at the cost of 1 extra sample period, but chances * still exist. The only way to reduce them further is to increase the number of samples. * To reduce the chance to 1% (1/128th) requires 7 samples (adding 7ms of delay). */ static esbits_t old_live_state; if (old_live_state != live_state) { endstop_poll_count = 7; old_live_state = live_state; } else if (endstop_poll_count && !--endstop_poll_count) validated_live_state = live_state; if (!abort_enabled()) return; #endif // Test the current status of an endstop #define TEST_ENDSTOP(ENDSTOP) (TEST(state(), ENDSTOP)) // Record endstop was hit #define _ENDSTOP_HIT(AXIS, MINMAX) SBI(hit_state, _ENDSTOP(AXIS, MINMAX)) // Call the endstop triggered routine for single endstops #define PROCESS_ENDSTOP(AXIS,MINMAX) do { \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX))) { \ _ENDSTOP_HIT(AXIS, MINMAX); \ planner.endstop_triggered(_AXIS(AXIS)); \ } \ }while(0) // Call the endstop triggered routine for dual endstops #define PROCESS_DUAL_ENDSTOP(AXIS1, AXIS2, MINMAX) do { \ const byte dual_hit = TEST_ENDSTOP(_ENDSTOP(AXIS1, MINMAX)) | (TEST_ENDSTOP(_ENDSTOP(AXIS2, MINMAX)) << 1); \ if (dual_hit) { \ _ENDSTOP_HIT(AXIS1, MINMAX); \ /* if not performing home or if both endstops were trigged during homing... */ \ if (!stepper.homing_dual_axis || dual_hit == 0b11) \ planner.endstop_triggered(_AXIS(AXIS1)); \ } \ }while(0) #if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ) // If G38 command is active check Z_MIN_PROBE for ALL movement if (G38_move) { if (TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE))) { if (stepper.axis_is_moving(X_AXIS)) { _ENDSTOP_HIT(X, MIN); planner.endstop_triggered(X_AXIS); } else if (stepper.axis_is_moving(Y_AXIS)) { _ENDSTOP_HIT(Y, MIN); planner.endstop_triggered(Y_AXIS); } else if (stepper.axis_is_moving(Z_AXIS)) { _ENDSTOP_HIT(Z, MIN); planner.endstop_triggered(Z_AXIS); } G38_endstop_hit = true; } } #endif // Now, we must signal, after validation, if an endstop limit is pressed or not if (stepper.axis_is_moving(X_AXIS)) { if (stepper.motor_direction(X_AXIS_HEAD)) { // -direction #if HAS_X_MIN #if ENABLED(X_DUAL_ENDSTOPS) PROCESS_DUAL_ENDSTOP(X, X2, MIN); #else if (X_MIN_TEST) PROCESS_ENDSTOP(X, MIN); #endif #endif } else { // +direction #if HAS_X_MAX #if ENABLED(X_DUAL_ENDSTOPS) PROCESS_DUAL_ENDSTOP(X, X2, MAX); #else if (X_MAX_TEST) PROCESS_ENDSTOP(X, MAX); #endif #endif } } if (stepper.axis_is_moving(Y_AXIS)) { if (stepper.motor_direction(Y_AXIS_HEAD)) { // -direction #if HAS_Y_MIN #if ENABLED(Y_DUAL_ENDSTOPS) PROCESS_DUAL_ENDSTOP(Y, Y2, MIN); #else PROCESS_ENDSTOP(Y, MIN); #endif #endif } else { // +direction #if HAS_Y_MAX #if ENABLED(Y_DUAL_ENDSTOPS) PROCESS_DUAL_ENDSTOP(Y, Y2, MAX); #else PROCESS_ENDSTOP(Y, MAX); #endif #endif } } if (stepper.axis_is_moving(Z_AXIS)) { if (stepper.motor_direction(Z_AXIS_HEAD)) { // Z -direction. Gantry down, bed up. #if HAS_Z_MIN #if ENABLED(Z_DUAL_ENDSTOPS) PROCESS_DUAL_ENDSTOP(Z, Z2, MIN); #else #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN); #elif ENABLED(Z_MIN_PROBE_ENDSTOP) if (!z_probe_enabled) PROCESS_ENDSTOP(Z, MIN); #else PROCESS_ENDSTOP(Z, MIN); #endif #endif #endif // When closing the gap check the enabled probe #if ENABLED(Z_MIN_PROBE_ENDSTOP) if (z_probe_enabled) PROCESS_ENDSTOP(Z, MIN_PROBE); #endif } else { // Z +direction. Gantry up, bed down. #if HAS_Z_MAX #if ENABLED(Z_DUAL_ENDSTOPS) PROCESS_DUAL_ENDSTOP(Z, Z2, MAX); #elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN // If this pin is not hijacked for the bed probe // then it belongs to the Z endstop PROCESS_ENDSTOP(Z, MAX); #endif #endif } } } // Endstops::update() #if ENABLED(PINS_DEBUGGING) bool Endstops::monitor_flag = false; /** * monitors endstops & Z probe for changes * * If a change is detected then the LED is toggled and * a message is sent out the serial port * * Yes, we could miss a rapid back & forth change but * that won't matter because this is all manual. * */ void Endstops::monitor() { static uint16_t old_live_state_local = 0; static uint8_t local_LED_status = 0; uint16_t live_state_local = 0; #if HAS_X_MIN if (READ(X_MIN_PIN)) SBI(live_state_local, X_MIN); #endif #if HAS_X_MAX if (READ(X_MAX_PIN)) SBI(live_state_local, X_MAX); #endif #if HAS_Y_MIN if (READ(Y_MIN_PIN)) SBI(live_state_local, Y_MIN); #endif #if HAS_Y_MAX if (READ(Y_MAX_PIN)) SBI(live_state_local, Y_MAX); #endif #if HAS_Z_MIN if (READ(Z_MIN_PIN)) SBI(live_state_local, Z_MIN); #endif #if HAS_Z_MAX if (READ(Z_MAX_PIN)) SBI(live_state_local, Z_MAX); #endif #if HAS_Z_MIN_PROBE_PIN if (READ(Z_MIN_PROBE_PIN)) SBI(live_state_local, Z_MIN_PROBE); #endif #if HAS_X2_MIN if (READ(X2_MIN_PIN)) SBI(live_state_local, X2_MIN); #endif #if HAS_X2_MAX if (READ(X2_MAX_PIN)) SBI(live_state_local, X2_MAX); #endif #if HAS_Y2_MIN if (READ(Y2_MIN_PIN)) SBI(live_state_local, Y2_MIN); #endif #if HAS_Y2_MAX if (READ(Y2_MAX_PIN)) SBI(live_state_local, Y2_MAX); #endif #if HAS_Z2_MIN if (READ(Z2_MIN_PIN)) SBI(live_state_local, Z2_MIN); #endif #if HAS_Z2_MAX if (READ(Z2_MAX_PIN)) SBI(live_state_local, Z2_MAX); #endif uint16_t endstop_change = live_state_local ^ old_live_state_local; if (endstop_change) { #if HAS_X_MIN if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR(" X_MIN:", TEST(live_state_local, X_MIN)); #endif #if HAS_X_MAX if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", TEST(live_state_local, X_MAX)); #endif #if HAS_Y_MIN if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", TEST(live_state_local, Y_MIN)); #endif #if HAS_Y_MAX if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", TEST(live_state_local, Y_MAX)); #endif #if HAS_Z_MIN if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", TEST(live_state_local, Z_MIN)); #endif #if HAS_Z_MAX if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", TEST(live_state_local, Z_MAX)); #endif #if HAS_Z_MIN_PROBE_PIN if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", TEST(live_state_local, Z_MIN_PROBE)); #endif #if HAS_X2_MIN if (TEST(endstop_change, X2_MIN)) SERIAL_PROTOCOLPAIR(" X2_MIN:", TEST(live_state_local, X2_MIN)); #endif #if HAS_X2_MAX if (TEST(endstop_change, X2_MAX)) SERIAL_PROTOCOLPAIR(" X2_MAX:", TEST(live_state_local, X2_MAX)); #endif #if HAS_Y2_MIN if (TEST(endstop_change, Y2_MIN)) SERIAL_PROTOCOLPAIR(" Y2_MIN:", TEST(live_state_local, Y2_MIN)); #endif #if HAS_Y2_MAX if (TEST(endstop_change, Y2_MAX)) SERIAL_PROTOCOLPAIR(" Y2_MAX:", TEST(live_state_local, Y2_MAX)); #endif #if HAS_Z2_MIN if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", TEST(live_state_local, Z2_MIN)); #endif #if HAS_Z2_MAX if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", TEST(live_state_local, Z2_MAX)); #endif SERIAL_PROTOCOLPGM("\n\n"); analogWrite(LED_PIN, local_LED_status); local_LED_status ^= 255; old_live_state_local = live_state_local; } } #endif // PINS_DEBUGGING